

Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology

Sun-Wei Guo *,^{1,2}

¹Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China, and ²Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China

*Correspondence address. Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China. Fax: 86-21-6345-5090; E-mail: hoxa10@outlook.com <https://orcid.org/0000-0002-8511-7624>

Submitted on May 31, 2019; resubmitted on October 22, 2019; editorial decision on November 19, 2019

TABLE OF CONTENTS

- Introduction
- Methods
- Mutations and CAMs in endometriosis
 - Somatic mutations and cancer-driver mutations
 - Detection of somatic mutations
 - Somatic mutations in tumours and in normal tissues
 - CAMs in endometriosis: what do they tell us?
- Shedding light on pathogenesis and pathophysiology
 - Pathogenesis
 - From distinct developmental trajectories to partners in crime
 - Implications for treatment
 - CAMs and fibrogenesis
 - CAMs and malignant transformation
 - Drivers of CAMs and fibrogenesis
 - Limitations of published studies and future research
- Summary answers
 - Why is there such a wild discrepancy in reported mutation frequencies? How can we reconcile such a discrepancy?
 - Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium?
 - Would the occurrence of CAMs in endometriotic lesions increase the risk of cancer in their carriers?
 - How often do CAMs occur?
 - Will all patients with endometriosis, deep or otherwise, have CAMs in the lesions sooner or later?
 - OE is now well documented to be linked with OVCA, but why does extraovarian endometriosis seldom lead to cancer?
 - What clinical implications, if any, do the CAMs have for the bearers?
 - When a patient with endometriosis is found to have CAMs, should she be concerned or worried?
 - Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis?
 - Are there any limitations in these studies?
 - What kind of future research is needed so that we can build upon our knowledge and further unveil some long-standing mysteries and conundrums in endometriosis?
- Conclusions
- Post scriptum note

BACKGROUND: Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked.

OBJECTIVE AND RATIONALE: A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis?

SEARCH METHODS: The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results.

OUTCOMES: Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial–mesenchymal transition, endothelial–mesenchymal transition, mesothelial–mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity.

WIDER IMPLICATIONS: The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.

Key words: bone-marrow-derived stem cells / cancer-associated mutation / developmental trajectory / endometriosis / endothelial–mesenchymal transition / epithelial–mesenchymal transition / fibrogenesis / mesothelial–mesenchymal transition / pathogenesis / pathophysiology

Introduction

Endometriosis is a benign gynaecological disease characterized by the ectopic deposition of endometrial-like tissues outside of the uterine cavity. It has three major subtypes, namely ovarian endometrioma (OE), deep endometriosis (DE) and superficial peritoneal endometriosis (PE) (Nisolle and Donnez, 1997). Featuring elevated local oestrogen production and inflammation, endometriosis is one of the major contributors to dysmenorrhea, infertility and chronic pelvic pain, impacting negatively on the quality of life in afflicted women (Vercellini *et al.*, 2014). Although OE is reported to be linked with increased risk of ovarian cancer (OVCA) of certain histotypes (Kurman and Shih *et al.*, 2010; Pearce *et al.*, 2012; Saavalainen *et al.*, 2018), the magnitude of elevated risk is fairly moderate and the resultant absolute risk of OVCA is still low (Pearce *et al.*, 2012; Guo, 2015; Saavalainen *et al.*, 2018). For extraovarian endometriosis, the risk of developing

into cancer is near zero (Saavalainen *et al.*, 2018; Bulun *et al.*, 2019). Thus, it came as a complete surprise when Anglesio *et al.* reported in 2017 that the majority (79%) of DE lesions harbor somatic mutations and a sizeable portion of them (26%) contain known cancer-driver mutations on genes coding for AT-rich interactive domain-containing protein 1A (ARID1A), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α (PIK3CA), Kirsten rat sarcoma (KRAS), or protein phosphatase 2 scaffold subunit A α (PPP2R1A) in the epithelial, but not the stromal, component (Anglesio *et al.*, 2017). Although the authors were careful and did not say that the cancer-driver mutations in DE are synonymous with increased risk of developing cancer, the connotation of 'cancer-associated mutations' (CAMs) is nonetheless unnerving and somewhat unsettling or even alarming. Since the report by Anglesio *et al.* (2017) four more studies have been published. While the study by Suda *et al.* reported

that 100% of OE lesions harboured somatic mutations and the majority of them also carried CAMs (Suda *et al.*, 2018), another study reported only 3% of OE had CAMs (Zou *et al.*, 2018). Lac *et al.* reported 10% of iatrogenic endometriosis (IE) and 22% of DE carried CAMs (Lac and Huntsman, 2018). Noe *et al.* reported that all six non-superficial endometriosis carried somatic mutations, and that the mutations were significantly enriched in epithelial but not stromal components of all lesions, suggesting that epithelium is clonal and its development is independent of stroma (Noe *et al.*, 2018).

Collectively, these studies shed new light on the pathogenesis and pathophysiology of endometriosis. As the circle of our knowledge expands, however, more questions can be raised.

Why is there such a large discrepancy in reported mutation frequencies? How can we reconcile such a discrepancy? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the occurrence of CAMs in endometriotic lesions render an increased risk of cancer to their carriers? How often do CAMs occur? Do all patients with endometriosis, deep or otherwise, have CAMs in lesions sooner or later? What clinical implications, if any, do the CAMs have for the bearers? When a patient with endometriosis is found to have CAMs, should she be concerned or worried? OE is now well documented as being linked with OVCA, but why does extraovarian endometriosis seldom lead to cancer? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? Are there, if any, limitations in these studies? Finally, what kind of future research is needed so that we can build upon our knowledge and further unveil some long-standing mysteries and conundrums in endometriosis?

In this paper, I will provide a comprehensive overview on the current status of somatic mutations, especially CAMs, in endometriosis, identify possible causes of the CAMs, explain why there is discrepancy among studies, describe what these reported CAMs tell us about the pathogenesis and/or pathophysiology, and elaborate on the possible clinical implications of CAMs. Above all, I shall address the questions raised above and expose areas in need of further research so that we can learn more about the pathogenesis and/or pathophysiology of endometriosis.

Methods

PubMed was searched for all peer-reviewed original and review articles related to CAMs in endometriosis published in English from its inception to September 2019. The literature search was performed using main terms 'endometriosis and CAM', and 'endometriosis and cancer-driver mutation'. In addition, PubMed was also searched using the keywords and MeSH terms 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'KRAS mutation and therapeutics'. All retrieved papers were carefully assessed and, when relevant, incorporated into the review results. Their reference lists were also checked to identify any other study that could be relevant to this review. The eligibility of the retrieved studies was based mainly on abstract. The decision as whether or not the study was included in this review was made after careful assessment of its content.

Mutations and CAMs in endometriosis

Somatic mutations, defined as permanent and irreversible changes of the nucleotide sequence that are different from the host's germline, in endometriotic lesions are nothing new. Various forms of mutations, such as chromosomal aneuploidy (Shin *et al.*, 1997; Kosugi *et al.*, 1999), loss of heterozygosity (LOH) (Sato *et al.*, 2000) and copy number changes/genomic alterations (Gogusev *et al.*, 1999; Wu *et al.*, 2006a,b,c; Yang *et al.*, 2013) have been reported since the 1990s. Negative findings also have been reported (Rai *et al.*, 2010; Saare *et al.*, 2012).

Somatic mutations and cancer-driver mutations

Developed from a single fertilized egg, which is essentially just one single cell, a human being consists of 10^{13} – 10^{14} cells in his/her body thanks to successive mitoses or cell divisions (Bianconi *et al.*, 2013). In its entirety, the 3.1 billion basepairs of human genome comprise the entire nucleic acid sequence encoded as DNA within the 23 chromosome pairs in the cell nuclei and a small amount of DNA sequence (0.054% of the genome) in the mitochondria.

In normal physiological conditions, cells in different organs/tissues in humans are constantly experiencing turnover. This renewal process maintains the cellular homeostasis and is vital to the health of an organism. Depending on the worn-out rate of the organs/tissues, some organs/tissues, such as intestinal epithelium, have a faster turnover, with new cells replenished within days. Other organs/tissues, such as the brain, have a much slower turnover and remain mostly in dormancy.

During development or in adulthood, mitosis entails DNA replication. While the replication mechanism has a very high fidelity, with the mutation rate in the order of 10^{-8} – 10^{-7} per basepair per cell division (Nachman and Crowell, 2000; Araten *et al.*, 2005), mutation is still bound to occur given the enormous size of the genome and the number of replications. In just one cell division, the chance that no mutation occurred is $\sim 3.4 \times 10^{-14}$ assuming a mutation rate of 10^{-8} per basepair per division. This minuscule probability amounts to tossing a fair coin consecutively 45 times and getting the head up all the time.

Hence, mutagenesis is essentially stochastic in normal physiological conditions and inevitable. Because mutation occurs as a replication error, aging, which is intimately linked with an increasing number of cell divisions, is an important factor in causing genomic mutations (Rozhok and DeGregori, 2016). In fact, it has been shown that the total number of stem cell divisions, which varies greatly among different tissue types, is highly correlated with cancer risk. This explains why the incidence of certain types of cancer, such as colorectal cancer, is much higher than others, such as stomach cancer (Tomasetti and Vogelstein, 2015). Since human endometrium is a highly regenerative tissue undergoing monthly cycles of growth, differentiation and shedding during a woman's reproductive life, and since stem cells are involved in endometrial regeneration (Gargett *et al.*, 2016), spontaneous mutations are bound to occur in normal endometrium, and this may explain, at least in part, the mutations found in eutopic endometrium (Suda *et al.*, 2018).

In addition, when the organism/organs/tissues are exposed to an adverse environment, such as mutagenic chemicals/agents, UV light,

radiation, oxygen radicals, persistent inflammation and other deleterious factors, mutagenesis may be further accelerated (Cogliano *et al.*, 2011) leading eventually to DNA damage, inactivation of tumour suppressor genes and oncogene activation. Moreover, similar to the evolution of species, cells with different genetic variants are under selective pressure: those with a high explicative fitness would eventually outnumber cells with lower fitness. As a result, the existence of somatic mosaicism is fully documented in humans, and has been viewed as an aging phenotype (De, 2011; Risques and Kennedy, 2018).

Not all mutations are deleterious. In fact, the majority of mutations are harmless and have no impact on functionality or behaviours of the cell that bears the mutation and, as such, these mutations are accumulated passively (Martincorena *et al.*, 2017). But every now and then, an important gene is mutated, and the cells bearing the mutation have a competitive edge over other cells, such as higher proliferative or survival propensity, resulting in the gradual and progressive domination of the cells with that mutation. Such cells, called the mutant clones, may acquire and accumulate further mutations and are the origin of cancer cells (Falkow, 1976; Nowell, 1976).

In contrast to 'passenger' mutations, which occur randomly and confer no fitness to their bearers (Muller *et al.*, 2012), cancer 'driver' mutations or CAMs are implicated in pathways that are critical in determining the proliferative, survival and metastatic propensity of tumour cells (Kato *et al.*, 2016). Thus, CAMs are thought to be rare in benign conditions such as endometriosis, are present mostly in premalignancy and are most frequent in metastatic cancer or those with a metastatic potential (Kato *et al.*, 2016).

Detection of somatic mutations

Somatic mutations are traditionally detected by many, mostly low-resolution, methods. For detecting copy number changes, cytogenetic approaches such as multi-colour fluorescence *in situ* hybridization (FISH), conventional or array-based comparative genomic hybridization (CGH) and LOH analysis are often used. For detecting gene mutations, genotyping and Sanger sequencing are often used. FISH, CGH, LOH, genotyping and Sanger sequencing are of low resolution and of higher error rate, and, as such, can only detect mutations in a few predetermined loci or in large chromosomal segments, and are restricted to detecting variant allele frequencies typically higher than 10% (Strom, 2016; Risques and Kennedy, 2018).

With the advent, and particularly the increasing affordability, of the next generation sequencing (NGS) technologies, the resolution of detection has increased dramatically and the error rate has been reduced substantially. The new error-correction NGS can further increase the resolution and reduce the error rate, making the detection of low-frequency mutations much easier and more accurate. Currently, error-corrected NGS technologies can detect mutations in the 0.001–0.1% range (Risques and Kennedy, 2018). Consequently, as the detection resolution increases, higher and higher somatic mutation rates have been reported in some benign diseases and even in tissues that are physiologically normal (Risques and Kennedy, 2018). This dramatic improvement in detection accuracy has fundamentally changed our views on somatic mutation burdens, mutational signatures, structural variants and the frequency of CAMs in apparently normal individuals. For example, older studies using NGS technology reported CAMs in about 10% of individuals older than 65 years, but studies using error-

corrected NGS technologies indicate that the CAMs prevalence in adults is nearly 100% (Krimmel *et al.*, 2016; Young *et al.*, 2016).

In addition, since different cell types in the same tissue often have distinct developmental trajectories and the proportions of different cell types in the same tissue vary greatly in different people, the use of microdissection in harvesting the desired cell type greatly increases the signal-to-noise ratio and helps to detect the true mutations in a particular cell type. For example, before the use of microdissection, the clonality of endometriotic epithelial cells could not be unequivocally determined in about 18–40% of the cases due to cell contamination, but with microdissection the clonality can be determined in all cases (Wu *et al.*, 2003).

This can explain why studies that did not use microdissection often reported a much lower somatic mutation rate. For example, Vestergaard *et al.* reported that only 1 (4.3%) out of 23 patients with endometriosis was found to harbour mutations (Vestergaard *et al.*, 2011) (Table I). Similarly, Zou *et al.* reported that 3 (3.0%) of 101 OEs were found to have CAMs (Zou *et al.*, 2018). Consequently, while these data appear to be genuine, the fact that the endometriotic epithelium and stroma apparently have different mutational profiles (Noe *et al.*, 2018) renders their conclusions questionable.

Moreover, it also explains why studies using low-resolution detection methods reported many fewer mutations. For example, using PCR in combination with denaturing gradient gel electrophoresis (DGGE) on nine cancer-associated genes, Vestergaard *et al.* reported that only 1 (4.3%) out of 23 patients with endometriosis was found to harbour mutations (Vestergaard *et al.*, 2011) (Table I). In contrast, using the whole-exome sequencing method (much more accurate than DGGE), Li *et al.* found all 16 (100%) patients with OE harboured various somatic mutations (Li *et al.*, 2014).

Therefore, whether or not microdissection is used, the accuracy of the detection method (so that low-abundance mutations can be detected) and the scope of detection (detecting specific mutations or unbiased whole-exome or whole-genome sequencing) should largely determine the mutation frequency. The difference in detection methodology accounts for the discrepancy in reported mutation rates.

Somatic mutations in tumours and in normal tissues

Somatic mutations used to be thought to occur exclusively in pathological tissues such as cancer, pre-neoplastic tissues, or normal tissue adjacent to tumours. As mutation detection techniques become more accurate, affordable and higher resolution, it becomes evident that spontaneous somatic mutations or genomic alterations can, and do, occur in apparently normal tissues and benign conditions (Kato *et al.*, 2016; Risques and Kennedy, 2018). Notably, use of the microdissection technique and elimination of sequencing errors greatly increases the detection accuracy, permitting detection of low-frequency mutations in apparently normal or healthy tissues/people (Krimmel *et al.*, 2016; Dong *et al.*, 2017) that would otherwise be missed using the older sequencing methods. In addition, mutations are found to be increasingly more abundant in aging tissues, indicating that aging or the number of replications is a major driving force in generating mutations (Kindt *et al.*, 2011; Schmitt *et al.*, 2012; Hsieh *et al.*, 2013; Blokzijl *et al.*, 2016; Hoang *et al.*, 2016; Nair *et al.*, 2016; Mattox *et al.*, 2017; Martincorena *et al.*, 2018). Within the same individual, there is a substantial variation

Table 1 Summary results of studies reporting CA mutations in endometriosis.

Study	Type of endometriosis	Sample size	Patient age (years)	Detection method	Names of mutated genes	Percentage of patients who had mutations	Major findings	Microdissection (epithelium)
Vestergaard et al. (2011)	Not reported	N=23	31.0 ± 5.2	9 CA genesPCR in combination with denaturing gradient gel electrophoresis (DGGE) Sensitivity: ~5%	BRAF, HRAS, NRAS, CTNNB1, CDK4, FGFR3, PIK3CA, TP53 and PTEN	1/23 = 4.3%	No. Mixed cell populations	
Li et al. (2014)	OE	N=16	32.4 ± 6.2	Whole-exome sequencing (Estimated to be able to detect 76% of existing mutation)		100%	C-T Mutations sig. higher Eu and Ec have distinctive mutation profiles	Yes
Anglesio et al. (2017)	DE	N=24	36.7 ± 7.4	Exome-wide sequencing	various	19 (79.2%) 5 (20.8%)	Only in epithelium	Yes
Suda et al. (2018)	OE	N=13	42.9 ± 11.0	whole-exome sequencing	Various	13 (100.0%) Driver mutations: 10 (76.9%)	Discordant mutational profiles between eutopic and ectopic endometrium is found	Yes
Lac et al. (2018)	Iatrogenic endometriosis and DE	N=40 N=36	36.5 ± 5.5 33.9 ± 7.0	Targeted sequencing	33 genes (exons and hot spots)	4 (10.0%) 8 (22.2%)		Yes
Zou et al. (2018)	OE	N=101	32 (median)	PCR amplification of the potential mutational hotspot regions of KRAS, PPP2R1A, PIK3CA, BRAF, NRAS, HRAS, ERK1, ERK2 and PTEN genes, as well as the entire coding region and corresponding intron/exon boundaries of the ARID1A gene. Then sequencing and compared against the DNA derived from PBMIC.	KRAS, PPP2R1A, PIK3CA, BRAF, NRAS, HRAS, ERK1, ERK2 and PTEN genes	3 (3.0%)	KRAS p.G12V, PPP2R1A p.S256F, ARID1A	No
Noe et al. (2018)	Mixed	DE: n=5 OE: n=1	40.3 ± 8.8	Exome sequencing	6 (100%)	Significantly enriched mutations in epithelial but not in stromal components		Yes

CA: cancer associated; DE: deep endometriosis; Ec: ectopic endometrium; Eu: eutopic endometrium; OE: ovarian endometrioma; PBMIC: peripheral blood mononuclear cell; ARID1A: AT-rich interactive domain-containing protein 1A; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CDK4: cyclin-dependent kinase 4; CTNNB1: catenin β 1; ERK1: extracellular signal-regulated kinase 1; ERK2: extracellular signal-regulated kinase 2; FGFR3: fibroblast growth factor receptor 3; HRAS: HRAS: KRAS proto-oncogene, GTPase; NRAS: NRAS: proto-oncogene, GTPase; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α ; PPP2R1A: protein phosphatase 2 scaffold subunit α ; PTEN: phosphate and tension homology deleted on chromosome ten; TP53: tumour protein p53.

in genomic alterations among different tissues, with more alterations seen in tissues with a fast turnover and in genes involved in cell regulation (O'Huallachain *et al.*, 2012). Moreover, these age- or replication-related mutations are often CAMs (Martincorena *et al.*, 2015; Krimmel *et al.*, 2016; Martincorena *et al.*, 2018). That is, somatic mutation and even CAMs can, and do, occur in apparently healthy or normal tissues.

