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BACKGROUND: In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro.
These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicu-
lar organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of
tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro
models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their
application in the field of reproductive medicine and biology.

OBJECTIVE AND RATIONALE: Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific
questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the
existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better
solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where
organoid systems have been successfully utilized.

SEARCH METHODS: We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to
the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database:
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Testicular organoids

testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro,
germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous
tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria
were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), meth-
odology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organ-
ization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded.

OUTCOMES: The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted
number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this
method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are uti-
lized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to
investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific
cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid
strategies reported in other fields.

WIDER IMPLICATIONS: By way of appropriate research questions, we might use testicular organoids to deepen our basic understand-

ing of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.

Key words: testicular organoids / in vitro testicular models / 2D and 3D culture / spermatogonial stem-cell niche / Sertoli cells /
blood-testis barrier / in vitro spermatogenesis / male infertility / testis
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Introduction

Why do we need to model the testicular
microenvironment in vitro?

Male infertility is a multifactorial and complex disease which has been
reported to affect ~7% of all males (Krausz, 201 1; Nieschlag and
Lenzi, 2013). However, a recent study reported a prevalence of male
infertility in surveys of general populations range between 9% and
15.8% (Barratt et al., 2017). The reasons for infertility can be grouped
into sperm-production problems and blockage of sperm transport as
well as ejaculation disorders, and they have been associated with
chromosomal and gene diseases (e.g. Klinefelter's syndrome, Y-
chromosome deletions, Trisomy 21), undescended testis, infections,
torsions, varicocele, medicines, chemicals, radiation damage and or
unknown factors that need to be addressed in future studies (Krausz,
201 1; Nieschlag and Lenzi, 2013; Song et al., 2016).

Recently, it was stated that although the WHO criterion for nor-
mal sperm count is >15 million sperm/mL, ‘time to pregnancy’ stud-
ies reported a decline in fecundity even with sperm concentrations
between 30 and 55 million sperm/mL (Virtanen et al., 2017). Another
cross-sectional population study performed in the UK found that | in
0 men reported unsuccessful attempts to father over a time period
of 12 months, which is one of the criteria for infertility (Datta et al.,
2016). These studies, together with the reported decline in sperm
counts by 52.4% from 1973 until 2011 in men from North America,
Europe and Australia (Levine et al., 2017), highlight the need of novel
investigation methodologies.

Moreover, cancer and its treatment are often connected to
impaired fertility in humans, due to the cancer itself or due to the
gonadotoxic effects of chemotherapy (e.g. alkylating agents, radiother-
apy) (Jahnukainen et al., 2015). These therapeutic agents directly or
indirectly, by acting on somatic testicular cells, affect the spermatogon-
ial stem-cell (SSC) pool and will influence later fertility (Anderson
et al., 2015). While storage of sperm is nowadays a clinical routine,
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patients who are not able to produce sperm (e.g. prepubertal boys)
do not have this option yet. Therefore, novel studies on in vitro propa-
gation of SSCs and in vitro maturation of male germ cells, as well as
the development of decontamination protocols to separate cancer
from testicular cells in vitro, are needed to provide an option to pre-
serve future fertility in these patients (Jahnukainen et al., 2015; de
Michele et al. 2017b).

In this respect, research focused on sub- or infertility in men has
dramatically increased over the last 2 decades (Zhang et al., 2016). It
has led to an increasing number of new guidelines for toxicology tests
in the pharmaceutical industry focusing on the reproductive organs
and it has raised discussion about the effects of environmental pollu-
tants and their effects on fertility in animals and humans (Svechnikov
et al., 2014; Brannen et al., 2016). The search for gonadotoxic effects
of different compounds is however mostly restricted to animal
research due to missing robust in vitro systems (Chapin et al., 2016;
Brannen et al., 2016). Reproductive toxicology studies, often based
on animal experiments, require a relative large number of animals
and a long-term experimental research (Brannen et al., 2016), and an
in vitro system would provide more controllable and faster (e.g. by
way of high-throughput analysis methods) evaluation techniques.

The successful production of murine sperm in vitro using testicular
explant culture conditions, reported for the first time in 2011 (Sato
et al, 201 1a,b), has subsequently been reported by several research
groups (Arkoun et al, 2015; Chapin et al, 2016; Dumont et dl.,
2016; Reda et al., 2016). However, the system still lacks require-
ments enabling controlled monitoring of the biological pathways
needed to create a robust model to study all aspects crucial to the
spermatogenic process (e.g. SSC self-renewal and SSC niche forma-
tion and regulation). An in vitro methodology which shows robust
reproducible results concerning crucial aspects of spermatogenesis in
animals would therefore also be beneficial for future studies on
human spermatogenesis. Novel cell-culture methodologies estab-
lished nowadays in other fields of medical research, such as for
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example organoids, might provide new tools for research into gam-
etogenesis and its failures, which are missing today.

The organoid concept

Between the 1950s and 1980s, the term organoid had been used to
nominate cellular aggregations produced by the reorganization of
tissue-specific dissociated cells (Lancaster and Knoblich, 2014;
Clevers, 2016). Moscona et al. demonstrated that dissociated primary
cells from chicken embryos could self-organize into structures resem-
bling the histological architecture of the tissue from where these cells
were isolated (Moscona and Moscona, 1952; Weiss and Taylor,
1960). The self-reorganizational properties of dissociated primary
cells were fundamental in the creation of in vitro models to study the
patterns of cellular organization during development.

In the last decade, the term organoid has been applied to describe
3D organ-like structures with some organ-specific cell types, structure
and functionality. Organoids can be originated by differentiation of pluri-
potent embryonic stem (ES) cells, induced pluripotent stem (iPS) cells
or adult stem cells from adult tissues cultured in a supportive extracellu-
lar matrix (ECM) (usually Matrigel) which, together with morphogenic
and differentiation factors in the culture medium, controls their forma-
tion (Clevers, 2016; Huch et al., 2017). These structures have dimen-
sions up to one to two millimetres and their further expansion and
maturation is limited by the diffusion range of oxygen and nutrients as
they do not have a functional vascular system (Lancaster and Knoblich,
2014). Among the recently generated organ-like structures, researchers
have reported the formation of murine lingual (Hisha et al, 2013),
human brain (Lancaster et al., 2013; Quadrato et al., 2017), murine and
human gut (Sato et al., 2009; Drost et al., 2015), murine and human
prostate (Drost et al., 2016b; Chua et al., 2014), murine ovary (Laronda
et al, 2017), murine bladder (Shin et al, 2011), human vasculature
(Morgan et al., 2013; Zheng et al., 2012) and human liver (Takebe et dl.,
2013) organoids which exhibit distinct steps of development or func-
tional units of the respective organs. Therefore, organoids have been
shown to be suitable systems to model organogenesis and a useful tool
in the fields of regenerative medicine, drug discovery and gene therapy.

In this article, we propose to review the methodologies that have
most closely generated cellular organizations in vitro that model tes-
ticular architecture and functionality in vivo. Moreover, we will discuss
the application of testicular organoids in addressing key questions in
the field, such as SSC differentiation, proliferation and niche regula-
tion, by creating a rationale parallel with reported solutions in other
fields, where organoid systems have been utilized to answer specific
scientific questions that previous models could not help to resolve.

Methods

In order to elaborate a comprehensive review of the application of testicu-
lar organoids in basic and translational research in the field of reproductive
medicine and biology, we searched for the following terms in both
PubMed and the Web of Science database: ((((((((((((Testicular organoid)
OR (Seminiferous tubules AND three-dimensional culture)) OR (Sertoli
cell AND three-dimensional culture)) OR (Testicular cord formation
AND in vitro)) OR (Testicular morphogenesis AND in vitro)) OR (Germ
cell AND three-dimensional culture)) OR ‘in vitro spermatogenesis’) OR
(Testicular AND de novo morphogenesis)) OR (Seminiferous tubule AND
de novo morphogenesis)) OR Seminiferous tubule-like structures) OR

Testicular in vitro model [Title/Abstract]) OR (Male germ cell niche AND
in vitro)). The search resulted in the identification of 698 articles in
PubMed and 322 articles in Web of Science, with no restrictions to any
publishing year. The inclusion criteria was based on the relation with the
main topic (i.e. testicular organoids, testicular- and seminiferous-like struc-
tures as in vitro models), methodology applied (i.e. in vitro culture, culture
dimensions (2D, 3D), testicular cell suspension or fragments) and out-
come of interest (i.e. organization in vitro), which, together with the exclu-
sion of publications about grafting of testicular tissue and cells, germ-cell
transplantation and female germ-cell culture, resulted in the selection of
71 articles written in English. Moreover, additional relevant publications
related with the topics covered in the introduction (n = 30) and later in
the discussion (n = 61) were included in this review (Fig. I).

Which models have been used
to study testicular development
and physiology in vitro?

Testicular physiology has been investigated for the last century by
means of a broad range of 2D and 3D in vitro culture models. The 2D
and 3D culture methodologies described below are hierarchically repre-
sented in Tables | and II, along with the main outcomes in terms of cel-
lular organization and germ-cell proliferation and/or differentiation.

2D models

Using 2D models, testicular cells have been cultured on glass and
plastic surfaces of culture dishes in order to explore cell-to-cell inter-
actions between different testicular cell populations in vitro. Hofmann
et al. (1992) produced immortalized cell lines from murine peritubular
myoid, Sertoli, Leydig and germ cells, allowing the study of the interac-
tions between different cell types and ECM in 2D conditions in vitro
(Table I). Moreover, immortalized murine Sertoli, Leydig and germ
cells were utilized by Hung et al. (2015) to demonstrate that exposure
to terbufos (an organophosphate pesticide) leads to increased cell
death by apoptosis in all the studied cell populations.