Noteworthy is that massive mutations in physiologically normal tissues have been detected when deep sequencing methods are used (Martincorena *et al.*, 2015; Martincorena *et al.*, 2018). Healthy cells in the oesophageal epithelium, for example, carry at least several hundred mutations per cell in people in their 20s or over 2000 mutations in older people (Martincorena *et al.*, 2018), suggesting that replicative mutations accumulate with age. In addition, in tissues exposed to the sun, large numbers of mutant clones under positive selection are found, and the signatures of the mutations are consistent with the DNA damage induced by UV rays (Martincorena *et al.*, 2015), highlighting the impact of environmental exposure on somatic mutations. Many of these mutations are CAMs, which confer selective advantages. Surprisingly, the prevalence of NOTCH1 (a cancer-driver gene) mutations in normal oesophagus is found to be several times higher than in oesophageal cancers (Martincorena *et al.*, 2018). While these clones appear to be a result of normal aging, it is likely that they may acquire more genetic advantages over time and eventually transform into malignancy (Martincorena *et al.*, 2018). Indeed, a fitness benefit of merely 0.4% over the time course of 20 years might be enough to lead to malignant transformation (Bozic *et al.*, 2010). Hence, the presence of CAMs is not necessarily synonymous with cancer or tumour development.

Of course, the mutational processes underlying normal aging also are operative in tumorigenesis in a given organ or tissue (Kindt *et al.*, 2011; Schmitt *et al.*, 2012; Hoang *et al.*, 2016; Mattox *et al.*, 2017; Risques and Kennedy, 2018). So much so that half or more of somatic mutations in tumours are estimated to have arisen before initiation of a tumour (Tomasetti *et al.*, 2013), and that replication-induced mutations have been proposed to account for up to two-thirds of the mutations in human cancers even after adjustment for an environmental and hereditary propensity for malignancy (Tomasetti *et al.*, 2017).

Extensive sequencing of adult stem cells of various organs with different cancer incidences has shown that these organs gradually accumulate mutations at very similar rates, but their mutation profiles vary from tissue to tissue (Blokzijl *et al.*, 2016). Hundreds to thousands of mutations are present in tumour cells and are shared by most or all tumour cells, but the mutation burden correlates with patient's age (Welch *et al.*, 2012; Milholland *et al.*, 2015). Consistently, the cancer incidence seems to be correlated with the number of stem cell divisions across a wide variety of cancer types (Tomasetti and Vogelstein, 2015). In fact, these age-associated or replication-driven mutations appear to have particular mutational signatures (Alexandrov *et al.*, 2013; Alexandrov *et al.*, 2015). The acquisition of CAMs apparently confers an explicative advantage, resulting in the clonal expansion of the founder cell (Vogelstein *et al.*, 2013; Martincorena *et al.*, 2018).

Consistent with the reported massive mutations in various physiologically normal tissues (Martincorena *et al.*, 2015; Blokzijl *et al.*, 2016; Franco *et al.*, 2018; Lee-Six *et al.*, 2018; Martincorena *et al.*, 2018), a recent study employing targeted sequencing of hotspot regions in cancer-related genes in combination with immunohistochemistry analysis on 110 women who had undergone either hysterectomy or

iatrogenic procedures reports that 51–64% of women carry CAMs in their endometrium without any evidence of malignancy or even subtle pathology, with KRAS (28.2%), PIK3CA (12.7%), and phosphate and tension homology deleted on chromosome ten (PTEN), PTEN (27.3%) being the most common (Lac *et al.*, 2019). Consistently, the results showed that the mutation rate is a linear function of age, with the likelihood of harbouring a mutation in endometrial tissue increased by 5% per year, independent of menstrual phase (Lac *et al.*, 2019).

Using microdissection and NGS whole-genome sequencing method, another study reports mutation burden, and signatures and CAMs on 215 histologically normal endometrial glands isolated from 18 women (Moore *et al.*, 2018). Remarkably, it finds that, in normal endometrial glands, there is an average of 1324 base substitutions and an average of 85 insertions/deletions (indels) per woman (Moore *et al.*, 2018). Again, the mutation rate correlated linearly with age, accumulating ~28 base substitutions per gland per year during adult life and an extra 20 substitutions with each increasing unit of BMI (Moore *et al.*, 2018). Many of these mutations occur early in life, and different mutational processes appear to be operative (Moore *et al.*, 2018). Nearly 95% of women evaluated are found to harbour various CAMs in their endometrial glands, including KRAS, PIK3CA, phosphoinositide-3-kinase regulatory subunit I (PIK3RI), Rho GTPase activating protein 35 (ARHGAP35), PPP2R1A and F-box and WD repeat domain containing 7 (FBXW7), which have been reported to be present in ectopic endometrium (Anglesio *et al.*, 2017; Suda *et al.*, 2018) as well as in endometriosis-associated ovarian cancer (EAOC) (Kuo *et al.*, 2009).

CAMs in endometriosis: what do they tell us?

Given the above discussion, it seems evident that we can disregard, without loss of much information, those studies reporting mutations in endometriosis that did not use microdissection to harvest cells of the desired type and/or used low-accuracy detection methods. After this screening, only five studies were considered to be trustworthy.

Using whole-exome sequencing of endometriotic epithelial cells, Li *et al.* reported all 16 patients with OE harbour various somatic mutations and identified frequent alterations in genes involved in cell adhesion and chromatin-remodelling complexes (Li *et al.*, 2014). This is the first study to show that all OE lesions seem to have somatic mutations (Table I). In addition, their pathway analyses using genes found to be recurrently mutated identified chromatin remodelling as one of the enriched functional groupings. In particular, their data suggest that mutated genes encode a histone methyltransferase involved in histone H3 lysine 4 (H3K4) modification, echoing previous reports of aberrant H3K4 methylation in endometriosis (Xiaomeng *et al.*, 2013; Monteiro *et al.*, 2014; Sun *et al.*, 2016). Their results thus lend support for the notion that endometriosis can be characterized with epigenetic aberrations (Guo, 2009a,b).

The study by Anglesio *et al.* showed that in women with DE a sizeable portion of lesions contain known CAMs in the epithelial component only (Anglesio *et al.*, 2017) (Table I). Since DE is rarely reported to be associated with malignancy, this study presents results that are quite unnerving. However, the clinical significance remains largely unclear.

The same group recently published another study on mutations in IE as well as DE (Lac *et al.*, 2018). Here, IE refers to endometriotic lesions resulting from the surgical scars of previous obstetric or gynaecological procedures. Using microdissection and a hypersensitive cancer hotspot

sequencing panel, they found that 10% of IE and 22% of DE lesions harbour CAMs. In addition, 18% of IE and 14% of DE lesions exhibited, by immunoreactivity, loss of PTEN, a tumour suppressive gene, in the epithelial component (Lac *et al.*, 2018). Combining sequencing data and immunohistochemistry results, they reported an overall rate of CAMs in 28% of IE and 36% DE lesions (Lac *et al.*, 2018) (Table I), confirming their previous study (Anglesio *et al.*, 2017). In addition, it demonstrates the similarity of the two types of endometriosis (harbouring considerable CAMs) and their differences (somewhat different mutation profiles) (Lac *et al.*, 2018). That is, CAMs are not exclusively confined to DE but can actually be seen in other subtypes of endometriosis as well.

Noe *et al.* recently reported that, among 19 mutations sequenced in six patients with OE or DE, all were significantly enriched in epithelial cells but not in stromal cells, suggesting that the evolution of non-superficial endometriosis is not straightforward: epithelium is clonal and its development is independent of stroma (Noe *et al.*, 2018). Using droplet digital PCR analysis of microdissected epithelium- and stroma-enriched endometriosis tissues, they report that the 19 somatic passenger mutations analyzed were predominantly found in the epithelial compartment, in contrast to very few mutations in the stromal one (Noe *et al.*, 2018) (Table I). These findings are consistent with the previous report that the endometriotic epithelial cells are monoclonal (Wu *et al.*, 2003), whereas stromal cells may be continuously regenerated or recruited during lesional progression and development. This led to the conclusion that the evolution of endometriosis is complex, in that epithelium is clonal and its development is independent of stroma (Noe *et al.*, 2018). In the authors' own words, the results 'do not support the views that endometriosis originate from a single stem/progenitor cell, which differentiate to both epithelial and stromal cells, or the epithelial cells differentiate into stromal cells through epithelial–mesenchymal transition at the site of endometriosis' (Noe *et al.*, 2018). Lac and Huntsman (2018) further elaborated this point, proposing that endometriotic epithelium and stroma may have distinct developmental trajectories. In particular, they argue that, given the data, the most likely scenario is that progenitor cells undergo clonal expansion to give rise to epithelial cells, whereas stromal cells come into being without clonal expansion (Lac and Huntsman, 2018).

By using a combination of microdissection, independent discovery and validating samples, whole-exome and target-gene sequencing, multi-regional sequencing of several sites (multiple lesions as well as eutopic endometrium) from the same individuals, and single endometrial gland sequencing, the study by Suda *et al.* is by far the most informative one to date on CAMs in endometriosis, especially for OE. They reported that epithelial cells within OE lesions exhibit extensive CAMs and clonal expansion, and that the genomic architecture of epithelial cells in uterine endometrium is heterogeneous (Table I). While overall the OE lesions and normal endometrium had a similar number of somatic mutations per Mb sequenced, the mutational profiles in ectopic and eutopic endometrium from the same patient were discordant (Suda *et al.*, 2018). In addition, single endometrial glands carry distinct CAMs, even though the tissues appeared to be histologically benign and normal (Suda *et al.*, 2018). In general, the distributions of mutant allele frequency (MAF) in endometriotic epithelium were higher than those in uterine endometrial epithelium, and some endometriotic epithelium harboured arm-level allelic imbalances that are consistent with LOH in regions harbouring CAMs. One of their interesting findings is that

lesions that were in close physical proximity appeared to have similar mutations, yet lesions located on the right and left ovaries displayed entirely different mutations, suggesting different developmental origins (Suda *et al.*, 2018). Individual endometrial glands within the normal uterus of the same individual carried distinct somatic mutations. In many ways, the study by Suda *et al.* (2018) has provided a greater understanding of the spatiotemporal evolution of OE and a much-needed glimpse at the unique mutational profiles of endometriotic epithelium and uterine endometrial epithelium, and also demonstrated a clear explicative advantage of acquiring these CAMs.

Based on these findings, Suda *et al.* offered a plausible explanation for the pathogenesis of OE, which originates from eutopic endometrium that already carries CAMs that confer selective advantages once regurgitated into the peritoneal cavity through retrograde menstruation, resulting in clonal expansion and ultimately causing symptoms (Suda *et al.*, 2018). In other words, endometriosis originates from a defective endometrium that is harbouring CAMs.

Shedding light on pathogenesis and pathophysiology

Pathogenesis

In endometrium, each menstrual cycle is analogous to classic tissue injury and repair, which include inflammation, its resolution, angiogenesis, tissue formation and remodelling or re-epithelialization (Maybin and Critchley, 2015). Each gland in the endometrium appears to be regenerated from a committed endometrial stem cell (Tanaka *et al.*, 2003). Similar to eutopic endometrium, the ectopic endometrium sheds glandular epithelial cells during menstruation, but considerably less so in the endometriotic stromal cells, which also house recruited progenitor cells and transdifferentiated cells (see below).

The study by Suda *et al.* has demonstrated beautifully and convincingly the power of sequencing in establishing the phylogenetic relationship between two clones of cells. Based on their results, Suda *et al.* proposed that the endometrium of women with OE contains, prior to the formation of OE lesions, endometrial glands with pre-existing CAMs that may have selective advantages, which subsequently acquire more CAMs after successfully implanting onto the ectopic sites, which then go through clonal expansions (Figure S7 in (Suda *et al.*, 2018)).

However, caution should be exercised here. First, the finding of CAMs in endometrial glands is based on target-gene sequencing of 109 single endometrial glands from the uteri of three women, aged 38, 47 and 49 years old, respectively (Suda *et al.*, 2018). Small sample size aside, the three patients were older than the mode of the age at first surgery in women with OE (Liu *et al.*, 2008). OE is frequently diagnosed before 38 years of age and in some cases in adolescent girls (Saridogan, 2017) even though a diagnostic delay is well documented in endometriosis (Hadfield *et al.*, 1996; Arruda *et al.*, 2003). Given the somewhat ubiquitous age-related somatic mutations in healthy organs/tissues (Risques and Kennedy, 2018), and since endometrium is a highly regenerative tissue that displays monoclonality in each endometrial gland yet the entire endometrium exhibits a mosaic pattern of clonal distribution (Tanaka *et al.*, 2003; Wu and Guo, 2008), it is conceivable that normal endometrium, especially from older women, may harbour somatic mutations or even some CAMs. In fact, it has

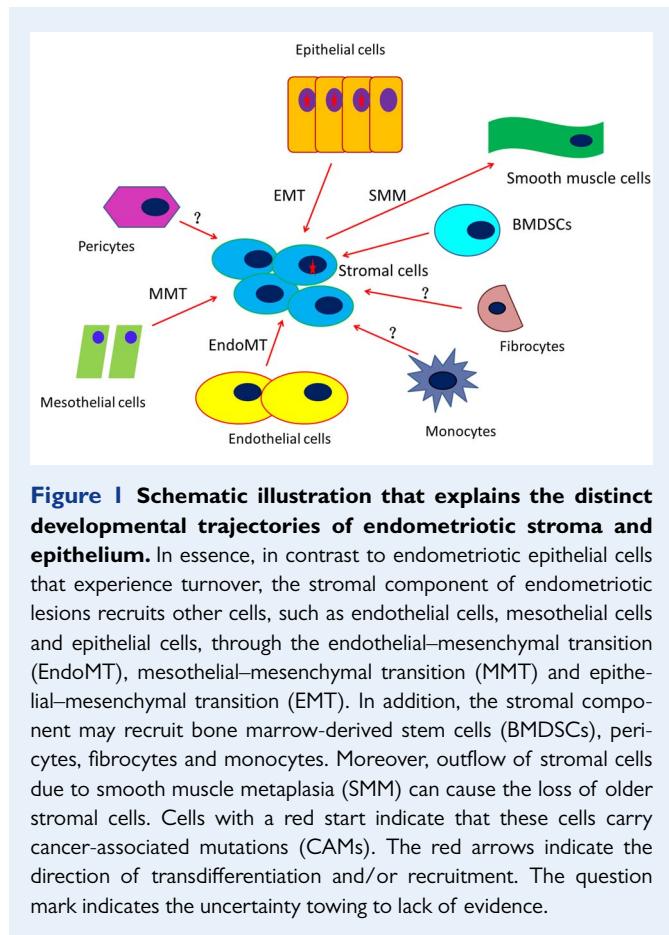
been shown recently that the most common CAMs in apparently normal endometrium are KRAS and PIK3CA (Lac *et al.*, 2019). The whole-genome sequencing study by Moore *et al.* also shows that many CAMs detected in the glands of endometrium, such as KRAS, PIK3CA, PIK3R1, ARHGAP35, FBXW7, fibroblast growth factor receptor 2 (FGFR2), PP2R1A, PTEN, zinc finger homeobox 3 (ZFHX3), and AT-rich interaction domain 5B (ARID5B), are all present in histologically normal endometrium from women without endometriosis or uterine fibroids (Moore *et al.*, 2018). Thus, the proposal, based on the *post hoc* evidence of CAMs in eutopic endometrium from women with endometriosis, that women with endometriosis or OE have pre-existing CAMs before the genesis of endometriosis is simply premature, especially in the absence of any data suggestive of a phylogenetic relationship between endometriotic lesions and the eutopic endometrium.

Second, while the suspicion that endometriosis may originate from defective endometrium has long been raised (Vinatier *et al.*, 2000), we need to understand that most, if not all, data on the endometrial aberrations are collected from patients who have already been surgically and histologically diagnosed with endometriosis. In fact, data from several well designed animal studies of endometriosis consistently and unequivocally indicate that, once endometriosis is induced artificially, the eutopic endometrium then acquires various molecular and histological aberrations (Kim *et al.*, 2007; Lee *et al.*, 2009; Sherwin *et al.*, 2010; Naqvi *et al.*, 2016; Kim *et al.*, 2019). More remarkably, the extent of endometrial aberrations appears to depend on the proximity of endometriotic lesions to the uterus (Naqvi *et al.*, 2016). These data strongly suggest that the numerous endometrial aberrations in women with endometriosis may be more likely to be the consequence, rather than the cause, of endometriosis.

In fact, the data presented in the Suda *et al.* (2018) study actually support this view: one, the mutation profiles between ectopic endometrium and their eutopic counterpart are different (Fig. 1B; Tables S2 and S3 in (Suda *et al.*, 2018)); and, two, the number of high MAF mutations per Mb is higher in endometriotic epithelium than that in endometrial epithelium, even though KRAS and PIK3CA are the most frequently mutated genes in both ectopic and eutopic endometrium (Fig. 1B and Fig. S1B in (Suda *et al.*, 2018)). Should mutations in eutopic endometrium be responsible for the genesis and formation of ectopic endometrium, the endometriotic lesions can be considered as a *de facto* clonal expansion of its eutopic ancestry, and the MAF of the mutated genes in eutopic endometrium would be no lower than that of the ectopic endometrium. Of course, since endometrium is polyclonal (Tanaka *et al.*, 2003), and since only a few endometrial samples were harvested and sequenced in the study (Suda *et al.*, 2018), it is possible that the eutopic endometrial tissue samples sequenced may not be the clone that was descended from the one that caused endometriosis. Regardless, however, the data presented in Suda *et al.* (2018) are insufficient to conclude that endometrial CAMs predate the genesis of endometriosis.

Hence, based on the very recent data on the mutational burden and CAMs in histologically normal endometrium (Moore *et al.*, 2018; Lac *et al.*, 2019) and the evidence that eutopic endometrium apparently acquires molecular aberrations after the induction of endometriosis (Kim *et al.*, 2007; Lee *et al.*, 2009; Sherwin *et al.*, 2010; Naqvi *et al.*, 2016; Kim *et al.*, 2019), the notion that the endometrium of women with endometriosis contains, prior to the lesion formation, endometrial

glands with pre-existing CAMs, which are responsible for the genesis of endometriosis is questionable at least, especially because these CAMs are detected *post hoc*, after endometriosis has been diagnosed.


From distinct developmental trajectories to partners in crime

One question left unanswered in Noe *et al.* (2018) is: if endometriotic stromal cells are under the same pressure of replication error as epithelial cells, why do they harbour much less mutations than the latter? Lac and Huntsman speculate that 'epithelial cells may be an integral process in the pathogenesis of endometriosis. Stromal cells, in contrast, may play a more-supportive role in endometriosis, and are likely to be continuously regenerated or recruited to the site of endometriotic lesions. It is possible that stromal cells may arise from the continuous induction of metaplasia of surrounding cells to become endometrium-like stroma' (Lac and Huntsman, 2018). They are correct in general, but perhaps a more complete account will help to shed light on the development of endometriosis, probably more on its pathophysiology than on its pathogenesis.