Other researchers have cultured primary rat Sertoli and peritubular
myoid cells, either alone or combined in 2D conditions, and demon-
strated the importance of cell-to-cell and cell-to-ECM interactions in
Sertoli cell organization and the regulation of basement membrane
gene expression in vitro (Tung and Fritz, 1980, 1986; Hadley et dl.,
1985; Richardson et al., 1995; Kierszenbaum et al.,, 1986) (Table I).
More specifically, it was demonstrated that important proteins involve
in androgen traffic in the testis, such as androgen binding protein, were
greatly produced when Sertoli cells were co-cultured with peritubular
myoid cells (Tung and Fritz, 1980) or on an ECM produced by co-
cultures of these two cell types (Hadley et al, 1985). It was also
demonstrated that fibronectin, a protein present in the basement
membrane of the seminiferous tubules, was expressed in co-cultures of
Sertoli and peritubular myoid cells but not in monocultures of Sertoli
cells (Tung and Fritz, 1986; Richardson et al, 1995), revealing the
important interactions of these two cell types in testicular physiology.
Additionally, 2D cultures of rat primary testicular cells have also been
used to study proliferation responses of co-cultured peritubular myoid
and Sertoli cells (Schlatt et al., 1996). In this study, it was demonstrated
that increased Sertoli cell density resulted in lower rates of proliferation
by way of contact inhibition and that this effect could be counteracted
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Searching terms in PubMed and the Web of Science

Testicular organoid

Seminiferous tubules AND three-dimensional culture
Sertoli cell AND three-dimensional culture
Testicular cord formation AND in vitro

Testicular in vitro model

Male germ cell niche AND in vitro

Testicular morphogenesis AND in vitro

Germ cell AND three-dimensional culture

In vitro spermatogenesis

Testicular AND de novo morphogenesis
Seminiferous tubule AND de novo morphogenesis
Seminiferous tubule-like structures

Results

698 articles in PubMed

Inclusion criteria
* Importance to the topic
¢ Methodology applied
*  Outcome of interest

71 articles

61 articles on the

topics covered later ——>

in the discussion

322 articles in Web of
Science

Exclusion criteria

*  Grafting of testicular tissue
and cells

¢ Germ-cell transplantation
* Female germ-cell culture

30 articles on the

<€——— topics covered in the

introduction

162 articles

Figure | Searching methodology. Selected key words were searched in both PubMed and the Web of Science, resulting in 698 and 322 identified arti-
cles, respectively. After the analysis of all publications for the inclusion and exclusion criteria, 71 articles from the initial search were utilized in this review.
Relevant articles on the topics covered in the introduction (n = 30) and later in the discussion (n = 61) were also included in this review.

by FSH supplementation. In additional studies, under 2D culture condi-
tions, researchers have explored the effects of growth factors, cell-
signalling molecules and hormones in organization and metabolism of
rat (Kierszenbaum et al, 1986; El Ramy et al, 2005; Hoeben et dl.,
1999; Tung and Fritz, 1987), murine (van der Wee and Hofmann,
1999) and piglet (Saez et al., 1989) testicular cells in vitro (Table ).

Furthermore, 2D co-cultures of human germ cells have been uti-
lized to prove the importance of feeder cells such as Vero
(Cremades et al., 1999; Tanaka et al., 2003) or Sertoli cells (Tesarik
et al, 1998a; Sousa et al, 2002) and hormonal supplementation
(Tesarik et al., 2000, 1998b) in the progress of human spermatogen-
esis in vitro (Table I). Similar studies, where germ cells were co-
cultured with Sertoli cells on 2D surfaces, have been carried out using
rat (Iwanami et al., 2006; Vigier et al., 2004; Tres and Kierszenbaum,
1983) and buffalo (Xie et al., 2010) cells (Table ). Although progres-
sion in the spermatogenic process was observed by means of co-
cultures with Vero and Sertoli cells, no cellular arrangements resem-
bling testicular morphology were observed in these 2D cultures.

3D models

Cells and small fragments of tissue can also be cultured in supportive
3D systems in attempts to model the native arrangement and the
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interactions between cells and ECM. Organ-culture and the combin-
ation of dissociated cells with a supportive scaffold have been the
two most utilized 3D techniques to culture testicular cells in vitro
(Table II). As regard organ-culture, small testicular tissue fragments
can be cultured integrally, preserving the intrinsic histological organ-
ization of the testis. An example of an organ-culture system is the
hanging-drop method, where a fragment of testicular tissue is cul-
tured within a small volume of medium placed on the lid of a culture
dish. This method has been used to explore the effects of chemical
treatments in human testis (Jorgensen et al., 2014) and to study
human (Jorgensen et al., 2015) and murine (Potter and DeFalco,
2015) testicular development (Table Il). Another organ-culture sys-
tem is the air-liquid interface system, which consists of the culture of
a small testicular tissue piece on a supportive stand and in simultan-
eous contact with the culture medium and the atmosphere.
Steinberger et al. adapted the conditions described first by Trowell
(1954) to culture immature and adult rat testicular tissue (Steinberger
et al., 1964; Steinberger and Steinberger, 1965). The same principal
has been recently applied by different groups to promote in vitro
spermatogenesis using tissue fragments of immature (Suzuki and Sato,
2003; Sato et al., 201 la,b; Yokonishi et al., 2014; Dumont et al.,
2015; Arkoun et al., 2015; Dumont et al., 2016; Chapin et al., 2016;
Reda et al,, 2017; Rondanino et al, 2017) and adult murine (Sato
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et al., 2015), immature rat (Reda et al., 2016; Liu et al., 2016) and
calf (Kim et al,, 2015) testes. In these experiments the testis frag-
ments were placed on top of agar stands soaked with medium and
cultured in the air-liquid interface (Table II).

Lambrot et al. also used the air-liquid interface method, where a
membrane was used as a stand for tissue instead of agar blocks, to cul-
ture human foetal testis. The group reported a decreased number of
germ cells in the cultured human foetal testis after treatment with ret-
- inoic acid (Lambrot et al., 2006). In a similar study, where a membrane
© was also used as a stand to culture human prepubertal testicular tissue,
de Michele et al. (2017a) maintained spermatogonia proliferating for
139 days and reported the maturation of Sertoli and Leydig cells under
the same culture conditions, establishing an important model to study
the pubertal transition period in vitro. Moreover, using the same
methodology, Roulet et al. (2006) cultured human adult testicular frag-
ments in order to test germ cell proliferation and differentiation.
Although this research group could maintain the somatic microenviron-

Richardson et al. (1995), Schlatt et al. (1996), Hoeben et al. (1999) and El Ramy et al. (2005)

(1) Cremades et al. (1999), (2) Tanaka et al. (2003)
Tesarik et al. (1998a), Tesarik et al. (1998b), (1) Tesarik et al. (2000) and Sousa et al. (2002)

Tung and Fritz (1980), Hadley et al. (1985), Tung and Fritz (1986), Tung and Fritz (1987),

Tres and Kierszenbaum (1983) and Vigier et al. (2004)

Tung and Fritz (1986) and Schlatt et al. (1996)
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promised, probably as a result of poor homoeostasis between the tis-
sue and the medium. This is especially relevant for future long-term
cultures of human testicular fragments, where our understanding is still
less than that in the mouse, and where a homoeostatic balance
between the tissue fragments and the medium might be necessary to
mature the somatic microenvironment to the extent of promoting
germ cell differentiation.

The culture of testicular cells within a 3D supportive matrix is an
alternative approach to study testicular development and spermato-
© genesis in vitro. Suspensions of murine (Abu Elhija et al, 2012;
Stukenborg et al., 2008, 2009), rat (Reda et al., 2014) or rhesus mon-
: key (Huleihel et al., 2015) testicular cells within soft-agar resulted in

7-8 dpp primary germ cells and feeder fibroblasts
3-5 months old primary Sertoli and germ cells
Adult primary germ cells and Vero cell line

10 dpp primary Sertoli and peritubular cells

7-20 dpp primary Sertoli and peritubular cells

20-22 dpp primary Sertoli and peritubular cells
7 dpp primary testicular cells

7-20 dpp primary Sertoli and peritubular cells
20-35 dpp primary Sertoli and germ cells

Immortalized somatic and germ cell lines
7 dpp primary Sertoli and germ cells
Adult primary germ and Sertoli cells
Immortalized Sertoli cells

© 3D cellular aggregates of somatic and germ cells, demonstrating a
. beneficial effect in cell-to-cell interaction and ultimately in the pro-
gression of spermatogenesis in vitro (Table Il). Along the same lines,
other matrixes such as methylcellulose (mouse (Stukenborg et dl.,
2009); rhesus monkey (Huleihel et al., 2015)), collagen (mouse
(Khajavi et al., 2014; Zhang et al., 2014a); rat (Lee et al., 2006b);
human (Lee et al, 2007)), calcium alginate (calf (Lee et al., 2001);
human (Lee et al., 2006a)), poly(p,L-lactic-co-glycolic acid) (rat (Lee

Non-coated

surface

Sg, spermatogonia; PS, primary spermatocyte; RS, round spermatids; ES, elongated spermatids; N/A, not applicable; dpp, days post-partum.

Table | 2D culture methodologies used to study testicular physiology in vitro.

Culture methodology  Cultured cells/tissue

Coated
Surface
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Table Il 3D culture methodologies to study testicular physiology in vitro.