First, it turns out that, aside from the resident fibroblasts/stromal cells, the stromal component in endometriotic lesions consists of fibroblasts and myofibroblasts, which can be recruited or trans-differentiated from several sources. First, they can be differentiated from endometriotic epithelial cells through epithelial–mesenchymal transition (EMT), currently an area of active research with over 80 PubMed-indexed papers and counting (Matsuzaki and Darcha, 2012; Zhang *et al.*, 2016a,b). This may explain why the stromal component still shares some, but much fewer, mutations at some loci with the epithelial component, as observed in Noe *et al.* (2018). It could also explain why in some DE lesions the glandular epithelium is absent, yielding what is termed 'stromal endometriosis', that is, endometriotic lesions without glandular epithelium (Mai *et al.*, 1997; Clement, 2007), which is reported to be seen in 27–45% of cases of PE (Abrao *et al.*, 2003; Boyle and McCluggage, 2009; Kamergerodsky *et al.*, 2009), 0–13% of OE (Abrao *et al.*, 2003; Kamergerodsky *et al.*, 2009) and 12–15% of DE (Abrao *et al.*, 2003; Kamergerodsky *et al.*, 2009).

Second, the bone-marrow-derived stem cells (BMDSCs) can be recruited into the stroma. In fact, in a mouse model of endometriosis that received bone marrow transplantation, it is found that approximately 0.1% of stromal cells and 0.04% of epithelial cells in lesions are of donor origin (Du and Taylor, 2007). In other words, the stroma and epithelium recruited BMDSCs in the ratio of 2.5:1. In another study, most BMDSCs were found in endometriotic stroma in mice with induced endometriosis (Ersoy *et al.*, 2017). Thus, the lesional stromal component recruits more BMDSCs that naturally contain less somatic mutations than the epithelial component.

Third, endometriotic stromal cells also can be transdifferentiated from other cells, such as endothelial cells through endothelial–mesenchymal transition (EndoMT) or mesothelial cells through mesothelial–mesenchymal transition (MMT), as shown in a recently established mouse model of deep endometriosis (Yan *et al.*, 2017) (also Yan *et al.*, unpublished data). They might also be transdifferentiated from cells other than endothelial and mesothelial cells, such as pericytes, or fibrocytes and perhaps monocytes (Mack and Yanagita, 2015).

Figure 1 Schematic illustration that explains the distinct developmental trajectories of endometriotic stroma and epithelium. In essence, in contrast to endometriotic epithelial cells that experience turnover, the stromal component of endometriotic lesions recruits other cells, such as endothelial cells, mesothelial cells and epithelial cells, through the endothelial–mesenchymal transition (EndoMT), mesothelial–mesenchymal transition (MMT) and epithelial–mesenchymal transition (EMT). In addition, the stromal component may recruit bone marrow-derived stem cells (BMDSCs), pericytes, fibrocytes and monocytes. Moreover, outflow of stromal cells due to smooth muscle metaplasia (SMM) can cause the loss of older stromal cells. Cells with a red start indicate that these cells carry cancer-associated mutations (CAMs). The red arrows indicate the direction of transdifferentiation and/or recruitment. The question mark indicates the uncertainty owing to lack of evidence.

Lastly, in addition to the inflow of cells that are typically devoid of CAMs, there is also an outflow of cells from the stromal component due to smooth muscle metaplasia, i.e. stromal cells eventually transdifferentiated into smooth muscle cells. This would effectively move those older, originally stromal cells, out of the stromal component since these cells now become smooth muscle cells.

As myofibroblasts are the major effector cells of fibrogenesis, the ever-increasing stromal component would result in progressive fibrogenesis, which, in turn, leads to increased matrix stiffness but reduced vascularity and cellularity (Liu *et al.*, 2018a,b). The increased matrix stiffness has been shown to attenuate EMT (Matsuzaki *et al.*, 2017), which reduces the number of stromal cells differentiated from epithelial cells (which may or may not carry CAMs already). The reduced EMT effectively cuts the supply of CAM-carrying epithelial cells to the stromal component. This, coupled with supplementation of other cells that are devoid of CAMs to the component, may explain why there is a much lower mutation frequency in the stromal component (Noe *et al.*, 2018) as the component also recruits endothelial, mesothelial and other cells.

In view of the above, the stromal component of endometriotic lesions is formed from multiple sources: endometriotic epithelial cells, endothelial cells, mesothelial cells, BMDSCs and perhaps other cells as well. These cells may intrinsically have much lower mutation rates than that of endometriotic epithelial cells, giving rise to the results reported in Noe *et al.* (2018). A diagram depicting the scenario described here is shown in Figure 1.

However, the seemingly independent developmental trajectories should not be construed to mean that the two components go separate ways, leaving the other completely alone. On the contrary, it is well known that the function and morphogenesis of endometrial epithelial cells are regulated by paracrine effectors secreted by stromal cells (Arnold *et al.*, 2001).

One particularly important player involved in the paracrine effect is the exosomes secreted by endometriotic stromal and epithelial cells. For example, exosomes secreted by epithelial cells induce myofibroblast transformation in stromal cells and also neovascularization (Han *et al.*, 2017). Likewise, stroma-derived exosomes can also promote epithelial wound healing (Samaeekia *et al.*, 2018). Exosomes derived from endometriotic stromal cells are reported to enhance angiogenesis (Harp *et al.*, 2016).

Endometriotic epithelial cells, on the other hand, express many growth factors and chemokines that are responsible for the migration, proliferation and activation of fibroblasts. For example, transforming growth factor (TGF)- β 1 is most prominently expressed in the epithelial component of lesions (Chegini *et al.*, 1994; Tamura *et al.*, 1999). The increased levels of TGF- β 1, the archetypal profibrotic molecule, may induce fibroblast-to-myofibroblast transdifferentiation (FMT) in stromal cells (Zhang *et al.*, 2016a,b,c). Therefore, the passenger mutations exclusively enriched in endometriotic epithelial component, as found in Noe *et al.* (2018), do suggest distinct developmental trajectories of endometriotic epithelium and stroma, but the trajectories are by no means independent. They are actually dependent and co-evolve in the development of endometriosis.

But why do normal and eutopic endometrial epithelium have much lower mutation rates, as in ectopic endometrial epithelium, as shown in Suda *et al.* (2018)? There are several possibilities. First of all, BMDSCs have been shown to give rise to multiple endometrial cell types, including stromal, glandular and luminal epithelial cells (Taylor, 2004; Du and Taylor, 2007). These BMDSCs presumably harbour much less mutations when recruited to the endometrial epithelial component.

Second, in normal endometrium, the tissue regeneration in each menstrual cycle involves mesenchymal–epithelial transition (MET); i.e. stromal cells are transdifferentiated into epithelial cells and contribute to the ‘re-epithelialization’ as part of the repair process (Huang *et al.*, 2012; Patterson *et al.*, 2013; Cousins *et al.*, 2014). Hence, the epithelial component in eutopic endometrium receives new recruits in each and every cycle. In contrast, the MET in ectopic endometrium appeared to be much diminished (Matsuzaki and Darcha, 2012). Since the endometrial stromal component may have recruited BMDSCs and thus have much lower mutations than their epithelial counterpart, as eluded to above, the transformed epithelial cells through MET in eutopic endometrium presumably should have less mutations than the original epithelial cells in ectopic endometrium, which are the descendants of successive cell divisions, essentially devoid of any replenishment from other sources.

Third, ectopic endometrium faces a much harsher microenvironment, comprising a DNA-damaging milieu. Fuelled by increased local oestrogen production and chronic inflammation, endometriotic lesions are known to have excess proliferative potential (Hapangama *et al.*, 2010). Yet chronic inflammation is intimately linked with increased oxidative stress, which is manifested by the increased production of reactive oxygen species (ROS) as well as reduced ROS detoxification (Alexandre *et al.*, 2006). Cellular proliferation also is closely correlated

with production of endogenous ROS through the activation of growth-related signalling pathways, including the mitogen-activated protein kinase ERK1/2 (McCubrey *et al.*, 2006). In cancer in particular, ROS production modulates tumour cell proliferation (Laurent *et al.*, 2005). Yet, ROS is one particularly destructive aspect of oxidative stress and can cause damage to cells and DNA (Evans and Cooke, 2004).

In view of the above discussion, it can be seen that the finding by Noe *et al.* (2018) highlights the distinct and co-evolving, but certainly not independent, trajectories of endometriotic epithelium and stroma, and underscores the multiple sources of fibroblasts/myofibroblasts in the stromal compartment. Since the myofibroblast is the major effector cell in fibrogenesis, this underscores fibrogenesis as a rather inevitable consequence of recruiting multiple, different cells into the stromal component of lesions.

There are at least two important implications for future research. First, while EMT is important in lesional development, its importance should not be over-emphasized. Second, the sources of myofibroblasts in endometriotic lesions deserve much more investigation, especially given the somewhat extensive research in EMT. In future research, lineage-tracing methods could be employed to ascertain the sources of myofibroblasts in the lesional stromal component.

Implications for treatment

Interestingly, few papers reporting CAMs, or somatic mutations for that matter, in endometriosis have discussed any possible clinical implications for treatment. Since mutations are permanent and irrepressible genomic alterations, unless the cells harbouring the mutations can be completely eliminated, the mutations in these cells are unlikely to be altered by pharmacological means and, as such, may exert their influence through aberrant gene and protein expression. This may be another reason for why medical treatment is challenging for endometriosis. This is particularly of concern when CAMs are present. Drugs that work when CAMs are absent may encounter resistance. For example, enhancer of zeste homolog 2 (EZH2) inhibitors that may work well for endometriosis (Zhang *et al.*, 2017) could experience resistance when lesions carry ARID1A mutations, as in OVCA (Wu *et al.*, 2018). As alluded to by Lac *et al.* (2018), targeting the RAS-pathway is difficult (Samatar and Poulikakos, 2014) and has potential toxicities related to phosphatidylinositol 3-kinase (PI3K)-AKT serine/threonine kinase (Akt) pathway inhibitors (Engelman, 2009).

In particular, while KRAS could potentially be a superb drug target for treating various cancers, its suppression by pharmacological means has faced serious challenges. The major reason for this is that the surface of KRAS protein lacks druggable pockets (Kessler *et al.*, 2019). Using a structure-based drug design, it was recently reported that a new small-molecule, BI-2852, a novel KRAS inhibitor that binds with nanomolar affinity to the small pocket on the KRAS surface that is previously thought to be undruggable, has been discovered (Kessler *et al.*, 2019). However, whether such a class of drugs can be used for treating endometriosis remains unclear. In addition, whether such drugs have an acceptable benefit/risk ratio is unknown. Nonetheless, with the advancement of novel drug design, the prospect that novel KRAS inhibitors will be discovered is bright.

The reported CAMs rate is 28% in IE (Lac *et al.*, 2018), over 40% in OE (Suda *et al.*, 2018) and 26% (Anglesio *et al.*, 2017) to 36% in extraovarian DE (Lac *et al.*, 2018), suggesting that, irrespective of

subtype, a sizeable proportion of lesions harbour CAMs, on top of the fact that the majority (79%) of DE and all OE lesions harbour somatic mutations (Li *et al.*, 2014; Anglesio *et al.*, 2017; Suda *et al.*, 2018). Clearly, much more research is warranted to fully investigate the implications of CAMs.

Since recurrence is also a formidable challenge in the management of endometriosis (Guo, 2009a,b), one question is whether CAM-harbouring residual lesions not removed by surgery would have a higher risk of recurrence. This is a very practical issue given that the occult endometriosis is seemingly prevalent (Khan *et al.*, 2014).

As shown in Suda *et al.* (2018), lesions in one patient may harbour multiple CAMs and, as such, it is likely that there may be extensive intra-lesion mutational diversification, possibly resulting in diversification of DNA methylation and transcriptome states and differences in responses to drug treatment between even closely related cells of the same lesions or different foci, as in colorectal cancer (Roerink *et al.*, 2018). Should this be the case, it would pose another level of challenge in drug treatment of endometriosis harbouring CAMs.

Yet, perhaps one silver lining for CAM-harbouring endometriosis is that endometriotic epithelial cells harbouring these CAMs should express a series of proteins that are absent or present at lower levels in normal cells. These would lead to the presentation of an altered repertoire of MHC class I-associated peptides, so-called neoantigens, that are entirely absent from the normal human genome (Heemskerk *et al.*, 2013). In cancer, neoantigens have been postulated to be promising for tumour control (Hutchison and Pritchard, 2018). Since the quality of the T cell pool that is available for these neoantigens is not affected by central T cell tolerance (Gilboa, 1999), these antigens can be harnessed to activate the immune system to eradicate malignant cells or cells harbouring the CAMs that result in the production of the neoantigens (Pritchard, 2018). With the recent success of checkpoint blockade immunotherapy for various cancers, and the recent report that programmed death-1 (PD-1) and its ligand PD-L1 are aberrantly expressed in endometriosis (Walankiewicz *et al.*, 2018; Wu *et al.*, 2019), it seems that immunotherapy targeting endometriosis-specific neoantigens may hold promise. This is particularly relevant given the painfully slow progress in development of novel therapeutics for endometriosis (Guo and Grootenhuis, 2018). Needless to say, further research is warranted to identify endometriosis-specific neoantigens for possible immunotherapy.

CAMs and fibrogenesis

In a recent review, this author found that the six cancer-driver genes, i.e. tumour protein p53 (TP53), ARID1A, PIK3CA, PTEN, KRAS and PPP2R1A, can participate in different aspects of fibrogenesis (Guo, 2018a). Importantly, the review suggests that cellular senescence may play a role in the lesional fibrogenesis (Guo, 2018a). It was argued that, given that CAMs can and do occur quite often in physiologically normal tissues, these CAMs in endometriosis are not necessarily synonymous with cancer or pre-cancer, but, rather, the result of immense pressure for lesional development and fibrogenesis (Guo, 2018a,b). This view appears to be accepted and supported by another recent review of the roles of these genes in hepatic, renal and pulmonary fibrosis (Kobayashi, 2019).

To better understand this, it helps to see the issue from the perspective that endometriotic lesions are wounds undergoing repeated

tissue injury and repair (ReTIAR), a notion that is summarized in Guo (2018a,b). One cardinal hallmark of endometriotic lesions is cyclic bleeding, just like the eutopic endometrium (Brosens, 1997). Because of bleeding, an indication for tissue injury, platelets and other immune cells are involved and indeed have recently been shown to play important roles in the development of endometriosis (Ding *et al.*, 2015; Guo *et al.*, 2016; Du *et al.*, 2017; Duan *et al.*, 2018). In particular, platelet-derived TGF- β 1 drives smooth muscle metaplasia (SMM) and fibrosis through the induction of EMT and FMT in endometriotic lesions (Zhang *et al.*, 2016a,b,c). Platelets, as well as endometriotic stromal cells, secrete many bioactive factors, including thromboxane A₂, which may also act as a neutrophin, leading to hyperinnervation within or surrounding endometriotic lesions (Yan *et al.*, 2016). In fact, endometriotic cells may also secrete other neurotrophins (Barcena de Arellano *et al.*, 2013), but this neurotrophic effect seems to be tilted in favour of sensory nerves at the expense of sympathetic nerve fibres (Arnold *et al.*, 2012; Scheerer *et al.*, 2017). While eutopic endometrium from women with endometriosis does not seem to have increased expression of neurotrophic factors (Barcena de Arellano *et al.*, 2012), it may promote neuroangiogenesis through exosome pathways (Sun *et al.*, 2019). Yet hyperinnervation or increased density of sensory nerve fibres in and around endometriotic lesions may further promote the development and fibrogenesis of endometriosis through release of neuropeptides such as substance P (Liu *et al.*, 2019; Yan *et al.*, 2019a,b). The higher expression of TrkB and p75, the two receptors for neurotrophin brain-derived neurotrophic factor, in DE lesions than that of peritoneal endometriotic lesions (Dewanto *et al.*, 2016), concomitant with higher fibrotic content in the former lesions than the latter, also corroborates this notion. Moreover, platelets may also induce epigenetic changes, facilitating the gradual but progressive development of endometriosis, leading ultimately to tissue fibrosis (Zhang *et al.*, 2017). Both animal and human data lend support for the notion that endometriotic lesions are fundamentally wounds undergoing ReTIAR (Wu *et al.*, 2015; Zhang *et al.*, 2016a,b,c). The same processes also are operative in adenomyosis because of the commonality of cyclic bleeding (Liu *et al.*, 2016; Shen *et al.*, 2016).

Mutations in TP53, PTEN, ARID1A, PIK3CA, KRAS and PPP2R1A all appear to accelerate the development and fibrogenesis of endometriosis through regulating tissue repair, senescence, EMT, FMT and proliferation of fibroblasts/myofibroblasts (Guo, 2018a,b). On the other hand, as the natural history of endometriotic lesions appears to be gradual progression towards fibrosis (Guo, 2018a,b; Zhang *et al.*, 2016a,b,c), CAMs may be acquired and accumulated along the way. Hence, in future sequencing studies, evaluation of the extent of lesional fibrosis should be made since it seems to be evident that, everything else being equal, the older the lesion (which has experienced more episodes of cyclic bleeding), the more fibrotic content it contains, and the more CAMs or higher MAF it should have.

CAMs and malignant transformation

The link between OE and certain histotypes of OVCA is now well documented (Kurman and Shih Ie, 2010; Pearce *et al.*, 2012; Bulun *et al.*, 2019). However, the reports of cancers arising from extraovarian endometriosis are rare (Saavalainen *et al.*, 2018; Bulun *et al.*, 2019). According to the duality theory of OVCA (Kurman and Shih Ie, 2010), two possible origins of OVCA progenitor cells are tubal or uterine

epithelium. Bulun *et al.* recently provide an excellent review on possible molecular mechanisms underlying the link between OE and OVCA (Bulun *et al.*, 2019); hence, in this review, only the essence of that review is sketched.

An overwhelming majority of OVCA cases are not heritable, and EAOC is mostly of the endometrioid and clear-cell histotype (Wiegand *et al.*, 2010; Bulun *et al.*, 2019). In these two histotypes of OVCA, CAMs such as ARID1A, B-Raf proto-oncogene, serine/threonine kinase (BRAF), PIK3CA, KRAS, PP2R1A, PTEN, CTNNB1, ARID1B, PIK3RI and MLL3 have been reported (Wiegand *et al.*, 2010; Lu *et al.*, 2015; Murakami *et al.*, 2017). Remarkably, all these CAMs, with the only exception of CTNNB1 and BRAF, have been reported in OE and extraovarian endometriosis (Li *et al.*, 2014; Anglesio *et al.*, 2017; Lac *et al.*, 2018; Suda *et al.*, 2018; Zou *et al.*, 2018) (Table II). More remarkably, many of these CAMs have also been reported in histologically normal endometrium (Moore *et al.*, 2018; Lac *et al.*, 2019) (Table II).

As reviewed in Bulun *et al.* (2019), mutations at ARID1A, PIK3CA and PTEN have been proposed to be responsible for the malignant transformation of OE (Sato *et al.*, 2000; Wiegand *et al.*, 2010; Chandler *et al.*, 2015). EAOC and contiguous endometriosis frequently share the absence of ARID1A expression (Chene *et al.*, 2015). Experimental data provide evidence for the involvement of ARID1A, KRAS and PIK3CA mutation in endometriosis-induced malignant transformation. Activation of K-ras in donor endometrial tissues is found to facilitate lesion development in a mouse model of endometriosis (Cheng *et al.*, 2011). In mouse, local activation of K-ras through delivery of adenoviral Cre-induced ovarian or peritoneal endometriosis, as did conditional deletion of Pten (Dinulescu *et al.*, 2005). Yet the combined Pten deletion and K-ras activation in the ovary, however, resulted in metastatic endometrioid OVCA (Dinulescu *et al.*, 2005).