Culture methodology Cultured cells/tissue Organization Differentiation/ Species Study
propagation of germ
cells
Testicular Hanging-drop Foetal testis N/A Mouse  Potter and DeFalco (2015)
organ- Foetal testis N/A Decreased number of Human  Jorgensen et al. (2015)
culture gonocytes
Adult healthy or cancer testis N/A Germ cell proliferation Human Jorgensen et al. (2014)
Air-liquid interface 5 dpp testis N/A Sg—RS Mouse  Suzuki and Sato (2003)
0.5-5.5 dpp testis N/A Sg—Sp. Production of Mouse  Sato et al. (201 Ia,b), Yokonishi et al. (2014)
healthy and reproducible
offspring
Adult testis N/A Sg—RS Mouse  Sato et al. (2015)
2.5-7 dpp testis N/A Sg—ES Mouse  Arkoun et al. (2015), Dumont et al. (2015), Reda
et al. (2017), and Rondanino et al. (2017)
6.5 dpp testis N/A Sg—Sp Mouse  Dumont et al. (2016)
14 dpp testis N/A None Rat Steinberger et al. (1964)
12 dpp and adult testis N/A Sg/PS to PaS Rat Steinberger and Steinberger (1965)
5-7 dpp testis N/A Sg—RS Rat Reda et al. (2016) and Liu et al. (2016)
10- to 14-dpp testis N/A Sg—meiotic initiation Calves  Kim et al. (2015)
Foetal testis N/A Decreased number of Human Lambrot et al. (2006)
gonocytes
Prepubertal testis N/A Maintenance of Human  de Michele et al. (2017a)
spermatogonia
Adult testis N/7A Decreased number of Human Roulet et al. (2006)
meiotic and post-meiotic
germ cells
Bioreactor and  Bioreactor 8- or 20 dpp rats and adult N/A Generation of Ratand Perrard et al. (2016)
microfluidic human morphologically mature Human
devices spermatozoa
Microfluidic 0.5-5.5 dpp testis N/A Sg—Sp. Production of Mouse  Komeya et al. (2016)
system healthy and reproducible
offspring
Dissociated = Hanging-drop Adult testis Cellular aggregates Progression from diploid to  Human  Pendergraft et al. (2017)
testicular (Testicular Organoid) haploid germ cells
cells Soft matrixes Soft Agar Culture  7—10 dpp testicular cells Cellular aggregates Sg—ES Mouse  (I) Stukenborg et al. (2008), Stukenborg et al. (2009)
System Sg—RS (1) Review and Abu Elhija et al. (2012)
5 dpp testicular cells Cellular aggregates Sg—PaS Rat Reda et al. (2014)
13-33 months old testicular ~ Cellular aggregates N/A Rhesus  Huleihel et al. (2015) Review
cells monkey
Methylcellulose ~ 7-9 dpp testicular cells Cellular aggregates Sg—ES Mouse  Stukenborg et al. (2009) Review
Culture System 13-33 months old testicular ~ Cellular aggregates Sg—RS Rhesus  Huleihel et al. (2015) Review
cells monkey

Continued
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Table Il Continued

Culture methodology

Hard matrixes

Self-support

Matrigel

Collagen

Calcium alginate

PGAL

Decellularized
matrix

Sponges
Nanotubes
Cellular pellets
on air-liquid
interface
Rotation
Cultures

Cultured cells/tissue

18 dpp testicular cells
10 dpp testicular cells
7-10 dpp testicular cells
5-7 dpp testicular cells
7 dpp testicular cells

6 dpp testicular cells

20 dpp testicular cells

6 dpp testicular cells

18 dpp testicular cells
Adult testicular cells

3 dpp testicular cells
Adult testicular cells

18 dpp testicular cells

17-19 dpp (mouse) or 18

dpp (rat) testicular cells

Adult and |5-year-old (active

spermatogenesis up to
meiosis)

7 dpp testicular cells

7 dpp testicular cells

0.5-5.5 dpp testicular cells

New-born to adult testicular

cells

Organization

Cord-like formation
Cord-like formation
Cord-like formation
Cellular aggregates

Sertoli cell aggregates
Cord-like formation
Seminiferous tubule-like
structures (Testicular
Organoid)

Seminiferous tubule-like
structures

cyst-like structures
Cellular aggregates

Cellular aggregates
Cellular aggregates
Cellular aggregates
Cellular aggregates

Cellular aggregates
(Testicular Organoid)

Cellular aggregates
Cord-like formation
Seminiferous tubule-like
structures

Seminiferous tubule-like
structures

Differentiation/
propagation of germ
cells

Up to RS
Up to PaS
N/A
N/A

N/A

Sg—meiotic initiation
Maintenance of
proliferative

undifferentiated germ cells

Sg—PS

Sg—RS
Spermatocytes up to
presumptive spermatids

Gonocytes to presumptive

spermatids

Up to presumptive
spermatids
Spermatocytes up to
presumptive spermatids
N/A

Maintenance of

proliferative spermatogonia

None
N/A
Sg—RS

N/7A

Species

Rat
Rat
Rat

Mouse

Rat
Human

Calves
Human
Rat
Mouse

and Rat
Human

Rat
Rat
Mouse

Rat

Legendre et al. (2010)

Hadley et al. (1985)

Hadley et al. (1990) and Gassei et al. (2010)
Yu et al. (2009), Wegner et al. (2013) Protocol,
Harris et al. (2015), and Harris et al. (2016)
Gassei et al. (2008)

Zhang et al. (2017)

Alves-Lopes et al. (2017)

Zhang et al. (2014a)

Lee et al. (2006b)
Lee et al. (2007)

Lee et al. (2001)
Lee et al. (2006a)
Leeetal (2011)

Enders et al. (1986)

Baert et al. (2017a,b), Baert and Goossens (2017)
Protocol and Baert, Rombaut, and Goossens (2017)

Protocol

Reuter et al. (2014)
Pan et al. (2013)
Yokonishi et al. (2013)

Zenzes and Engel (1981)

Sg, spermatogonia; PS, primary spermatocyte; PaS, pachytene spermatocyte; RS, round spermatids; ES, elongated spermatids; Sp, sperm; PGAL, poly(p,L-lactic-co-glycolic acid; N/A, not applicable; dpp, days post-partum.
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et al., 2011)) and Matrigel (rat (Hadley et al., 1985, 1990; Gassei
et al., 2008, 2010; Legendre et al., 2010; Wegner et al., 2013; Zhang
et al., 2017; Alves-Lopes et al., 2017)) have been combined with tes-
ticular cells from the stated species to explore the potential in cellular
reorganization and germ cell differentiation offered by these 3D scaffolds
(Table 1I). Instead of utilizing the previously mentioned matrixes, other
researchers developed decellularized testicular matrixes to culture new-
ly seeded rat and human cells (Enders et al., 1986; Baert et al., 2015,
2017a,b; Baert and Goossens, 2017). In these studies, the presence of
native components of testicular ECM such as collagen, laminin and fibro-
nectin, and close to in vivo structural organization, was thought to better
guide testicular cells to reorganize in vitro. Furthermore, the utilization of
collagen sponges (Reuter et al., 2014) and carbon nanotubes (Pan et dl.,
2013) to explore the effect of structural and topographic clues in rat
testicular organogenesis in vitro was also reported, resulting in the form-
ation of tubule-like structures (Table Il). However, no germ cell differen-
tiation was reported in these studies.

Finally, cellular aggregates can themselves work as 3D scaffolds and
support cellular reorganization into testicular-like structures (Table II).
One example was shown in the experimental work carried out by
Zenzes et al. where dissociated rat testicular cells were placed in rota-
tion cultures to explore the effects of specific cell populations and tes-
ticular maturational stages in de novo tissue formation (Zenzes and
Engel, 1981). In another study, immature murine testicular cells were
allowed to form aggregates and were later cultured on top of agar
stands in an air-liquid interface which could maintain and promote the
initial steps of germ-cell differentiation (Yokonishi et al., 2013).

Nevertheless, the arrival of more challenging scientific questions will
impose a need to improve the existent in vitro models and create room
for the implementation of innovative culture techniques. The establish-
ment of novel approaches in the field of reproductive medicine and biol-
ogy might simply occur via the application of in vitro culture technologies
already being used in other areas such as bioprinting (Murphy and Atala,
2014; Vermeulen et al, 2017) or organoid cultures (Lancaster and
Knoblich, 2014), the latter of which is the focus of this review.

Testicular organoids

Up to now, a restricted number of research groups have reported and
characterized testicular organoids, as testis organ-like structures that
partially model testicular histology and physiology by way of reorganiza-
tion of dissociated testicular cells in vitro. Pendergraft et al. (2017)
reported the generation of a functional testicular organoid system by
co-culture of adult human SSCs, and immortalized human Leydig and
Sertoli cells in a hanging drop of medium supplemented with solubilized
human testis ECM. Although characteristic histological organization of
the testis was not recognized, the group reported the maintenance and
viability of the compact testicular organoids for 3 weeks and production
of testosterone with or without hCG stimulation, for the same period
of time. Moreover, a small fraction of diploid germ cells were reported
to transit to the haploid stage. The model was also utilized to create
dose—toxicity curves of chemotherapeutic drugs on testicular organoids,
leading the authors to suggest their system for preliminary toxicology
studies of new drugs (Pendergraft et al., 2017).

Recently, Baert et al. (2017a), in collaboration with our lab, described
the generation of human testicular organoids by seeding adult and
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| 5-year-old (with active spermatogenesis up to meiosis) testicular cells
on decellularized adult testicular matrixes as scaffolds. Despite the fact
that histological similarities with human testis were not detected over
the time in culture, the inoculated cells demonstrated the capacity to
remodel the scaffold and become reorganized in compact structures
capable of testosterone and inhibin B production as well as cytokine
secretion. Moreover, germ cells were proliferative for up to 4 weeks
and undifferentiated germ cells could be maintained for the same culture
period, suggesting this as a model to study undifferentiated germ cell
propagation and testicular toxicology in vitro (Baert et al., 2017a).

Lately, we also described a 3D model, the three-layer gradient sys-
tem that allows the reorganization of 20-day-old rat testicular cells
into testicular organoids after 7 days in culture (Alves-Lopes et dl.,
2017). These testicular organoids were mainly constituted by Sertoli
and germ cells organized in spherical-tubular structures. Moreover, a
functional blood—testis barrier was reported among neighbour Sertoli
cells and proliferative undifferentiated germ cells could be observed
on these structures up to 2| days. Furthermore, the similarity of the
results obtained with our model, in terms of germ cell maintenance
and blood-testis barrier integrity, to those obtained previously in
in vivo studies on the effect of retinoic acid and pro-inflammatory
cytokines in testicular physiology, led us to propose this as testicular
organoid model to search for unknown factors involved in SSC prolif-
eration and differentiation (Alves-Lopes et al., 2017).