Of these CAMs, ARID1A is a particularly interesting one. It is frequently mutated in EAOC as well as in uterine endometrioid carcinomas (Jones *et al.*, 2010; Wiegand *et al.*, 2010; Wiegand *et al.*, 2011). One *in vitro* study reports that knocking down ARID1A in an endometriotic cell line is sufficient to initiate neoplastic transformation in conjunction with epigenetic reprogramming (Lakshminarasimhan *et al.*, 2017).

A recent study indicates that ARID1A normally preserves the endometrial epithelial cell identity by repressing genes responsible for mesenchymal cell fates (Wilson *et al.*, 2019). Combined ARID1A and PI3K mutations facilitate epithelial transdifferentiation and collective invasion (Wilson *et al.*, 2019). Another recent study reports that ARID1A inactivation causes aberrant telomere cohesion, which selectively eliminates gross chromosome aberrations during mitosis (Zhao *et al.*, 2019). This can explain why cancers associated with high frequency of ARID1A mutations often lack massive genomic instability, as seen in many cancers (Zhao *et al.*, 2019).

Yet in humans, endometriotic lesions harbouring any of the CAMs are not synonymous with cancer. This is first supported by the fact that some histologically normal endometrium may also carry these CAMs (Table II). According to the notion of ReTIAR, lesions undergo fibrogenesis as they progress and may acquire CAMs along the way. Consistent with this notion, when ARID1A is knocked down in an endometriotic epithelial cell line, it is found that the canonical pathways affected by differentially expressed genes are involved not only in cancer and the immune response but also in hepatic fibrosis

Table II CA mutations identified in ovarian endometrioma, extraovarian endometriosis, normal endometrium and endometriosis-associated ovarian cancer.

Tissue name	CA mutations	Other mutations	References
Ovarian endometrioma	ARID1A, PIK3CA, KRAS, PPP2R1A, ARID1B, PIK3RI, PTEN, MLL3, FBXW7 and ARHGAP35	TAF1, SPEG, TTN, ACRC, FAT1, FGFR2, HEATR1, FBN2, TAS2R31, PLXNB2, PTPN13, FRG1, KIAA1109, MUC6, ZFHX3, KMT2C and PLXNB2	(Suda <i>et al.</i> , 2018; Zou <i>et al.</i> , 2018)
Extraovarian endometriosis	ARID1A, PIK3CA, KRAS, PP2R1A, PTEN, CTNNB1, ERBB2, ARID1B, PIK3RI		(Anglesio <i>et al.</i> , 2017; Lac <i>et al.</i> , 2018)
Histologically normal endometrium	ARID1A, PIK3CA, TP53, KRAS, HRAS, PTEN, PIK3RI, PPP2R1A, ARHGAP35, FBXW7, ZFHX3, FOXA2, ERBB2, CHD4, NRAS, SPOP, FGFR2, AKT1, ERBB3 and BRAF	ARID5B, TAF1, SPEG, CHD4, ACRC, FAT1, FGFR2, FBN2, PLXNB2, CDKN1B, HGAP35, PTPN13, FRG1, KIAA1109, MUC6, ZFHX3, KMT2C, FOXA2, PLCG1, KDM3A, MLL5 and others	(Li <i>et al.</i> , 2014; Moore <i>et al.</i> , 2018; Suda <i>et al.</i> , 2018; Lac <i>et al.</i> , 2019)
Endometriosis-associated ovarian cancer	ARID1A, PIK3CA, KRAS, TP53, PTEN, CTNNB1, BRAF, ARID1B, PIK3RI and MLL3		(Kuo <i>et al.</i> , 2009; Wiegand <i>et al.</i> , 2010; Lu <i>et al.</i> , 2015; Murakami <i>et al.</i> , 2017)

ACRC: acidic repeat containing; AKT1: AKT serine/threonine kinase 1; ARHGAP35: RhoGTPase activating protein 35; ARID1B: AT-rich interaction domain 1B; ARID5B: AT-rich interaction domain 5B; CDKN1B: cyclin dependent kinase inhibitor 1B; CHD4: chromodomain helicase DNA binding protein 4; ERBB2: erb-b2 receptor tyrosine kinase 2; ERBB3: erb-b2 receptor tyrosine kinase 3; FAT1: FAT atypical cadherin 1; FBN2: fibrillin 2; FBXW7: F-box and WD repeat domain containing 7; FGFR2: fibroblast growth factor receptor 2; FOXA2: forkhead box A2; FRG1: FSHD region gene 1; HEATR1: HEAT repeat containing 1; KDM3A: lysine demethylase 3A; MLL3: myeloid lymphoid or mixed-lineage leukaemia 3, also known as KMT2C; MLL5: myeloid lymphoid or mixed-lineage leukaemia 5; KMT2C: lysine methyltransferase 2C; MUC6: mucin 6; PIK3RI: phosphoinositide-3-kinase regulatory subunit 1; PLCG1: phospholipase C gamma 1; PLXNB2: plexin B2; PTPN13: protein tyrosine phosphatase non-receptor type 13; SPEG: striated muscle enriched protein kinase; SPOP: speckle type BTB/POZ protein; TAF1: TATA-box binding protein associated factor 1; TAS2R31: taste 2 receptor member 31; TTN: titin; ZFHX3: zinc finger homeobox 3.

(Lakshminarasimhan *et al.*, 2017). Consistently, monoallelic loss of ARID1A in the mouse endometrial epithelium is found to result in decreased expression of E-cadherin but increased expression of vimentin and collagens (Wilson *et al.*, 2019). That is, loss of ARID1A causes EMT and the over-production of extracellular matrix (ECM) products, which are two hallmarks of fibrotic disorders. These observations appear to lend support for the notion that ARID1A is involved in lesional fibrogenesis in endometriosis (Guo, 2018a,b).

Women with endometriosis frequently seek medical care because of pain or infertility, and this may happen before CAMs occur or while carrying these CAMs. Consequently, most endometriotic lesions do not exist long enough to acquire and accumulate further CAMs and transform to malignancy. If the lesion evades detection and removal long enough, it would eventually acquire and accumulate enough of the relevant repertoire of CAMs, and malignant transformation should ensue. Indeed, deep sequencing of multiple single cells from colorectal cancers indicates that most mutations that complete the malignant transformation are acquired during the final dominant clonal expansion of the cancer and result from mutational processes not seen in normal cells (Roerink *et al.*, 2018). The comparison of mutational profiles between normal endometrium and endometrial cancer also indicates that the latter exhibits much higher mutation loads than the former, and the latter additionally exhibits substantial structural variants and copy number changes (Zhang *et al.*, 2018) while the former essentially has none (Moore *et al.*, 2018).

It is well documented that cancer arises from cumulative CAMs—in fact three CAMs in lung and colorectal cancers (Tomasetti *et al.*, 2015; Vogelstein and Kinzler, 2015). Indeed, the majority of uterine endometrioid carcinomas have mutations in both ARID1A and PTEN

(Liang *et al.*, 2012; Cancer Genome Atlas Research Network *et al.*, 2013). Conversely, ARID1A or PTEN mutation alone does not cause OVCA (Guan *et al.*, 2014). In particular, ARID1A inactivation/mutation alone is insufficient to initiate carcinogenesis, and it requires additional CAMs, such as a PIK3CA or PTEN, to complete the malignant transformation into clear cell carcinomas (Chandler *et al.*, 2015) or endometrioid carcinomas (Guan *et al.*, 2014). This also explains why endometrial epithelial cells carrying CAMs such as ARID1A, PTEN, KRAS and PIK3CA may still appear to be histologically normal (Moore *et al.*, 2018; Suda *et al.*, 2018; Lac *et al.*, 2019).

Hence, CAM-carrying lesions just need to acquire and accumulate relevant and enough CAMs in order to undergo malignant transformation, which may take years. Everything being equal, women with endometriosis-induced cancer should be older than those with endometriosis only, since malignant transformation takes extra time. On the other hand, women with endometriosis-induced cancer, in general, should be younger than those who developed cancer of the same type spontaneously. This is because, first, endometriotic lesions engender a microenvironment featuring hyperestrogenism, inflammation and oxidative stress that are individually and collectively mutagenic, generating a hotbed for DNA damage and thus CAMs. Second, women with endometriosis frequently manifest symptoms, such as pain, that prompt them to seek medical attention and, as such, their malignancy is likely to be diagnosed earlier.

Remarkably, these inferences appear to be borne out by published studies. Women with EAOC are reported to be significantly older than women with endometriosis but no OVCA (He *et al.*, 2017), suggesting that endometriosis-induced malignancy transformation does take time. The finding that most OVCA arising from endometriosis occurs 5 years

or longer after women had been diagnosed with OE (Saavalainen *et al.*, 2018) is consistent with this notion.

However, women with EAOC also tend to be significantly younger than those without EAOC and tend to have significantly more complaints of dysmenorrhea and menstrual disorders (Heaps *et al.*, 1990; Li *et al.*, 2019). This may explain why EAOC are mostly early-stage cancer (Li *et al.*, 2019). It may also explain why the incidence of OE-induced malignancy is very low (Kuo *et al.*, 2017), since various endometriosis-associated symptoms, such as pelvic pain and pelvic mass (Heaps *et al.*, 1990), would prompt these women to seek medical attention early.

However, one question remains: why do the majority of endometriosis-induced malignancies occur in ovaries instead of extraovarian sites (Heaps *et al.*, 1990; Stern *et al.*, 2001; Benoit *et al.*, 2006)? Indeed, data on extraovarian endometriosis-associated malignancy are extremely scanty (Benoit *et al.*, 2006; Barra *et al.*, 2018; Bulun *et al.*, 2019). Difference in tissue sensitivity or vulnerability aside, hyperestrogenism in ovarian tissues may be one of major culprits. Indeed, the oestrogen concentration in the ovary could be several orders of magnitude higher than other peripheral tissues (diZerega *et al.*, 1984; Bulun *et al.*, 2019). This elevated local concentration of oestrogens, coupled with increased expression of *cytochromeP450family1subfamilyBmember1* (CYP1B1) (Piccinato *et al.*, 2016), which can act as a strong agonist of oestrogen receptors (ER) and also converts hydroxyestrogen to mutagenic quinones after being oxidized (Zhu and Conney, 1998), would turn the microenvironment of OE lesions into one conducive to gene mutations and CAMs. Interestingly, the expression levels of CYP1B1 in DE lesions is significantly lower than that of superficial lesions and is seemingly lower than that of OE lesions (Piccinato *et al.*, 2016), suggesting that the mutagenic potential at the ovarian sites may be higher than extraovarian sites. In addition, the increased expression of ER β in endometriosis (Xue *et al.*, 2007; Han *et al.*, 2012) interacts with the inflammasome machinery, further stimulating inflammation and promoting survival of ectopic endometrium (Monsivais *et al.*, 2014; Han *et al.*, 2015; Bulun *et al.*, 2019). As a result, activated inflammatory cells become important sources of ROS and reactive nitrogen intermediates that cause DNA damage and genomic instability and thus CAMs (Canli *et al.*, 2017). Compared with OE, DE lesions have a lower expression of ER β (Liu *et al.*, 2018), which might also suggest somewhat lower mutagenic potential at the extraovarian sites than at ovarian sites. Remarkably, compared with women with EAOC, women with extraovarian cancers arising in endometriosis are more likely to be post-menopausal and use HRT (Modesitt *et al.*, 2002), suggesting that endometriosis-induced tumorigenesis in extraovarian sites takes longer and may likely be fuelled by exogenous oestrogens.

In addition, there is a great variation in tissue-specific cancer risks due to the number of stem cell divisions (Tomasetti and Vogelstein, 2015). Hence, the location of the endometriotic lesions is also crucial. In particular, since women with DE tend to be older than those with OE only (Liu *et al.*, 2018), and since cell division rate decreases with age (Tomasetti *et al.*, 2019), DE lesions may have a lower cell division rate than OE lesions, resulting in lower occurrence of CAMs and consequently a reduced incidence of malignant transformation. Collectively, this may explain why OE is linked with certain histotypes of OVCA, but DE-induced malignancy is extremely rare.

Drivers of CAMs and fibrogenesis

One question that remains unaddressed is what, if any, are the common factors that drive CAMs and fibrogenesis? While the age of endometriotic lesions is a likely factor, there are at least two conspicuous culprits that can definitely drive CAMs as well as lesional fibrogenesis: oxidative stress and oestrogen.

Oxidative stress refers to the imbalance of ROS and antioxidants. Oxidative stress has been well documented to be involved in endometriosis (Donnez *et al.*, 2016). During the tissue repair process, innate immune cells are recruited and infiltrate the wounding site and, in the setting of endometriosis, endometriotic lesions. These cells, such as neutrophils, secrete proteolytic enzymes and proinflammatory cytokines, as well as large amount of ROS. In addition, inflamed tissues may also generate ROS through NADPH oxidase (Bedard and Krause, 2007). Indeed, NADPH oxidase 1 (NOX1) is overexpressed in endometriosis (Nassif *et al.*, 2016).

In addition, since ectopic endometrium, just like its eutopic counterpart, experiences cyclic bleeding this releases (from erythrocytes in and around lesions) cell-free haemoglobin (Hb) and its highly toxic by-products such as haem and iron. In particular, phagocytosis of senescent erythrocytes by macrophages results in the digestion of Hb and subsequent release of haem, which is converted by haem oxygenase into biliverdin, carbon monoxide and free iron (Maines, 1997). There is extensive evidence for iron overload in endometriosis (Defrere *et al.*, 2008), which induces iron-mediated damage, oxidative injury, inflammation and oxidative stress (Donnez *et al.*, 2016). For example, iron deposits in lesions (Moen and Halvorsen, 1992) and elevated iron levels in lesions (Takahashi *et al.*, 1996) have been reported. Consistently, the expression levels of 8-hydroxy-2'-deoxyguanosine (8-OHDG), a sensitive indicator of DNA damage because of oxidative stress (de Souza-Pinto *et al.*, 2001), are reported to be significantly elevated in normal ovarian cortex surrounding endometriotic cysts (Matsuzaki and Schubert, 2010). Not surprisingly, granulosa cells from patients with infertility and endometriosis exhibit a higher 8-OHDG index when compared with those from patients with other infertility causes (Seino *et al.*, 2002).

In endometriotic cells, the increased production of endogenous ROS, ERK activation and elevated proliferative capability are intimately linked (Ngo *et al.*, 2009). Not surprisingly, 8-OHDG has been reported in OE lesions (Kao *et al.*, 2005), in normal ovarian cortex surrounding OE lesions (Matsuzaki and Schubert, 2010) and in follicular and peritoneal fluids (Polak *et al.*, 2013; Da Broi *et al.*, 2016). Increased production of TP53 is also reported to be downregulated in OE, which is concomitant with increased expression of genes involved in autophagy and elevated protein expression of haem oxygenase-1, a sign of oxidative stress (Allavena *et al.*, 2015).

In addition to the increased production of ROS, the ability to eliminate ROS in endometriosis is reported to be substantially reduced. The redox-sensitive nuclear factor erythroid-derived 2-like 2 (NRF2), which controls the transcription of endogenous antioxidant enzymes and protects against inflammation-induced oxidative damage, is reported to be downregulated in endometriosis (Marcellin *et al.*, 2017). Its target gene, glutamate cysteine ligase, which is the first enzyme in the synthesis cascade of an important antioxidant, namely glutathione, also is found to be downregulated in endometriosis (Marcellin *et al.*, 2017). Consistently, endometriotic lesions induced in mice with NRF2

knocked down are found to be larger and exhibit more fibrosis than those in wild-type mice (Marcellin *et al.*, 2017).

Excessive oxidative stress results in redox imbalance, ineffective repair of DNA damage and generation of CAMs (Cooke *et al.*, 2003; McAdam *et al.*, 2016). On the other hand, NOX-dependent redox signalling can upregulate TGF- β 1/suppressor of mothers against decapentaplegic (Smad) signalling in a feed-forward manner, accelerating fibrogenesis (Barcellos-Hoff and Dix, 1996; Jiang *et al.*, 2014). Thus, aging, oxidative stress and perhaps other factors yet to be identified, jointly drive CAMs and fibrogenesis. In addition CAMs also promote fibrogenesis, and the process of fibrogenesis as a whole may generate enormous selection pressure so that cells with CAMs have a higher fitness.

Increased local production of oestrogens is one important hallmark of endometriotic lesions (Bulun, 2009). Due to increased expression of CYP1B1 in endometriotic lesions (Piccinato *et al.*, 2016), the lesional microenvironment can be a hotbed for mutagenesis, thereby producing CAMs.

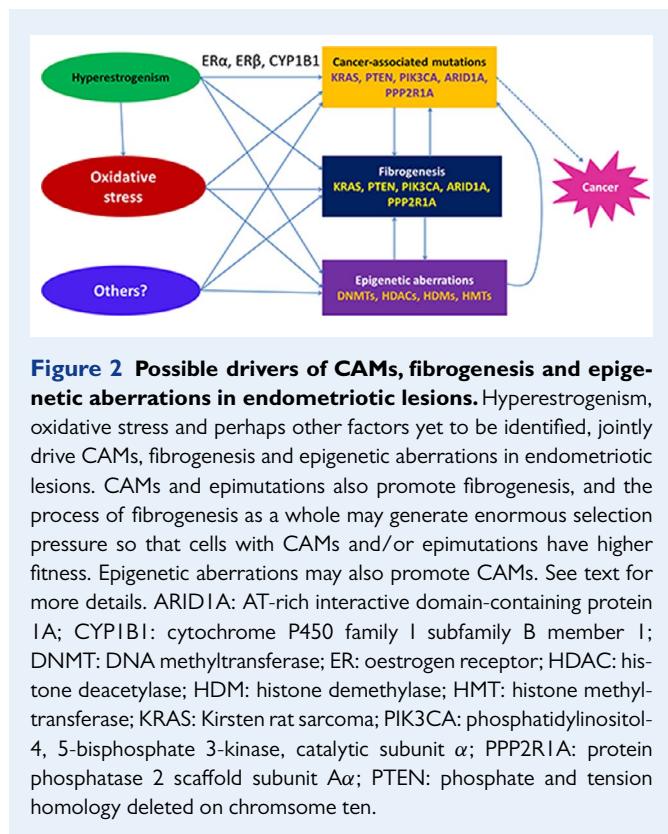
The increased oestrogen levels may also promote lesional fibrosis. ER α has been reported to promote pulmonary fibrosis through reduced expression of the microRNAs let-7a and let-7d, which can modulate AKT phosphorylation and TGF- β 1 and SMAD7 expression (Elliot *et al.*, 2019). In addition, increased insulin-like growth factor (IGF)-I levels in fibrotic tissues may stimulate ER α in an oestrogen-independent manner (Elliot *et al.*, 2019). Despite the report of lower ER α expression levels in (mostly OE) tissues and primary stromal cells (Brandenberger *et al.*, 1999; Fujimoto *et al.*, 1999) and high ER β expression levels (Xue *et al.*, 2007), recent studies found that OE lesions have the lowest glandular ER α expression, but highest glandular ER β expression as compared with fallopian, peritoneal and extrapelvic lesions (Colon-Caraballo *et al.*, 2018). ER α is expressed in the smooth muscle cell component in peritoneal (Barcena de Arellano *et al.*, 2011) and DE lesions (Kitano *et al.*, 2007; Noel *et al.*, 2010). Remarkably, the circulating let-7d levels in women with endometriosis is found to be marginally decreased (Cho *et al.*, 2015) and the let-7a levels in mice with induced endometriosis is significantly reduced (Seifer *et al.*, 2017). The involvement of IGF-I in endometriosis has been long suspected (Sbracia *et al.*, 1997) and its stimulating role in inducing ER β and aromatase also has been recently demonstrated (Zhou *et al.*, 2016). Thus, the increased local oestrogen concentration may suppress let-7 microRNAs and induce fibrogenesis through the ER α /IGF-I pathways.