Methodologies that most closely
generate testicular organoids

A clear improvement in testicular cell reorganization is recognized in the
transition from 2D to 3D culture conditions (Fig. 2). Although the majority
of 2D testicular cell co-cultures have resulted in cord-like structures where
aggregates of Sertoli cells are connected by ‘cables’ of peritubular myoid
cells (Tung and Fritz, 1986; Richardson et al.,, 1995; Schlatt et al., 1996;
Gassei et al, 2006), there are reports of the formation of seminiferous
tubule-like structures, designated ‘nodules’ and ‘protrusions’ when cells
were cultured for 21 (Tung and Fritz, 1987) and 49 days (Tung and Fritz,
1980), respectively (Fig. 2). These experiments led to seminiferous tubule-
like structures as result of overlapping and folded cell layers and the long
period of culture, but the organization of the Sertoli cells was not similar to
that observed in the epithelium of seminiferous tubules. However, Sertoli
cells were more organized and formed epithelial layers when co-cultured
on a layer of reconstituted ECM (Hadley et al., 1985; van der Wee and
Hofmann, 1999; Gassei et al., 2006) (Fig. 2). The effect of ECM in testicular
cell reorganization is even more pronounced when cells are co-cultured
within the matrix (e.g. Matrigel (Hadley et al., 1985; Legendre et dl., 2010;
Alves-Lopes et al, 2017), or collagen (Zhang et al., 2014a)). In these
experiments, Sertoli cells rearranged themselves into tubule-like structures
surrounded by newly produced basal lamina and/or peritubular cells, faster
than in 2D conditions (Fig. 2). Moreover, tight junctions and tight junction
protein components (e.g. claudin-11 and zonula occludens-1) were
detected between the reorganized Sertoli cells, which could also support
germ cells at different stages of differentiation (Fig. 2). Finally, the 3D sup-
port offered by the initial cell aggregate was found to be effective in the
generation of murine seminiferous tubule-like structures (Yokonishi et dl.,
2013). The 3D support given by the cellular aggregate itself was also
observed when new-born (8-10-day-old post-partum) and juvenile (18-25-
day-old post-partum) rat testicular cells were cultured in rotation and
allowed to form seminiferous tubule-like structures (Zenzes and Engel,
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Figure 2 Testicular cell organization in vitro varies with culture dimensions and time in culture. More complex cell associations are observed over
time in 2D conditions, but a clear improvement in organization is observed when going from 2D to 3D culture conditions in vitro. The latter condi-
tions facilitate cellular organization, and over time in culture they enable the appearance of characteristic testicular features such as formation of the
blood-testis barrier and spermatogenesis progression, in contrast to the cellular associations obtained in 2D conditions over the same period of
time. Some improvement in testicular cell organization is already observed when cells are cultured on a layer of reconstituted ECM (transition from
2D to 3D). Additionally, grafting of pellets or suspensions of cells embedded in extracellular matrix (ECM) under the skin of immunodeficient mice
has demonstrated a beneficial effect in cellular reorganization. Cultured in 3D conditions and over a long period of time, these testicular cells
become reorganized into testis-like tissue, leading to initiation and progression of spermatogenesis. Although the grafting techniques do not permit
the generation of testicular organoids under controlled conditions, important evidence, such as the use of high cell concentrations, the development
of vasculature and the roles of still unknown host morphogenic factors, might be applied to the development of testicular organoids exclusively
in vitro. The species utilized and the culture period of each experiment is specifically mentioned in the figure after the corresponding reference.

1981) (Fig. 2). Together, these observations suggest that cells can better
and faster reorganize themselves in testicular-like structures when a 3D
support is applied rather than a 2D system where more disorganized cellu-
lar constructs can be observed over the time of culture, with overlapping
and folding of cellular layers (Fig. 2).

Although 3D culture conditions favour the generation of testicular
organ-like structures, not all 3D models have allowed such reorganiza-
tion. The differences seem to be related to the nature of the scaffold, the
cell concentration and the maturational stage of the donor. As regards
the scaffold, the soft-agar culture system is an example of a 3D culture
condition where organized testicular-like structures are not observed
(Stukenborg et al., 2008; Abu Elhija et al., 2012; Reda et al., 2014). This
could be due to the fact that soft-agar does not contain some of the basal
lamina components such as collagen and laminin which are present in
reconstituted ECM such as Matrigel. These proteins provide testicular
cells with an environment close to those in vivo and spatial clues for cellu-
lar reorganization in vitro (Legendre et al., 2010; Hadley et al., 1985;
Alves-Lopes et al., 2017). The application of collagen sponges is another
example of a 3D scaffold which does not allow testicular cells to form
seminiferous tubule-like structures, most probably because the cells can-
not recycle the ECM and create an appropriate histological organization;
instead they just occupy the cavities of the scaffold (Reuter et al., 2014).
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Concerning cell concentration, Zhang et al. (2014a) demonstrated that
pellets of dissociated murine testicular cells embedded in a collagen
matrix could form seminiferous tubule-like structures. However, this
histological pattern was not observed when rat testicular cells were com-
bined with collagen at a concentration of ~2.5 million cells/mL (Lee
et al., 2006b). We also observed that higher cell concentrations benefits
the formation of better testicular organoids from 20-day-old rat cells
(Supplementary data in Alves-Lopes et al. (2017)). These findings suggest
that an increase in cell concentration might favour the formation of bigger
and more complex organoid structures in vitro, probably due to the
reduced distance between cells and consequently easier cell-to-cell and
paracrine communications. This might finally avoid the formation of more
disconnected and disperse cell aggregates as we observed in our in vitro
experiments (effect of cell concentration on testicular organoid formation
in Alves-Lopes et al., 2017).

Moreover, as mentioned before, Zenzes and Engel (1981) showed that
new-born and juvenile rat testicular cells can reorganize themselves in
seminiferous tubule-like structures in rotation culture. However, in the
same study, it was demonstrated that a mixture of all testicular cell types
from adult rats cannot regenerate in the same way showing that the matur-
ational stage of the donor has a role in testicular organoid formation. We
also observed this phenomenon in our studies, where we reported that
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5-8- and 20-day-old, but not 60-day-old, but not 60 days old, rat testicular cells
could reorganize in in vitro 3D culture conditions (Alves-Lopes et al., 2017).