The overexpression of ER β in endometriosis (Xue *et al.*, 2007) could also result in elevated expression of collagen I and III in endometriotic stromal cells and thus increased ECM products, as in rat fibroblasts (Dworatzek *et al.*, 2019). Of course, while the finding is reported in male rats (Dworatzek *et al.*, 2019), it should be noted that so far all the reports on ER α /ER β aberration in endometriosis have not evaluated their phosphorylation status, and it is well documented that phosphorylation at a particular site on both ER α and ER β is critical for nuclear translocation and transcriptional activation upon oestrogen treatment (Lannigan, 2003; Sanchez *et al.*, 2010).

Moreover, ER β regulates platelet-derived growth factor (Patrone *et al.*, 2003), a cytokine known to regulate the growth and the differentiation of fibroblasts into myofibroblasts (Kilar斯基 *et al.*, 2005). Alternatively, cytosolic ER α and ER β can efficiently activate transcription at AP-1 sites in response to oestrogen stimulation (Bjornstrom

and Sjoberg, 2004). AP-1 is known to regulate fibroblast activation and proliferation (Gagliardi *et al.*, 2003) and myofibroblast activation (Fitzner *et al.*, 2004). Interestingly, genes in the AP-1 family are known to be involved in the early stage of endometriosis (Hastings and Fazleabas, 2006) and are also implicated in endometriosis development (Beste *et al.*, 2014).

Taken together, the increased local oestrogen production can induce mutagenesis and CAMs. Coupled with elevated ER β expression and the expression of ER α in the smooth muscle cell component of lesions, it may also facilitate lesional fibrogenesis.


Just as the genetic alterations, including CAMs, can contribute to tumorigenesis, epigenetic alterations are also known to contribute to cancer initiation and development (Kanwal *et al.*, 2015; Cavalli and Heard, 2019). The frequency of somatic mutations can be influenced by DNA methylation (Poulos *et al.*, 2017) and the nucleosome orientation (Pich *et al.*, 2018). In some cases, malignant transformation can occur without apparent CAMs (Green *et al.*, 2014). In pancreatic ductal adenocarcinoma, it is reported that metastasis does not seem to involve any apparent CAMs; instead, large-scale epigenetic reprogramming appeared to be responsible (McDonald *et al.*, 2017), underscoring the importance of epigenetic aberrations in malignant transformation.

Similarly, epigenetic aberrations also are involved in fibrogenesis (Moran-Salvador and Mann, 2017; Aseem and Huebert, 2019). While it is recognized that endometriosis is an epigenetic disease (Guo, 2009a) and an epigenetic drug, valproic acid, has been used in treating adenomyosis with promising results (Liu and Guo, 2008; Xishi *et al.*, 2010), one area that so far has attracted little attention is the epigenetic changes during lesional development and fibrogenesis. As endometriotic lesions undergo EMT, FMT, SMM and fibrogenesis, they also acquire and accumulate epigenetic aberrations, such as the changes in gene and protein expression of DNA methyltransferases (DNMTs), histone deacetylases and histone lysine methyltransferases and demethylases (Wu *et al.*, 2007; Ding *et al.*, 2014; Zhang *et al.*, 2017). Indeed, inflammation and oxidative stress can lead to epigenetic alterations concomitant with fibrogenesis (Morgado-Pascual *et al.*, 2018; Shririmal *et al.*, 2019). In particular, chronic inflammation and prolonged transcriptional suppression, which occur in endometriosis, are known to cause gene hypermethylation and silencing (Hsieh *et al.*, 1998; Issa *et al.*, 2001; Song *et al.*, 2002; Stirzaker *et al.*, 2004). Indeed, prolonged stimulation with tumour necrosis factor- α induced a partial methylation at the promoter of progesterone receptor isoform B (PR-B) in endometriotic epithelial cells (Wu *et al.*, 2008), which may account for PR-B hypermethylation in endometriosis (Wu *et al.*, 2006). This area is still evolving, and more research is warranted.

A scheme showing possible drivers of CAMs and fibrogenesis is depicted in Figure 2.

Limitations of published studies and future research

Owing to the still scanty data on the mutational profiles in normal endometrium, future studies are badly needed in order to catalogue all somatic mutations, profile its mutational landscape, mutational signatures (what kind of mutations, which can be used to delineate the underlying mechanism of mutational processes), copy number changes and structural variants (large-scale indels), and also to distinguish cancer-driver and passenger mutations (Hess *et al.*, 2019).

Figure 2 Possible drivers of CAMs, fibrogenesis and epigenetic aberrations in endometriotic lesions. Hyperestrogenism, oxidative stress and perhaps other factors yet to be identified, jointly drive CAMs, fibrogenesis and epigenetic aberrations in endometriotic lesions. CAMs and epimutations also promote fibrogenesis, and the process of fibrogenesis as a whole may generate enormous selection pressure so that cells with CAMs and/or epimutations have higher fitness. Epigenetic aberrations may also promote CAMs. See text for more details. ARID1A: AT-rich interactive domain-containing protein 1A; CYP1B1: cytochrome P450 family 1 subfamily B member 1; DNMT: DNA methyltransferase; ER: oestrogen receptor; HDAC: histone deacetylase; HDM: histone demethylase; HMT: histone methyltransferase; KRAS: Kirsten rat sarcoma; PIK3CA: phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit α ; PPP2R1A: protein phosphatase 2 scaffold subunit A α ; PTEN: phosphate and tension homology deleted on chromosome ten.

In view of the ubiquitous age-related somatic mutations in normal tissues, and the roles of oestrogens, BMI, reproductive history, history of oral contraceptive (OC) or intrauterine device (IUD) and hormone use in driving mutations in the endometrium (Lin *et al.*, 2009; Mutter *et al.*, 2014; Westin *et al.*, 2015; Busch *et al.*, 2017), future studies are warranted to catalogue the mutational profiles in endometrium epithelium in women of different ages, BMI, reproductive history and history of OC/IUD use. Since age at menarche also determines when the endometrial epithelium starts cell division, its impact on the mutational profiles also needs to be evaluated.

The study by Suda *et al.* (2018) nicely demonstrated the power of deep sequencing in delineating the relationship between different cells. The cheaper and more accurate sequencing methods in the future should afford sequence data for the tissues of interest. With these data, it will be feasible to establish phylogenetic relationships between or among different tissues in the same patient based on the molecular clock (Siegmund *et al.*, 2009). This can be used to infer the relationship between clear-cell and endometrioid OVCA and its associated OE (Guo, 2015), particularly the time it takes from transformation of benign endometriotic lesions to malignancy. In addition, the same methods could be used to delineate the relationship in the reported link between focal adenomyosis and deep endometriosis (Chapron *et al.*, 2017; Marcellin *et al.*, 2018) and between adenomyosis and myomas (Filip *et al.*, 2019). The methods also can be used to see whether adenomyotic lesions also harbour CAMs, and, if so, their frequency and their relationship, if any, with the location and 'age' (Liu *et al.*, 2018).

One conspicuous area that has so far received little attention is the global epigenetic landscape in different subtypes of endometriosis and in comparison with that of eutopic endometrium since epigenetic alterations or epimutations have also been recognized as important in

the development of endometriosis (Guo, 2009a,b; Naqvi *et al.*, 2014) and tumorigenesis (Aldiri *et al.*, 2017). Of relevance, the transcriptional inactivation of the MLH1 gene through promoter hypermethylation is often associated with microsatellite instability (Leung *et al.*, 1999), which is reported to be associated with the malignant transformation of endometriosis (Amemiya *et al.*, 2004; Ali-Fehmi *et al.*, 2006; Ren *et al.*, 2012). Promoter hypermethylation of MLH1 has been found in ~4% (2/46) of endometriotic lesions (Martini *et al.*, 2002). Moreover, PR-B has been reported to be hypermethylated in ectopic endometrium (Wu *et al.*, 2006a,b,c) and partially methylated in eutopic endometrium from women with endometriosis (Rocha-Junior *et al.*, 2019), which may account for reduced PR-B expression and subsequent progesterone resistance. Although there have been reports on genome-wide analysis of DNA methylation in endometriosis (Wang *et al.*, 2019), so far there has been no epigenetic study to match the scope, depth and methodological rigor of sequencing studies such as that of Suda *et al.* (Suda *et al.*, 2018).

More broadly, changes in the levels of DNMTs, the enzymes responsible for initiating and/or maintaining DNA methylation, are intimately associated with the TGF- β signalling pathway (Koh *et al.*, 2016), suggesting that the culprit causing CAMs and fibrogenesis in endometriosis also may actuate DNMTs and may thus be responsible for epigenetic aberrations as well. Incidentally or not, overexpression of DNMTs has been reported in endometriosis (Wu *et al.*, 2007). In addition, the TGF- β signalling pathway may crosstalk with the focal adhesion kinase and PI3K/Akt pathways to increase DNMT expression via a transcription-independent mechanism involving an increase in phosphorylation and inactivation of glycogen synthase kinase-3 β (Koh *et al.*, 2016). Perhaps more uncannily, overexpression of DNMTs has been reported in several fibrotic diseases (Neveu *et al.*, 2015; Page *et al.*, 2016; Wu *et al.*, 2017), suggesting that there should be a global change in the epigenetic landscape in endometriosis. Future studies are needed in this area. The culprits responsible for CAMs and fibrogenesis, such as aging and oxidative stress, also happen to be responsible for epigenetic aberrations (Barcellos-Hoff and Dix, 1996; Jiang *et al.*, 2014; Jones *et al.*, 2015; Ito *et al.*, 2017) (Fig. 2).

Of course, epigenetics encompasses a plethora of various histone modifications, along with an array of writers, erasers and readers and/or effectors of these modifications as well as a kaleidoscopic of DNA methylation, long non-coding RNA and microRNA involvement. A complete understanding of the epigenome in both ectopic and eutopic endometrium should hold the key to understand the pathogenesis and pathophysiology of endometriosis - a daunting task but a must in order to unravel the mystery of endometriosis.

Summary answers

From the vista of the reported CAMs in ectopic, eutopic and histologically normal endometrium as well as the above review, some plausible answers to the questions raised in the Introduction can be provided, as found below.

Why is there such a wild discrepancy in reported mutation frequencies? How can we reconcile such a discrepancy?

The discrepancies found so far can be attributable mostly to the following factors: first, whether a specific cell type (e.g. epithelial cells, which

necessitates the use of microdissection techniques) or the mixture of different cells (e.g. endometriotic tissues) was used for mutation detection; second, different mutation detection methods (essentially boils down to the use of error-correction NGS technology or not); and third, whether targeted sequencing, or whole-genome sequencing was used. Older studies that extracted DNA from the whole tissues tend to report much lower mutation frequencies since the mixture of different cell types would obscure the signals in epithelial cells and thus reduce the signal-to-noise ratio. Older mutation detection methods cannot mutations with lower frequencies, and thus miss them. Targeted sequencing detects mutations in a pre-defined set of genes, and, by nature, cannot detect mutations in genes that are not in the set. Thus, only those studies using microdissection procedures and error-corrected NGS technologies can detect low-frequency somatic mutations, even in histologically normal endometrium.

Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium?

Eutopic and ectopic endometrium are known to have different gene expression profiles (Wu *et al.*, 2006a). This may be attributable to the difference in their respective microenvironments, with ectopic endometrium experiencing higher local oestrogens and more oxidative stress, thus increasing ectopic endometrium exposure to DNA-damaging agents, and thus a higher mutation rate.

Would the occurrence of CAMs in endometriotic lesions increase the risk of cancer in their carriers?

Cancers do not arise overnight. Extensive studies in tumorigenesis indicate that pre-cancerous tissues/organs acquire and accumulate CAMs and progress gradually to cancer. Therefore, once endometriotic lesions harbour CAMs that invariantly confer advantages of clonal expansion, they may further acquire and accumulate more CAMs and, as such, eventually complete the malignant transformation if left intact. To reduce the risk of malignant transformation, it is thus of vital importance to remove the lesions completely or to keep the lesions at bay by inducing lesional atrophy and/or dormancy so as not to give them more opportunity to acquire and accumulate more CAMs. Hence, the occurrence of CAMs in endometriotic lesions will render an increased risk of cancer to their carriers if left untreated.

How often do CAMs occur?

CAMs occur as a result of increased cumulative cell turnover (increased number of cell divisions as in aging and, for eutopic or ectopic endometrium, reproductive history such as pregnancy and lactation), exposure to various mutagenic factors such as excessive oestrogens, inflammation and ROS. Thus, even histologically normal endometrium may harbour CAMs. Due to increased local oestrogen production, inflammation and abundant ROS, the ectopic endometrium faces a harsher microenvironment than the eutopic or normal endometrium, and may thus experience a higher mutation rate. Given that mutations are nearly ubiquitous in physiologically normal tissues, including endometrium, and in view of a more hostile lesional microenvironment, ectopic endometrium may harbour more CAMs

than its eutopic counterpart. Beyond that, however, it is still unclear how often CAMs occur in endometriotic lesions, at what pace, and what combination of CAMs is needed to complete the malignant transformation. That said, it is reasonable to expect that the chance of CAM occurrence is proportional to the extent of lesional fibrosis (Guo, 2018a). Future studies are needed to elucidate the mutational burden, signature and frequency of CAMs in relation to the extent of lesional fibrosis.

Will all patients with endometriosis, deep or otherwise, have CAMs in the lesions sooner or later?

The answer is a categorical yes, as long as the ectopic endometrium has the time and opportunity to acquire CAMs. In other words, if a lesion is not removed by surgical means or kept dormant, it will have the opportunity to acquire and accumulate CAMs. However, it may take years to accumulate the right type and combination of CAMs to complete malignant transformation.

OE is now well documented to be linked with OVCA, but why does extraovarian endometriosis seldom lead to cancer?

First of all, malignancy induced by extraovarian endometriosis has been reported, although such cases are rare. Patients with OE do have a higher risk of developing certain histotypes of OVCA, mainly endometrioid and clear-cell OVCA. However, the increased risk is fairly modest, with the odds ratio typically ranging from 1.3 to 3, hence the absolute risk of developing ovarian cancer is still small (Kim *et al.*, 2014; Guo, 2015). The difference in the risk of malignant transformation between OE and extraovarian endometriosis is attributable to several reasons. First, aside from the difference in tissue vulnerability and sensitivity, ovarian tissues have a much higher oestrogen concentration than extraovarian sites, and this hyperestrogenism, in conjunction with increased lesional expression in CYP1B1 (especially in OE lesions), results in a microenvironment that is conducive for mutagenesis and thus increased CAMs. The higher ER β expression (linked to inflammation) in OE lesions than other extraovarian endometriosis may also indicate higher mutagenic pressure in OE lesions. Thus, endometriosis-induced malignancy in extraovarian sites may take longer than that induced by OE, resulting in a seemingly higher malignancy rate in women with OE than those with extraovarian endometriosis. Since women with DE are often older than those with OE and since aging can decrease cell division rate, DE lesions may have a reduced chance of CAM occurrence than OE lesions, resulting in a lower incidence of malignant transformation.

What clinical implications, if any, do the CAMs have for the bearers?

While lesions harbouring CAMs are not synonymous with malignancy, they can acquire and accumulate more CAMs and undergo malignant transformation if not removed. Thus, early diagnosis and subsequent removal of endometriotic lesions should greatly reduce and even eliminate the risk of malignancy. Indeed, women with endometriosis who had radical extirpation of all visible lesions are reported to have a substantially reduced risk of OVCA (Melin *et al.*, 2013). While

surgery can remove lesions, it should be used sparingly and judiciously (Chapron *et al.*, 2019) since surgery increases the risk of adhesion, organ damage and premature ovarian failure, and may also promote the development of residual lesions (Guo and Martin, 2019). However, when surgery is performed, whenever possible it should remove all lesions. Drug-induced lesional dormancy that essentially suppresses cell divisions may be a good alternative for the prevention of occurrence of, or further acquirement, of CAMs.

Lesions carrying CAMs may pose a challenge to treatment by non-surgical means since the mutations are unlikely to be eliminated. This is especially true when there is extensive intra-lesion mutational diversification. One silver lining is that neoantigens may result from the presence of lesional CAMs, which may be harnessed for immunotherapy and for better diagnosis. This, of course, will require more research.

When a patient with endometriosis is found to have CAMs, should she be concerned or worried?

Not necessarily. First of all, a tissue harbouring CAMs is not synonymous with cancer or pre-cancer. It needs to acquire and accumulate the right type as well as certain combination of CAMs in order to complete the malignant transformation. Therefore, if lesions harbouring the CAMs can be completely and thoroughly removed, then the chance of malignant transformation is effectively nil. Alternatively, if the lesion harbouring the CAMs can be tamed through drug-induced dormancy and/or atrophy, then the chance of further malignant transformation can also be reduced substantially.

Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis?

Recent reports of deep sequencing not only of ectopic endometrium but also eutopic and histologically normal endometrium have greatly facilitated our understanding of the pathogenesis and/or pathophysiology of endometriosis. The finding that histologically normal endometrium can still carry CAMs essentially casts doubt that endometriosis may originate from CAM-harbouring eutopic endometrium. The report that CAMs are found predominantly in the epithelial component of endometriotic lesions but not in the stromal component corroborates the finding that molecular processes such as EMT, MMT, EndoMT, and possibly others, all occur in endometriotic lesions. Thus, epithelium and stroma of endometriotic lesions do have different developmental trajectories, and this raises the possibility of targeting specifically these molecular processes, either individually or collectively, as an interventional measure. The various CAMs reported in eutopic and ectopic endometrium also highlight the challenge in the management of endometriosis-harbouring CAMs.

Are there any limitations in these studies?

The reports of CAMs in both ectopic, eutopic and histologically normal endometrium shed some much needed light on the pathogenesis and pathophysiology of endometriosis. However, each of the studies reveals certain aspects of endometriosis. We still do not know the real

pathogenesis of endometriosis, nor do we know the tempo and pace of each and every CAM identified so far, or how many (or what CAM repertoire) are needed to complete the malignant transformation. We do not know if there are any factors that can either promote or hinder the occurrence of CAMs. Nor do we know whether there is any difference in type and frequency of CAMs among different subtypes of endometriosis or among different patients with different symptomatology and severity, as well as different life history. In particular, none of the published studies evaluated the relationship between CAM frequency and the extent of lesional fibrosis, which should be correlated (Guo, 2018a). Hopefully, future studies can address these issues.

What kind of future research is needed so that we can build upon our knowledge and further unveil some long-standing mysteries and conundrums in endometriosis?

There are still many unknowns. Future studies are needed to understand how many and what additional CAMs are required to complete the malignant transformation, especially in extraovarian endometriosis. From what is known already, the cancerous tissues have massive mutations. Is there any trigger(s) that promotes the apparent benign endometriotic lesions to malignant transformation? Can we catalogue all CAMs in endometriotic lesions or in endometrium? What additional CAMs or even molecular events are needed in order to complete the malignant transformation?

What are the mutational loads, signatures and landscapes for CAMs in eutopic and ectopic endometrium? Is there any difference in CAM repertoire among different subtypes of endometriosis? What is the pace of endometriosis-induced malignant transformation for a given CAM? Do adenomyotic lesions have similar CAMs as in endometriosis? If lesions carrying CAMs are not removed, which drug can effectively induce lesional atrophy or dormancy to reduce the risk of further CAMs?

So far the major focus has been on the genomic mutations, including CAMs. However, it is well known in tumorigenesis that there are also epigenetic aberrations. Compared to our increasing knowledge of CAMs, so far we know little, if anything, about epigenetic aberrations, especially in eutopic and histologically normal endometrium. Future studies are warranted to catalogue and gain insight into the landscape of epigenetic aberrations in ectopic, eutopic and histologically normal endometrium. Moreover, since the epigenetic aberrations may be closely linked with genetic aberrations, future studies are needed to delineate their inter-relationship and their respective drivers.

Conclusions

The recent reports of CAMs in endometriosis have generated a great deal of enthusiasm for the use of the next-generation sequencing methods to unveil the pathogenesis and pathophysiology of endometriosis. Indeed, these studies have shed some new light on the pathophysiology of endometriosis, giving a rare glimpse at its underlying genetic landscape. Since somatic mutations are widespread even in normal tissues and accumulate with age, most endometriotic lesions harbouring CAMs, especially extraovarian ones, do not necessarily lead

to malignancy, at least not immediately, due to manifested symptoms that prompt subsequent surgical removal of lesions or medication that induces lesional dormancy or perhaps atrophy. However, the CAMs-carrying lesions may eventually undergo malignant transformation if left intact or untreated.

As endometriotic lesions are wounds undergoing ReTIAR and, as a result, fibrogenesis, the CAMs in endometriosis discovered so far are mostly involved also in fibrogenesis. Several common denominators, such as age and oxidative stress, drive both CAMs and fibrogenesis as well as epigenetic changes. The distinct developmental trajectories of endometriotic stroma and epithelium highlight distinct but somehow dependent and co-evolved developmental processes in the two cellular components and underline the importance of lesion microenvironment in shaping the lesion destiny.

The finding of CAMs in endometriosis adds another layer of complexity for its management since pharmacological means are not likely to rectify mutations. While more research is warranted, as of now it seems that long-term care is needed when lesions are not physically removed. The possibility of malignancy, though remote, should be still taken into consideration in patient management, and early intervention seems to be advisable given the progressive nature of endometriosis.

While these studies have, collectively, illuminated the genetic landscape of endometriosis, the pathogenesis still remains a mystery. Future sequencing studies may shed more light on the pathogenesis, and to infer the phylogenetic and tempospatial relationship between OE lesions and EAOC, as well as the relationship between focal adenomyosis and DE. This will call for future profiling studies of the mutational burden, signatures and other structural variants in normal endometrium in women of different ages, BMI and reproductive history, as well as history of hormonal medication, OC or IUD use, perhaps with and without endometriosis, adenomyosis, uterine fibroids and other gynaecological conditions.

The same methodologies can be employed for adenomyosis, a disease closely related to endometriosis but which is seemingly under researched. In addition, one area in need of more research with the scope, depth and rigor that match the published CAMs studies is the epigenetic landscape of both ectopic and eutopic endometrium. When the genetic and epigenetic landscapes of ectopic, eutopic and normal endometrium are sufficiently understood, we should have a much better understanding of the pathogenesis and pathophysiology of endometriosis, and the day may come when this dreadful disease can be managed effectively.

Post scriptum note

After this manuscript was accepted for publication, the author became aware of a paper by *Suda et al. (2019)* based on targeted sequencing of 11 OE and 10 normal endometrial samples. It reports that there was no shared mutation between epithelial and stromal cells in OE tissues and the normal endometrium; in OE lesions, the ratio of CAMs per sample was significantly higher in the epithelium than in the stroma, even though there was no difference in the frequency of CAMs between the two components (*Suda et al., 2019*). In addition, there was no significant difference in the mutation frequency between epithelial and stromal cells in OE tissues and the normal endometrium, and apparently between OE tissues and normal endometrium (*Suda et al., 2019*). These findings lend firm support for the views expressed in this review,

in that the constituents of the endometriotic stromal component comprise recruited and transformed cells from various sources (*Fig. 1*); somatic mutations are ubiquitous, not only in endometriotic tissues but also in normal endometrial tissues; there is no data to support the view that women with endometriosis have pre-existing CAMs before the genesis of endometriosis; that is, it is endometrium harbouring CAMs that causes endometriosis. In a nutshell, we are now still in square one as far as the pathogenesis of endometriosis as concerned. However, through these sequencing studies, we have gained more understanding of the pathophysiology of endometriotic lesions, in that perhaps EndoMT, MMT, recruitment of BMDSCs and other molecular processes that so far we know very little about are just as important, if not more important, than EMT. In particular, ascertaining the source of myofibroblasts in lesions is now becomes a pressing issue, since this would be crucial for intervention owing to the pivotal role of myofibroblasts in lesional fibrogenesis.

Acknowledgements

The author would like to thank Ms Zi Mei for the discussion of sample handling, DNA quality and sequencing techniques. He also would like to thank the two anonymous reviewers and the associate editor for their constructive comments on an earlier version of this manuscript.

Author's role

SWG wrote the manuscript without any writing assistance.

Funding

National Science Foundation of China (81530040 and 81771553).

Conflict of interest

The author declares no conflict of interest.

References

- Abrao MS, Neme RM, Carvalho FM, Aldrighi JM, Pinotti JA. Histological classification of endometriosis as a predictor of response to treatment. *Int J Gynaecol Obstet* 2003;82:31–40.
- Aldiri I, Xu B, Wang L, Chen X, Hiler D, Griffiths L, Valentine M, Shirinifard A, Thiagarajan S, Sablauer A et al. The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. *Neuron* 2017;94:550, e510–568.
- Alexandre J, Nicco C, Chereau C, Laurent A, Weill B, Goldwasser F, Batteux F. Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. *J Natl Cancer Inst* 2006;98:236–244.
- Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, Stratton MR. Clock-like mutational processes in human somatic cells. *Nat Genet* 2015;47:1402–1407.
- Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Bignell AV, Bignell GR, Boll N, Borg A, Borresen-Dale AL et al.

Signatures of mutational processes in human cancer. *Nature* 2013; **500**:415–421.

Ali-Fehmi R, Khalifeh I, Bandyopadhyay S, Lawrence WD, Silva E, Liao D, Sarkar FH, Munkarah AR. Patterns of loss of heterozygosity at 10q23.3 and microsatellite instability in endometriosis, atypical endometriosis, and ovarian carcinoma arising in association with endometriosis. *Int J Gynecol Pathol* 2006; **25**:223–229.

Allavena G, Carrarelli P, Del Bello B, Luisi S, Petraglia F, Maellaro E. Autophagy is upregulated in ovarian endometriosis: a possible interplay with p53 and heme oxygenase-1. *Fertil Steril* 2015; **103**:1244, e1241–1251.

Amemiya S, Sekizawa A, Otsuka J, Tachikawa T, Saito H, Okai T. Malignant transformation of endometriosis and genetic alterations of K-ras and microsatellite instability. *Int J Gynaecol Obstet* 2004; **86**:371–376.

Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noe M, Horlings HM, Lum A, Jones S, Senz J, Seckin T et al. Cancer-associated mutations in endometriosis without cancer. *N Engl J Med* 2017; **376**:1835–1848.

Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R, Luzzatto LA. Quantitative measurement of the human somatic mutation rate. *Cancer Res* 2005; **65**:8111–8117.

Arnold J, Barcena de Arellano ML, Ruster C, Vercellino GF, Chiantera V, Schneider A, Mechsner S. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis. *Brain Behav Immun* 2012; **26**:132–141.

Arnold JT, Kaufman DG, Seppala M, Lessey BA. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. *Hum Reprod* 2001; **16**:836–845.

Arruda MS, Petta CA, Abrao MS, Benetti-Pinto CL. Time elapsed from onset of symptoms to diagnosis of endometriosis in a cohort study of Brazilian women. *Hum Reprod* 2003; **18**:756–759.

Aseem SO, Huebert RC. Epigenetic mechanisms of Pancreatobiliary Fibrosis. *Curr Treat Options Gastroenterol* 2019; **17**:342–356.

Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. *Mol Endocrinol* 1996; **10**:1077–1083.

Barcena de Arellano ML, Arnold J, Lang H, Vercellino GF, Chiantera V, Schneider A, Mechsner S. Evidence of neurotrophic events due to peritoneal endometriotic lesions. *Cytokine* 2013; **62**:253–261.

Barcena de Arellano ML, Arnold J, Sacher F, Blochle M, Staube M, Bartley J, Vercellino GF, Chiantera V, Schneider A, Mechsner S. Eutopic endometrium from women with endometriosis does not exhibit neurotrophic properties. *J Neuroimmunol* 2012; **249**:49–55.

Barcena de Arellano ML, Gericke J, Reichelt U, Okuducu AF, Ebert AD, Chiantera V, Schneider A, Mechsner S. Immunohistochemical characterization of endometriosis-associated smooth muscle cells in human peritoneal endometriotic lesions. *Hum Reprod* 2011; **26**:2721–2730.

Barra F, Scala C, Biscaldi E, Vellone VG, Ceccaroni M, Terrone C, Ferrero S. Ureteral endometriosis: a systematic review of epidemiology, pathogenesis, diagnosis, treatment, risk of malignant transformation and fertility. *Hum Reprod Update* 2018; **24**:710–730.

Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. *Physiol Rev* 2007; **87**:245–313.

Benoit L, Arnould L, Cheynel N, Diane B, Causeret S, Machado A, Collin F, Fraisse J, Cuisenier J. Malignant extraovarian endometriosis: a review. *Eur J Surg Oncol* 2006; **32**:6–11.

Beste MT, Pfaffle-Doyle N, Prentice EA, Morris SN, Lauffenburger DA, Isaacson KB, Griffith LG. Molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation. *Sci Transl Med* 2014; **6**:222ra216.

Bianconi E, Piovesan A, Facchini F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F et al. An estimation of the number of cells in the human body. *Ann Hum Biol* 2013; **40**:463–471.

Bjornstrom L, Sjoberg M. Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. *Nucl Recept* 2004; **2**:3.

Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, Huch M, Boymans S, Kuijk E, Prins P et al. Tissue-specific mutation accumulation in human adult stem cells during life. *Nature* 2016; **538**:260–264.

Boyle DP, McCluggage WG. Peritoneal stromal endometriosis: a detailed morphological analysis of a large series of cases of a common and under-recognised form of endometriosis. *J Clin Pathol* 2009; **62**:530–533.

Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B, Nowak MA. Accumulation of driver and passenger mutations during tumor progression. *Proc Natl Acad Sci USA* 2010; **107**:18545–18550.

Brandenberger AW, Lebovic DI, Tee MK, Ryan IP, Tseng JF, Jaffe RB, Taylor RN. Oestrogen receptor (ER)-alpha and ER-beta isoforms in normal endometrial and endometriosis-derived stromal cells. *Mol Hum Reprod* 1999; **5**:651–655.

Brosens IA. Endometriosis—a disease because it is characterized by bleeding. *Am J Obstet Gynecol* 1997; **176**:263–267.

Bulun SE. Endometriosis. *N Engl J Med* 2009; **360**:268–279.

Bulun SE, Wan Y, Matei D. Epithelial mutations in endometriosis: link to ovarian cancer. *Endocrinology* 2019; **160**:626–638.

Busch EL, Crous-Bou M, Prescott J, Chen MM, Downing MJ, Rosner BA, Mutter GL, De Vivo I. Endometrial cancer risk factors, hormone receptors, and mortality prediction. *Cancer Epidemiol Biomark Prev* 2017; **26**:727–735.

Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Alkani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R et al. Integrated genomic characterization of endometrial carcinoma. *Nature* 2013; **497**:67–73.

Canli O, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pesic M, Neumann T, Horst D, Lower M, Sahin U et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. *Cancer Cell* 2017; **32**:869, e865–883.

Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. *Nature* 2019; **571**:489–499.

Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP, Starmer J, Serber D, Yee D, Xiong J et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. *Nat Commun* 2015; **6**:1118.

Chapron C, Marcellin L, Borghese B, Santulli P. Rethinking mechanisms, diagnosis and management of endometriosis. *Nat Rev Endocrinol* 2019; **15**:666–682.

Chapron C, Tosti C, Marcellin L, Bourdon M, Lafay-Pillet MC, Milischer AE, Streuli I, Borghese B, Petraglia F, Santulli P. Relationship between the magnetic resonance imaging appearance of

adenomyosis and endometriosis phenotypes. *Hum Reprod* 2017; **32**: 1393–1401.

Chegini N, Gold LI, Williams RS. Localization of transforming growth factor beta isoforms TGF-beta 1, TGF-beta 2, and TGF-beta 3 in surgically induced endometriosis in the rat. *Obstet Gynecol* 1994; **83**: 455–461.

Chene G, Ouellet V, Rahimi K, Barres V, Provencher D, Mes-Masson AM. The ARID1A pathway in ovarian clear cell and endometrioid carcinoma, contiguous endometriosis, and benign endometriosis. *Int J Gynaecol Obstet* 2015; **130**: 27–30.

Cheng CW, Licence D, Cook E, Luo F, Arends MJ, Smith SK, Print CG, Charnock-Jones DS. Activation of mutated K-ras in donor endometrial epithelium and stroma promotes lesion growth in an intact immunocompetent murine model of endometriosis. *J Pathol* 2011; **224**: 261–269.

Cho S, Mutlu L, Grechukhina O, Taylor HS. Circulating microRNAs as potential biomarkers for endometriosis. *Fertil Steril* 2015; **103**: 1252, e1251–1260.

Clement PB. The pathology of endometriosis: a survey of the many faces of a common disease emphasizing diagnostic pitfalls and unusual and newly appreciated aspects. *Adv Anat Pathol* 2007; **14**: 241–260.

Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C et al. Preventable exposures associated with human cancers. *J Natl Cancer Inst* 2011; **103**: 1827–1839.

Colon-Caraballo M, Garcia M, Mendoza A, Flores I. Human endometriosis tissue microarray reveals site-specific expression of Estrogen receptors, progesterone receptor, and Ki67. *Appl Immunohistochem Mol Morphol* 2018; **27**: 491–500.

Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA. Damage: mechanisms, mutation, and disease. *FASEB J* 2003; **17**: 1195–1214.

Cousins FL, Murray A, Esnal A, Gibson DA, Critchley HO, Saunders PT. Evidence from a mouse model that epithelial cell migration and mesenchymal–epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation. *PLoS One* 2014; **9**: e86378.

Da Broi MG, de Albuquerque FO, de Andrade AZ, Cardoso RL, Jordao Junior AA, Navarro PA. Increased concentration of 8-hydroxy-2'-deoxyguanosine in follicular fluid of infertile women with endometriosis. *Cell Tissue Res* 2016; **366**: 231–242.

De S. Somatic mosaicism in healthy human tissues. *Trends Genet* 2011; **27**: 217–223.

Defrere S, Lousse JC, Gonzalez-Ramos R, Colette S, Donnez J, Van Langendonck A. Potential involvement of iron in the pathogenesis of peritoneal endometriosis. *Mol Hum Reprod* 2008; **14**: 377–385.

de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, Seeberg E, Klungland A, Bohr VA. Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. *Cancer Res* 2001; **61**: 5378–5381.

Dewanto A, Dudas J, Glueckert R, Mechsner S, Schrott-Fischer A, Wildt L, Seeber B. Localization of TrkB and p75 receptors in peritoneal and deep infiltrating endometriosis: an immunohistochemical study. *Reprod Biol Endocrinol* 2016; **14**: 43.

Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. *Hum Reprod* 2015; **30**: 812–832.

Ding D, Liu X, Guo SW. Overexpression of lysine-specific demethylase 1 in ovarian endometriomas and its inhibition reduces cellular proliferation, cell cycle progression, and invasiveness. *Fertil Steril* 2014; **101**: 740–749.

Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. *Nat Med* 2005; **11**: 63–70.

diZerega GS, Marrs RP, Lobo R, Ujita EL, Brown J, Campeau JD. Correlation of inhibin and follicle regulatory protein activities with follicular fluid steroid levels in anovulatory patients. *Fertil Steril* 1984; **41**: 849–855.

Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, Vijg J. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. *Nat Methods* 2017; **14**: 491–493.

Donnez J, Binda MM, Donnez O, Dolmans MM. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. *Fertil Steril* 2016; **106**: 1011–1017.

Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. *Stem Cells* 2007; **25**: 2082–2086.

Du Y, Liu X, Guo SW. Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. *Hum Reprod* 2017; **32**: 794–810.

Duan J, Liu X, Guo S-W. The M2a macrophage subset may be critically involved in fibrogenesis of endometriosis in mouse. *Reprod Biomed Online* 2018; **37**: 254–268.

Dworatzek E, Mahmoodzadeh S, Schriever C, Kusumoto K, Kramer L, Santos G, Fliegner D, Leung YK, Ho SM, Zimmermann WH et al. Sex-specific regulation of collagen I and III expression by 17beta-Estradiol in cardiac fibroblasts: role of estrogen receptors. *Cardiovasc Res* 2019; **115**: 315–327.

Elliot S, Periera-Simon S, Xia X, Catanuto P, Rubio G, Shahzeidi S, El Salem F, Shapiro J, Briegel K, Korach KS et al. microRNA let-7 Downregulates ligand independent Estrogen receptor mediated male predominant pulmonary Fibrosis. *Am J Respir Crit Care Med* 2019; **200**: 1246–1257.

Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. *Nat Rev Cancer* 2009; **9**: 550–562.

Ersoy GS, Zolbin MM, Cosar E, Mamillapalli R, Taylor HS. Medical therapies for endometriosis differentially inhibit stem cell recruitment. *Reprod Sci* 2017; **24**: 818–823.

Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. *BioEssays News Rev Mol Cell Dev Biol* 2004; **26**: 533–542.

Fialkow PJ. Clonal origin of human tumors. *Biochim Biophys Acta* 1976; **458**: 283–321.

Filip G, Balzano A, Cagnacci A. Histological evaluation of the prevalence of adenomyosis, myomas and of their concomitance. *Minerva Ginecol* 2019; **71**: 177–181.

Fitzner B, Sparmann G, Emmrich J, Liebe S, Jaster R. Involvement of AP-1 proteins in pancreatic stellate cell activation in vitro. *Int J Color Dis* 2004; **19**: 414–420.

Franco I, Johansson A, Olsson K, Vrtacnik P, Lundin P, Helgadottir HT, Larsson M, Revechon G, Bosia C, Pagnani A et al. Somatic

mutagenesis in satellite cells associates with human skeletal muscle aging. *Nat Commun* 2018;9:–800.

Fujimoto J, Hirose R, Sakaguchi H, Tamaya T. Expression of oestrogen receptor-alpha and -beta in ovarian endometriomata. *Mol Hum Reprod* 1999;5:742–747.

Gagliardi M, Maynard S, Miyake T, Rodrigues N, Tjew SL, Cabannes E, Bedard PA. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression. *J Biol Chem* 2003;278:43846–43854.

Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. *Hum Reprod Update* 2016;22:137–163.

Gilboa E. The makings of a tumor rejection antigen. *Immunity* 1999;11:263–270.

Gogusev J, Bouquet de Joliviere J, Telvi L, Doussau M, du Manoir S, Stojkoski A, Levardon M. Detection of DNA copy number changes in human endometriosis by comparative genomic hybridization. *Hum Genet* 1999;105:444–451.

Green MR, Vicente-Duenas C, Romero-Camarero I, Long Liu C, Dai B, Gonzalez-Herrero I, Garcia-Ramirez I, Alonso-Escudero E, Iqbal J, Chan WC et al. Transient expression of Bcl6 is sufficient for oncogenic function and induction of mature B-cell lymphoma. *Nat Commun* 2014;5:3904.

Guan B, Rahmanto YS, Wu RC, Wang Y, Wang Z, Wang TL, Shih Ie M. Roles of deletion of Arid1a, a tumor suppressor, in mouse ovarian tumorigenesis. *J Natl Cancer Inst* 2014;106. 10.1093/jnci/dju146.

Guo SW. Epigenetics of endometriosis. *Mol Hum Reprod* 2009a;15: 587–607.

Guo SW. Recurrence of endometriosis and its control. *Hum Reprod Update* 2009b;15:441–461.

Guo SW. Endometriosis and ovarian cancer: potential benefits and harms of screening and risk-reducing surgery. *Fertil Steril* 2015;104: 813–830.

Guo SW. Cancer driver mutations in endometriosis: variations on the major theme of fibrogenesis. *Reprod Med Biol* 2018a;17: 369–397.

Guo SW. Fibrogenesis resulting from cyclic bleeding: the holy grail of the natural history of ectopic endometrium. *Hum Reprod* 2018b;33: 353–356.

Guo SW, Du Y, Liu X. Platelet-derived TGF-beta1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. *Hum Reprod* 2016;31:1462–1474.

Guo SW, Groothuis PG. Is it time for a paradigm shift in drug research and development in endometriosis/adenomyosis. *Hum Reprod Update* 2018;24:577–598.

Guo SW, Martin DC. The perioperative period: a critical yet neglected time window for reducing the recurrence risk of endometriosis. *Hum Reprod* 2019;34:1858–1865.

Hadfield R, Mardon H, Barlow D, Kennedy S. Delay in the diagnosis of endometriosis: a survey of women from the USA and the UK. *Hum Reprod* 1996;11:878–880.

Han KY, Tran JA, Chang JH, Azar DT, Zieske JD. Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization. *Sci Rep* 2017;7:40548.

Han SJ, Hawkins SM, Begum K, Jung SY, Kovanci E, Qin J, Lydon JP, DeMayo FJ, O'Malley BW. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. *Nat Med* 2012;18:1102–1111.

Han SJ, Jung SY, Wu SP, Hawkins SM, Park MJ, Kyo S, Qin J, Lydon JP, Tsai SY, Tsai MJ et al. Estrogen receptor beta modulates apoptosis complexes and the Inflammasome to drive the pathogenesis of endometriosis. *Cell* 2015;163:960–974.

Hapangama DK, Turner MA, Drury J, Heathcote L, Afshar Y, Mavrogianis PA, Fazleabas AT. Aberrant expression of regulators of cell fate found in eutopic endometrium is found in matched ectopic endometrium among women and in a baboon model of endometriosis. *Hum Reprod* 2010;25:2840–2850.

Harp D, Driss A, Mehrabi S, Chowdhury I, Xu W, Liu D, Garcia-Barrio M, Taylor RN, Gold B, Jefferson S et al. Exosomes derived from endometriotic stromal cells have enhanced angiogenic effects in vitro. *Cell Tissue Res* 2016;365: 187–196.

Hastings JM, Fazleabas AT. A baboon model for endometriosis: implications for fertility. *Reprod Biol Endocrinol* 2006;4:S7.

He ZX, Shi HH, Fan QB, Zhu L, Leng JH, Sun DW, Li ZF, Shen K, Wang S, Lang JH. Predictive factors of ovarian carcinoma for women with ovarian endometrioma aged 45 years and older in China. *J Ovarian Res* 2017;10:45.

Heaps JM, Nieberg RK, Berek JS. Malignant neoplasms arising in endometriosis. *Obstet Gynecol* 1990;75:1023–1028.

Heemskerk B, Kvistborg P, Schumacher TN. The cancer antigenome. *EMBO J* 2013;32:194–203.

Hess JM, Bernards A, Kim J, Miller M, Taylor-Weiner A, Haradhvala NJ, Lawrence MS, Getz G. Passenger hotspot mutations in cancer. *Cancer Cell* 2019;36:288, e214–301.

Hoang ML, Kinde I, Tomasetti C, McMahon KW, Rosenquist TA, Grollman AP, Kinzler KW, Vogelstein B, Papadopoulos N. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. *Proc Natl Acad Sci USA* 2016;113:9846–9851.

Hsieh CJ, Klump B, Holzmann K, Borchard F, Gregor M, Porschen R. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. *Cancer Res* 1998;58:3942–3945.

Hsieh JC, Van Den Berg D, Kang H, Hsieh CL, Lieber MR. Large chromosome deletions, duplications, and gene conversion events accumulate with age in normal human colon crypts. *Aging Cell* 2013;12:269–279.

Huang CC, Orvis GD, Wang Y, Behringer RR. Stromal-to-epithelial transition during postpartum endometrial regeneration. *PLoS One* 2012;7:e44285.

Hutchison S, Pritchard AL. Identifying neoantigens for use in immunotherapy. *Mamm Genome* 2018;29:714–730.

Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. *Cancer Res* 2001;61:3573–3577.

Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, Yamanaka S, Kobayashi H. Role of Oxidative stress in epigenetic modification in endometriosis. *Reprod Sci* 2017;24:1493–1502.

Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. *Redox Biol* 2014;2:267–272.

Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. *Aging Cell* 2015;14:924–932.

Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. *Science* 2010; **330**:228–231.

Kamergorodsky G, Ribeiro PA, Galvao MA, Abrao MS, Donadio N, Lemos NL, Aoki T. Histologic classification of specimens from women affected by superficial endometriosis, deeply infiltrating endometriosis, and ovarian endometriomas. *Fertil Steril* 2009; **92**:2074–2077.

Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction. *Methods Mol Biol* 2015; **1238**:3–25.

Kao SH, Huang HC, Hsieh RH, Chen SC, Tsai MC, Tzeng CR. Oxidative damage and mitochondrial DNA mutations with endometriosis. *Ann NY Acad Sci* 2005; **1042**:186–194.

Kato S, Lippman SM, Flaherty KT, Kurzrock R. The conundrum of genetic "drivers" in benign conditions. *J Natl Cancer Inst* 2016; **108**: 10.1093/jnci/djw036.

Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M, Gollner A, Covini D, Fischer S, Gerstberger T et al. Drugging an undruggable pocket on KRAS. *Proc Natl Acad Sci USA* 2019; **116**:15823–15829.

Khan KN, Fujishita A, Kitajima M, Hiraki K, Nakashima M, Masuzaki H. Occult microscopic endometriosis: undetectable by laparoscopy in normal peritoneum. *Hum Reprod* 2014; **29**:462–472.

Kilarski WW, Jura N, Gerwins P. An ex vivo model for functional studies of myofibroblasts. *Lab Invest* 2005; **85**:643–654.

Kim HS, Kim TH, Chung HH, Song YS. Risk and prognosis of ovarian cancer in women with endometriosis: a meta-analysis. *Br J Cancer* 2014; **110**:1878–1890.

Kim JJ, Taylor HS, Lu Z, Ladha O, Hastings JM, Jackson KS, Wu Y, Guo SW, Fazleabas AT. Altered expression of HOXA10 in endometriosis: potential role in decidualization. *Mol Hum Reprod* 2007; **13**:323–332.

Kim TH, Yoo JY, Choi KC, Shin JH, Leach RE, Fazleabas AT, Young SL, Lessey BA, Yoon HG, Jeong JW. Loss of HDAC3 results in nonreceptive endometrium and female infertility. *Sci Transl Med* 2019; **11**. 10.1126/scitranslmed.aaf7533.

Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. *Proc Natl Acad Sci USA* 2011; **108**:9530–9535.

Kitano T, Matsumoto T, Takeuchi H, Kikuchi I, Itoga T, Sasahara N, Kinoshita K. Expression of estrogen and progesterone receptors in smooth muscle metaplasia of rectovaginal endometriosis. *Int J Gynecol Pathol* 2007; **26**:124–129.

Kobayashi H. Somatic driver mutations in endometriosis as possible regulators of fibrogenesis. *World Acad Sci J* 2019.

Koh HB, Scruggs AM, Huang SK. Transforming growth factor-beta1 increases DNA Methyltransferase 1 and 3a expression through distinct post-transcriptional mechanisms in lung fibroblasts. *J Biol Chem* 2016; **291**:19287–19298.

Kosugi Y, Elias S, Malinak LR, Nagata J, Isaka K, Takayama M, Simpson JL, Bischoff FZ. Increased heterogeneity of chromosome 17 aneuploidy in endometriosis. *Am J Obstet Gynecol* 1999; **180**: 792–797.

Krimmel JD, Schmitt MW, Harrell MI, Agnew KJ, Kennedy SR, Emond MJ, Loeb LA, Swisher EM, Risques RA. Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues. *Proc Natl Acad Sci USA* 2016; **113**:6005–6010.

Kuo HH, Huang CY, Ueng SH, Huang KG, Lee CL, Yen CF. Unexpected epithelial ovarian cancers arising from presumed endometrioma: a 10-year retrospective analysis. *Taiwan J Obstet Gynecol* 2017; **56**:55–61.

Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, Glas R, Slamon D, Velculescu VE, Kuman RJ et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. *Am J Pathol* 2009; **174**:1597–1601.

Kurman RJ, Shih Ie M. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. *Am J Surg Pathol* 2010; **34**:433–443.

Lac V, Huntsman DG. Distinct developmental trajectories of endometriotic epithelium and stroma: implications for the origins of endometriosis. *J Pathol* 2018; **246**:257–260.

Lac V, Nazeran TM, Tessier-Cloutier B, Aguirre-Hernandez R, Albert A, Lum A, Khattra J, Praetorius T, Mason M, Chiu D et al. Oncogenic mutations in histologically normal endometrium: the new normal. *J Pathol* 2019; **249**:173–181.

Lac V, Verhoef L, Aguirre-Hernandez R, Nazeran TM, Tessier-Cloutier B, Praetorius T, Orr NL, Noga H, Lum A, Khattra J et al. Iatrogenic endometriosis harbors somatic cancer-driver mutations. *Hum Reprod* 2018; **34**:69–78.

Lakshminarasimhan R, Andreu-Vieyra C, Lawrenson K, Duymich CE, Gayther SA, Liang G, Jones PA. Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. *Cancer Lett* 2017; **401**:11–19.

Lannigan DA. Estrogen receptor phosphorylation. *Steroids* 2003; **68**:1–9.

Laurent A, Nicco C, Chereau C, Gouvestre C, Alexandre J, Alves A, Levy E, Goldwasser F, Panis Y, Soubrane O et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. *Cancer Res* 2005; **65**:948–956.

Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. *Biol Reprod* 2009; **80**:79–85.

Lee-Six H, Ellis P, Osborne RJ, Sanders MA, Moore L, Georgakopoulos N, Torrente F, Noorani A, Goddard M, Robinson P et al. The landscape of somatic mutation in normal I colorectal epithelial cells. *bioRxiv* 2018:416800; 10.1101/416800.

Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. *Cancer Res* 1999; **59**:159–164.

Li Q, Sun Y, Zhang X, Wang L, Wu W, Wu M, Meng C, Liu G. Endometriosis-associated ovarian cancer is a single entity with distinct clinicopathological characteristics. *Cancer Biol Ther* 2019; **20**: 1029–1034.

Li X, Zhang Y, Zhao L, Wang L, Wu Z, Mei Q, Nie J, Li Y, Fu X, Wang X et al. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. *Hum Mol Genet* 2014; **23**: 6008–6021.

Liang H, Cheung LW, Li J, Ju Z, Yu S, Stemke-Hale K, Dogruluk T, Lu Y, Liu X, Gu C et al. Whole-exome sequencing combined with

functional genomics reveals novel candidate driver cancer genes in endometrial cancer. *Genome Res* 2012; **22**:2120–2129.

Lin MC, Burkholder KA, Viswanathan AN, Neuberg D, Mutter GL. Involution of latent endometrial precancers by hormonal and non-hormonal mechanisms. *Cancer* 2009; **115**:2111–2118.

Liu X, Ding D, Ren Y, Guo SW. Transvaginal Elastosonography as an imaging technique for diagnosing Adenomyosis. *Reprod Sci* 2018a; **25**:498–514.

Liu X, Guo SW. A pilot study on the off-label use of valproic acid to treat adenomyosis. *Fertil Steril* 2008; **89**:246–250.

Liu X, Shen S, Qi Q, Zhang H, Guo S-W. Corroborating evidence for platelet-induced epithelial–Mesenchymal transition and fibroblast–to-Myofibroblast Transdifferentiation in the development of Adenomyosis. *Hum Reprod* 2016; **31**:734–749.

Liu X, Yan D, Guo SW. Sensory nerve-derived neuropeptides accelerate the development and fibrogenesis of endometriosis. *Hum Reprod* 2019; **34**:452–468.

Liu X, Yuan L, Shen F, Guo SW. Patterns of and factors potentially influencing the age at first surgery for women with ovarian endometriomas. *Gynecol Obstet Investig* 2008; **66**:76–83.

Liu X, Zhang Q, Guo SW. Histological and Immunohistochemical characterization of the similarity and difference between Ovarian Endometriomas and deep infiltrating endometriosis. *Reprod Sci* 2018b; **25**:329–340.

Lu Y, Cuellar-Partida G, Painter JN, Nyholt DR, Australian Ovarian Cancer S, International Endogene C, Morris AP, Fasching PA, Hein A, Burghaus S et al. Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. *Hum Mol Genet* 2015; **24**:5955–5964.

Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. *Kidney Int* 2015; **87**:297–307.

Mai KT, Yazdi HM, Perkins DG, Parks W. Pathogenetic role of the stromal cells in endometriosis and adenomyosis. *Histopathology* 1997; **30**:430–442.

Maines MD. The heme oxygenase system: a regulator of second messenger gases. *Annu Rev Pharmacol Toxicol* 1997; **37**:517–554.

Marcellin L, Santulli P, Bortolato S, Morin C, Millischer AE, Borghese B, Chapron C. Anterior focal adenomyosis and bladder deep infiltrating endometriosis: is there a Link? *J Minim Invasive Gynecol* 2018; **25**:896–901.

Marcellin L, Santulli P, Chouzenoux S, Cerles O, Nicco C, Dousset B, Pallardy M, Kerdine-Romer S, Just PA, Chapron C et al. Alteration of Nrf2 and glutamate cysteine ligase expression contribute to lesions growth and fibrogenesis in ectopic endometriosis. *Free Radic Biol Med* 2017; **110**:1–10.

Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, Cagan A, Murai K, Mahbubani K, Stratton MR et al. Somatic mutant clones colonize the human esophagus with age. *Science* 2018; **362**:911–917.

Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, Davies H, Stratton MR, Campbell PJ. Universal patterns of selection in cancer and somatic tissues. *Cell* 2017; **171**:1029, e1021–1041.

Martincorena I, Roshan A, Gerstung M, Ellis P, Van P, McLaren S, Wedge DC, Fullam A, Alexandrov LB, Tubio JM et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. *Science* 2015; **348**:880–886.

Martini M, Ciccarone M, Garganese G, Maggiore C, Evangelista A, Rahimi S, Zannoni G, Vittori G, Larocca LM. Possible involvement of hMLH1, p16(INK4a) and PTEN in the malignant transformation of endometriosis. *Int J Cancer* 2002; **102**:398–406.

Matsuzaki S, Darcha C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. *Hum Reprod* 2012; **27**:712–721.

Matsuzaki S, Darcha C, Pouly JL, Canis M. Effects of matrix stiffness on epithelial to mesenchymal transition-like processes of endometrial epithelial cells: implications for the pathogenesis of endometriosis. *Sci Rep* 2017; **7**:44616.

Matsuzaki S, Schubert B. Oxidative stress status in normal ovarian cortex surrounding ovarian endometriosis. *Fertil Steril* 2010; **93**:2431–2432.

Mattox AK, Wang Y, Springer S, Cohen JD, Yegnasubramanian S, Nelson WG, Kinzler KW, Vogelstein B, Papadopoulos N. Bisulfite-converted duplexes for the strand-specific detection and quantification of rare mutations. *Proc Natl Acad Sci USA* 2017; **114**:4733–4738.

Maybin JA, Critchley HO. Menstrual physiology: implications for endometrial pathology and beyond. *Hum Reprod Update* 2015; **21**:748–761.

McAdam E, Brem R, Karan P. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and therapeutic efficacy. *Mol Cancer Res* 2016; **14**:612–622.

McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. *Antioxid Redox Signal* 2006; **8**:1775–1789.

McDonald OG, Li X, Saunders T, Tryggvadottir R, Menth SJ, Warmoes MO, Word AE, Carrer A, Salz TH, Natsume S et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. *Nat Genet* 2017; **49**:367–376.

Melin AS, Lundholm C, Malki N, Swahn ML, Spare P, Bergqvist A. Hormonal and surgical treatments for endometriosis and risk of epithelial ovarian cancer. *Acta Obstet Gynecol Scand* 2013; **92**:546–554.

Milholland B, Auton A, Suh Y, Vijg J. Age-related somatic mutations in the cancer genome. *Oncotarget* 2015; **6**:24627–24635.

Modesitt SC, Tortolero-Luna G, Robinson JB, Gershenson DM, Wolf JK. Ovarian and extraovarian endometriosis-associated cancer. *Obstet Gynecol* 2002; **100**:788–795.

Moen MH, Halvorsen TB. Histologic confirmation of endometriosis in different peritoneal lesions. *Acta Obstet Gynecol Scand* 1992; **71**:337–342.

Monsivais D, Dyson MT, Yin P, Coon JS, Navarro A, Feng G, Malpani SS, Ono M, Ercan CM, Wei JJ et al. ERbeta- and prostaglandin E2-regulated pathways integrate cell proliferation via Ras-like and estrogen-regulated growth inhibitor in endometriosis. *Mol Endocrinol* 2014; **28**:1304–1315.

Monteiro JB, Colon-Diaz M, Garcia M, Gutierrez S, Colon M, Seto E, Laboy J, Flores I. Endometriosis is characterized by a distinct pattern of histone 3 and histone 4 lysine modifications. *Reprod Sci* 2014; **21**:305–318.

Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dawson K, Maura F, Nangalia J, Tarpey PS, Brunner SF et al. The

mutational landscape of normal human endometrial epithelium. *bioRxiv*. 2018;505685; [10.1101/505685](https://doi.org/10.1101/505685).

Moran-Salvador E, Mann J. Epigenetics and liver fibrosis. *Cell Mol Gastroenterol Hepatol* 2017; **4**:125–134.

Morgado-Pascual JL, Marchant V, Rodrigues-Diez R, Dolade N, Suarez-Alvarez B, Kerr B, Valdivielso JM, Ruiz-Ortega M, Rayego-Mateos S. Epigenetic modification mechanisms involved in inflammation and Fibrosis in renal pathology. *Mediat Inflamm* 2018; **2018**:2931049.

Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, Eisenson D, Narurkar R, Deng P, Nezi L et al. Passenger deletions generate therapeutic vulnerabilities in cancer. *Nature* 2012; **488**:337–342.

Murakami R, Matsumura N, Brown JB, Higasa K, Tsutsumi T, Kamada M, Abou-Taleb H, Hosoe Y, Kitamura S, Yamaguchi K et al. Exome sequencing landscape analysis in ovarian clear cell carcinoma shed light on key chromosomal regions and mutation gene networks. *Am J Pathol* 2017; **187**:2246–2258.

Mutter GL, Monte NM, Neuberg D, Ferenczy A, Eng C. Emergence, involution, and progression to carcinoma of mutant clones in normal endometrial tissues. *Cancer Res* 2014; **74**:2796–2802.

Nachman MW, Crowell SL. Estimate of the mutation rate per nucleotide in humans. *Genetics* 2000; **156**:297–304.

Nair N, Camacho-Vanegas O, Rykunov D, Dashkoff M, Camacho SC, Schumacher CA, Irish JC, Harkins TT, Freeman E, Garcia I et al. Genomic analysis of uterine lavage fluid detects early endometrial cancers and reveals a prevalent landscape of driver mutations in women without Histopathologic evidence of cancer: a prospective cross-sectional study. *PLoS Med* 2016; **13**:e1002206.

Naqvi H, Ilagan Y, Krikun G, Taylor HS. Altered genome-wide methylation in endometriosis. *Reprod Sci* 2014; **21**:1237–1243.

Naqvi H, Mamillapalli R, Krikun G, Taylor HS. Endometriosis located proximal to or remote from the uterus differentially affects uterine gene expression. *Reprod Sci* 2016; **23**:186–191.

Nassif J, Abbasi SA, Nassar A, Abu-Musa A, Eid AA. The role of NADPH-derived reactive oxygen species production in the pathogenesis of endometriosis: a novel mechanistic approach. *J Biol Regul Homeost Agents* 2016; **30**:31–40.

Neveu WA, Mills ST, Staitieh BS, Sueblinvong V. TGF- β 1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. *Am J Physiol Cell Physiol* 2015; **309**:C616–C626.

Ngo C, Chereau C, Nicco C, Weill B, Chapron C, Batteux F. Reactive oxygen species controls endometriosis progression. *Am J Pathol* 2009; **175**:225–234.

Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. *Fertil Steril* 1997; **68**:585–596.

Noe M, Ayhan A, Wang TL, Shih IM. Independent development of endometrial epithelium and stroma within the same endometriosis. *J Pathol* 2018; **245**:265–269.

Noel JC, Chapron C, Bucella D, Buxant F, Peny MO, Fayt I, Borghese B, Anaf V. Estrogen and progesterone receptors in smooth muscle component of deep infiltrating endometriosis. *Fertil Steril* 2010; **93**:1774–1777.

Nowell PC. The clonal evolution of tumor cell populations. *Science* 1976; **194**:23–28.

O'Huallachain M, Karczewski KJ, Weissman SM, Urban AE, Snyder MP. Extensive genetic variation in somatic human tissues. *Proc Natl Acad Sci USA* 2012; **109**:18018–18023.

Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. *J Hepatol* 2016; **64**:661–673.

Patrone C, Cassel TN, Pettersson K, Piao YS, Cheng G, Ciana P, Maggi A, Warner M, Gustafsson JA, Nord M. Regulation of postnatal lung development and homeostasis by estrogen receptor beta. *Mol Cell Biol* 2003; **23**:8542–8552.

Patterson AL, Zhang L, Arango NA, Teixeira J, Pru JK. Mesenchymal-to-epithelial transition contributes to endometrial regeneration following natural and artificial decidualization. *Stem Cells Dev* 2013; **22**:964–974.

Pearce CL, Templeman C, Rossing MA, Lee A, Near AM, Webb PM, Nagle CM, Doherty JA, Cushing-Haugen KL, Wicklund KG et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. *Lancet Oncol* 2012; **13**:385–394.

Piccinato CA, Neme RM, Torres N, Sanches LR, Cruz Derogis PB, Brudniewski HF, JC ES, Ferriani RA. Increased expression of CYP1A1 and CYP1B1 in ovarian/peritoneal endometriotic lesions. *Reproduction* 2016; **151**:683–692.

Pich O, Muinos F, Sabarinathan R, Reyes-Salazar I, Gonzalez-Perez A, Lopez-Bigas N. Somatic and germline mutation periodicity follow the orientation of the DNA minor groove around nucleosomes. *Cell* 2018; **175**:1074, e1018–1087.

Polak G, Wertell I, Barczynski B, Kwasniewski W, Bednarek W, Kotarski J. Increased levels of oxidative stress markers in the peritoneal fluid of women with endometriosis. *Eur J Obstet Gynecol Reprod Biol* 2013; **168**:187–190.

Poulos RC, Olivier J, Wong JWH. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. *Nucleic Acids Res* 2017; **45**:7786–7795.

Pritchard AL. Targeting Neoantigens for personalised immunotherapy. *BioDrugs* 2018; **32**:99–109.

Rai P, Deenadayal M, Shivaji S. Absence of activating somatic mutations of PI3KCA and AKT1 genes in south Indian women with endometriosis. *Eur J Obstet Gynecol Reprod Biol* 2010; **152**:78–82.

Ren F, Wang D, Jiang Y, Ren F. Epigenetic inactivation of hMLH1 in the malignant transformation of ovarian endometriosis. *Arch Gynecol Obstet* 2012; **285**:215–221.

Risques RA, Kennedy SR. Aging and the rise of somatic cancer-associated mutations in normal tissues. *PLoS Genet* 2018; **14**:e1007108.

Rocha-Junior CV, Da Broi MG, Miranda-Furtado CL, Navarro PA, Ferriani RA, Meola J. Progesterone receptor B (PGR-B) is partially methylated in eutopic endometrium from infertile women with endometriosis. *Reprod Sci* 2019; **19**:33719119828078.

Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H, Egan DA et al. Intra-tumour diversification in colorectal cancer at the single-cell level. *Nature* 2018; **556**:457–462.

Rozhok AI, DeGregori J. The evolution of lifespan and age-dependent cancer risk. *Trends Cancer* 2016; **2**:552–560.

Saare M, Soritsa D, Vaidla K, Palta P, Remm M, Laan M, Karro H, Soritsa A, Salumets A, D'Hooghe T et al. No evidence of somatic DNA

copy number alterations in eutopic and ectopic endometrial tissue in endometriosis. *Hum Reprod* 2012;27:1857–1864.

Saavalainen L, Lassus H, But A, Tiitinen A, Harkki P, Gissler M, Pukkala E, Heikinheimo O. Risk of gynecologic cancer according to the type of endometriosis. *Obstet Gynecol* 2018;131:1095–1102.

Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, Eslani M, Djalilian AR. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. *Invest Ophthalmol Vis Sci* 2018;59:5194–5200.

Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. *Nat Rev Drug Discov* 2014;13:928–942.

Sanchez M, Picard N, Sauve K, Tremblay A. Challenging estrogen receptor beta with phosphorylation. *Trends Endocrinol Metab* 2010;21:104–110.

Saridogan E. Adolescent endometriosis. *Eur J Obstet Gynecol Reprod Biol* 2017;209:46–49.

Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, Noguchi M. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. *Cancer Res* 2000;60:7052–7056.

Sbracia M, Zupi E, Alo P, Manna C, Marconi D, Scarpellini F, Grasso JA, Di Tondo U, Romanini C. Differential expression of IGF-I and IGF-II in eutopic and ectopic endometria of women with endometriosis and in women without endometriosis. *Am J Reprod Immunol* 1997;37:326–329.

Scheerer C, Frangini S, Chiantera V, Mechsner S. Reduced sympathetic innervation in endometriosis is associated to Semaphorin 3C and 3F expression. *Mol Neurobiol* 2017;54:5131–5141.

Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. *Proc Natl Acad Sci USA* 2012;109:14508–14513.

Seifer BJ, Su D, Taylor HS. Circulating miRNAs in murine experimental endometriosis. *Reprod Sci* 2017;24:376–381.

Seino T, Saito H, Kaneko T, Takahashi T, Kawachiya S, Kurachi H. Eight-hydroxy-2'-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. *Fertil Steril* 2002;77:1184–1190.

Shen M, Liu X, Zhang H, Guo SW. Transforming growth factor β 1 signaling coincides with -mediated epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice. *Hum Reprod* 2016;31:355–369.

Sherwin JR, Hastings JM, Jackson KS, Mavrogianis PA, Sharkey AM, Fazleabas AT. The endometrial response to chorionic gonadotropin is blunted in a baboon model of endometriosis. *Endocrinology* 2010;151:4982–4993.

Shin JC, Ross HL, Elias S, Nguyen DD, Mitchell-Leef D, Simpson JL, Bischoff FZ. Detection of chromosomal aneuploidy in endometriosis by multi-color fluorescence in situ hybridization (FISH). *Hum Genet* 1997;100:401–406.

Shrishrimal S, Kosmacek EA, Oberley-Deegan RE. Reactive oxygen species drive epigenetic changes in radiation-induced fibrosis. *Oxidative Med Cell Longev* 2019;2019:4278658.

Siegmund KD, Marjoram P, Woo YJ, Tavare S, Shibata D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. *Proc Natl Acad Sci USA* 2009;106:4828–4833.

Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ. Hypermethylation trigger of the glutathione-S-transferase gene (GSTPI) in prostate cancer cells. *Oncogene* 2002;21:1048–1061.

Stern RC, Dash R, Bentley RC, Snyder MJ, Haney AF, Robboy SJ. Malignancy in endometriosis: frequency and comparison of ovarian and extraovarian types. *Int J Gynecol Pathol* 2001;20:133–139.

Stirzaker C, Song JZ, Davidson B, Clark SJ. Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. *Cancer Res* 2004;64:3871–3877.

Strom SP. Current practices and guidelines for clinical next-generation sequencing oncology testing. *Cancer Biol Med* 2016;13:3–11.

Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Adachi S, Kase H, Motoyama T, Inoue I, Enomoto T. Different mutation profiles between epithelium and stroma in endometriosis and normal endometrium. *Hum Reprod* 2019;34:1899–1905.

Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Tamura R, Mori Y, Yamawaki K, Adachi S, Takahashi T, Kase H et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. *Cell Rep* 2018;24:1777–1789.

Sun H, Li D, Yuan M, Li Q, Li N, Wang G. Eutopic stromal cells of endometriosis promote neuroangiogenesis via exosome pathwaydagger. *Biol Reprod* 2019;100:649–659.

Sun Q, Ding D, Liu X, Guo SW. Tranylcypromine, a lysine-specific demethylase 1 (LSD1) inhibitor, suppresses lesion growth and improves generalized hyperalgesia in mouse with induced endometriosis. *Reprod Biol Endocrinol* 2016;14:17.

Takahashi K, Okada S, Okada M, Kitao M, Kaji Y, Sugimura K. Magnetic resonance relaxation time in evaluating the cyst fluid characteristics of endometrioma. *Hum Reprod* 1996;11:857–860.

Tamura M, Fukaya T, Enomoto A, Murakami T, Uehara S, Yajima A. Transforming growth factor-beta isoforms and receptors in endometriotic cysts of the human ovary. *Am J Reprod Immunol* 1999;42:160–167.

Tanaka M, Kyo S, Kanaya T, Yatabe N, Nakamura M, Maida Y, Okabe M, Inoue M. Evidence of the monoclonal composition of human endometrial epithelial glands and mosaic pattern of clonal distribution in luminal epithelium. *Am J Pathol* 2003;163:295–301.

Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. *JAMA* 2004;292:81–85.

Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. *Science* 2017;355:1330–1334.

Tomasetti C, Marchionni L, Nowak MA, Parmigiani G, Vogelstein B. Only three driver gene mutations are required for the development of lung and colorectal cancers. *Proc Natl Acad Sci USA* 2015;112:118–123.

Tomasetti C, Poling J, Roberts NJ, London NR Jr, Pittman ME, Haffner MC, Rizzo A, Baras A, Karim B, Kim A et al. Cell division rates decrease with age, providing a potential explanation for the age-dependent deceleration in cancer incidence. *Proc Natl Acad Sci USA* 2019;116:20482–20488.

Tomasetti C, Vogelstein. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science* 2015;347:78–81.

Tomasetti C, Vogelstein B, Parmigiani G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. *Proc Natl Acad Sci USA* 2013; **110**:1999–2004.

Vercellini P, Vigano P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. *Nat Rev Endocrinol* 2014; **10**:261–275.

Vestergaard AL, Thorup K, Knudsen UB, Munk T, Rosbakh H, Poulsen JB, Guldberg P, Martensen PM. Oncogenic events associated with endometrial and ovarian cancers are rare in endometriosis. *Mol Hum Reprod* 2011; **17**:758–761.

Vinatier D, Cosson M, Dufour P. Is endometriosis an endometrial disease? *Eur J Obstet Gynecol Reprod Biol* 2000; **91**:113–125.

Vogelstein B, Kinzler KW. The path to cancer—three strikes and you're out. *N Engl J Med* 2015; **373**:1895–1898.

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. *Science* 2013; **339**:1546–1558.

Walankiewicz M, Grywalska E, Polak G, Korona-Głowniak I, Witt E, Surdacka A, Kotarski J, Rolinski J. The increase of circulating PD-1- and PD-L1-expressing lymphocytes in endometriosis: correlation with clinical and laboratory parameters. *Mediat Inflamm* 2018; **2018**:7041342.

Wang L, Zhao J, Li Y, Wang Z, Kang S. Genome-wide analysis of DNA methylation in endometriosis using Illumina human methylation 450 K BeadChips. *Mol Reprod Dev* 2019; **86**:491–501.

Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J et al. The origin and evolution of mutations in acute myeloid leukemia. *Cell* 2012; **150**:264–278.

Westin SN, Ju Z, Broaddus RR, Krakstad C, Li J, Pal N, Lu KH, Coleman RL, Hennessy BT, Klempner SJ et al. PTEN loss is a context-dependent outcome determinant in obese and non-obese endometrioid endometrial cancer patients. *Mol Oncol* 2015; **9**:1694–1703.

Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kaloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. *J Pathol* 2011; **224**:328–333.

Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kaloger SE et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. *N Engl J Med* 2010; **363**:1532–1543.

Wilson MR, Reske JJ, Holladay J, Wilber GE, Rhodes M, Koeman J, Adams M, Johnson B, Su RW, Joshi NR et al. ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. *Nat Commun* 2019; **10**:3554.

Wu L, Lv C, Su Y, Li C, Zhang H, Zhao X, Li M. Expression of programmed death-1 (PD-1) and its ligand PD-L1 is upregulated in endometriosis and promoted by 17beta-estradiol. *Gynecol Endocrinol* 2019; **35**:251–256.

Wu Q, Ding D, Liu X, Guo SW. Evidence for a hypercoagulable state in women with ovarian endometriomas. *Reprod Sci* 2015; **22**:1107–1114.

Wu S, Fatkhutdinov N, Fukumoto T, Bitler BG, Park PH, Kossenkov AV, Trizzino M, Tang HY, Zhang L, Gardini A et al. SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells. *Nat Commun* 2018; **9**:4116.

Wu Y, Basir Z, Kajdacsy-Balla A, Strawn E, Macias V, Montgomery K, Guo SW. Resolution of clonal origins for endometriotic lesions using laser capture microdissection and the human androgen receptor (HUMARA) assay. *Fertil Steril* 2003; **79**:710–717.

Wu Y, Bu F, Yu H, Li W, Huang C, Meng X, Zhang L, Ma T, Li J. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis. *Toxicol Appl Pharmacol* 2017; **315**:35–49.

Wu Y, Guo SW. Reconstructing cellular lineages in endometrial cells. *Fertil Steril* 2008; **89**:481–484.

Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jailwala P, Wang Y, Wang X, Ghosh S, Guo SW. Transcriptional characterizations of differences between eutopic and ectopic endometrium. *Endocrinology* 2006a; **147**:232–246.

Wu Y, Starzinski-Powitz A, Guo SW. Prolonged stimulation with tumor necrosis factor-alpha induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. *Fertil Steril* 2008; **90**:234–237.

Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. *Epigenetics* 2006b; **1**:106–111.

Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. *Fertil Steril* 2007; **87**:24–32.

Wu Y, Strawn E, Basir Z, Wang Y, Halverson G, Jailwala P, Guo SW. Genomic alterations in ectopic and eutopic endometria of women with endometriosis. *Gynecol Obstet Investig* 2006c; **62**:148–159.

Xiaomeng X, Ming Z, Jiezh M, Xiaoling F. Aberrant histone acetylation and methylation levels in woman with endometriosis. *Arch Gynecol Obstet* 2013; **287**:487–494.

Xishi L, Lei Y, Guo SW. Valproic acid as a therapy for adenomyosis: a comparative case series. *Reprod Sci* 2010; **17**:904–912.

Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E, Yin P, Milad MP, Confino E, Reierstad S, Innes J et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. *Biol Reprod* 2007; **77**:681–687.

Yan D, Liu X, Guo SW. Endometriosis-derived thromboxane A2 induces neurite outgrowth. *Reprod Sci* 2017; **24**:829–835.

Yan D, Liu X, Guo SW. The establishment of a mouse model of deep endometriosis. *Hum Reprod* 2019a; **34**:235–247.

Yan D, Liu X, Guo SW. Neuropeptides substance P and calcitonin gene related peptide accelerate the development and Fibrogenesis of endometriosis. *Sci Rep* 2019b; **9**:2698.

Yang W, Zhang Y, Fu F, Li R. High-resolution array-comparative genomic hybridization profiling reveals 20q13.33 alterations associated with ovarian endometriosis. *Gynecol Endocrinol* 2013; **29**:603–607.

Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. *Nat Commun* 2016; **7**:12484.

Zhang Q, Dong P, Liu X, Saguragi N, Guo S-W. Enhancer of Zeste homolog 2 (EZH2) induces epithelial-mesenchymal transition in endometriosis. *Sci Rep* 2017; **7**:6804.

Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. *Mol Cell Endocrinol* 2016a; **428**:1–16.

Zhang Q, Duan J, Olson M, Fazleabas A, Guo SW. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons. *Reprod Sci* 2016b; **23**:1409–1421.

Zhang Q, Liu X, Guo SW. Progressive development of endometriosis and its hindrance by anti-platelet treatment in mice with induced endometriosis. *Reprod Biomed Online* 2016c; **34**:124–136.

Zhang Y, Yang L, Kucherlapati M, Chen F, Hadjipanayis A, Pantazi A, Bristow CA, Lee EA, Mahadeshwar HS, Tang J et al. A pan-cancer compendium of genes deregulated by somatic genomic rearrangement across more than 1,400 cases. *Cell Rep* 2018; **24**:515–527.

Zhao B, Lin J, Rong L, Wu S, Deng Z, Fatkhutdinov N, Zundell J, Fukumoto T, Liu Q, Kossenkov A et al. ARID1A promotes genomic stability through protecting telomere cohesion. *Nat Commun* 2019; **10**:4067.

Zhou Y, Zeng C, Li X, Wu PL, Yin L, Yu XL, Zhou YF, Xue Q. IGF-I stimulates ERbeta and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis. *J Mol Med (Berl)* 2016; **94**:887–897.

Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. *Carcinogenesis* 1998; **19**: 1–27.

Zou Y, Zhou JY, Guo JB, Wang LQ, Luo Y, Zhang ZY, Liu FY, Tan J, Wang F, Huang OP. The presence of KRAS, PPP2R1A and ARID1A mutations in 101 Chinese samples with ovarian endometriosis. *Mutat Res* 2018; **809**:1–5.