A more advanced status of cellular reorganization and testicular function-
ality was achieved when pellets or suspensions of cells were embedded in
ECM and grafted under the skin or kidney capsule of immunodeficient mice
(Fig. 2). This methodology was applied to generate testicular-like structures
from immature piglet (Dufour et al., 2002; Honaramooz et al., 2007; Kita
et al., 2007; Dores and Dobrinski, 2014), marmoset monkey (Aeckerle
et al, 2013), lamb (Arregui et al, 2008), peccary (Campos-Junior et dl.,
2014), rat (Kita et al, 2007; Gassei et al., 2006, 2008, 2010) and murine
(Kita et al., 2007; Zhang et al., 2014b) testicular cells. In some of these
studies, testicular functionality was restored in these de-novo created
tubules, leading to initiation and progression of spermatogenesis up to
haploid-cell stages (Honaramooz et al., 2007; Arregui et al., 2008; Dores
and Dobrinski, 2014) (Fig. 2), which in some cases were shown to fertilize
donor oocytes, generate embryos (Campos-Junior et al., 2014) (Fig. 2) and
produce offspring (in mice Kita et al., 2007; Zhang et al., 2014b). The gen-
eration of testicular organ-like structures by grafting of cell suspensions
offers an important platform to study testicular development and function-
ality, with the possibility to include, exclude or genetically modify a specific
a cell population before grafting. However, if the study design needs a
more controlled environment, the unknown factors that the host provides
to the grafted cells can compromise the outcome of the experiment. In
such cases, an exclusively in vitro system that generates similar structures
would be preferable. However, translation of the results obtained by graft-
ing to a completely in vitro system has not been achieved so far. The use of
high cell concentrations, the development of vasculature and the role of
the still unknown host morphogenic factors seem to be key aspects in tes-
ticular cell reorganization under grafting conditions in vivo that are still miss-
ing in the majority of in vitro approaches applied.

Why do we need testicular
organoids?

Are the previous models not sufficient to address the scientific ques-
tions in the field? Although the in vitro methodologies used up to now
have provided important information about the production of ECM
and its influence on testicular reorganization, testicular toxicology
(Steinberger and Klinefelter, 1993; Rodriguez and Bustos-Obregon,
2000; Yu et al., 2009; Marcon et al., 2010; Jorgensen et al., 2014;
Harris et al., 2015, 2016; Goldstein et al., 2016) and germ cell differ-
entiation in vitro, novel techniques such as bioprinting (Murphy and
Atala, 2014; Vermeulen et al., 2017) and organoid cultures (Lancaster
and Knoblich, 2014) are arising and will back up the previous meth-
ods. Testicular organoids might provide a new and promising vari-
ation on already existing methods, helping researchers to answer
scientific questions in a simple and efficient way because of the easy
manipulation of cell suspensions, the relatively fast reorganization of
these structures and the controlled in vitro conditions (Alves-Lopes
et al., 2017; Baert et al., 2017a; Pendergraft et al., 2017).

One of the possible applications of testicular organoids is manipu-
lation of a gene of interest in a chosen cell population, which would
lead to less costly and laborious knockout strategies. In addition, use
of testicular organoids could be a solution in studies focusing on
genes that are lethal if knocked-out early in life, thereby making them
difficult if not impossible to study. One example in this regard is glial-
cell-line-derived neurotrophic factor (GDNF) and its receptor Gfra-
I, both of which are important in the SSC niche in the testis (Moore
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et al., 1996; Enomoto et al., 1998; Pichel et al., 1996). To overcome
this issue, testicular cell suspensions could be transfected by electro-
poration or viral infection, as already demonstrated in vivo (Yomogida
et al., 2002; Ikawa et al., 2002; Kanatsu-Shinohara et al., 2002) and
in vitro (Miura et al., 2007; Kanatsu-Shinohara et al., 2012; Li et dl.,
2013), or the site-specific gegnome modified by Cas9 RNA-guided
endonuclease (Cho et al., 2013; Cong et al, 2013), after being
allowed to form testicular organoids in culture. This strategy might
also be used to overcome the problems regarding low efficiency in
gene delivery in vivo and in organ-culture systems by simply transfect-
ing single cell suspensions before testicular organoid formation.

The 3D organization of organoids confers advantage over the con-
ventional 2D conditions because cell-to-cell and cell-to-ECM relation-
ships are better modulated. Following this approach, testicular
organoids could also be applied to explore testicular development by
tracking the reorganization process and the interactions between differ-
ent cell populations in a 3D environment mimicking the in vivo situation
better than 2D culture conditions (Fig. 2). Moreover, the influence of
distinct components of the SSC niche can be investigated by means of
testicular organoids because these systems allow the modification, inclu-
sion or exclusion of parts of this microenvironment, helping researchers
to understand their complex interactions. This strategy will give to
researchers a simpler and more efficient tool to identify unknown fac-
tors responsible for SSC propagation and its complex mechanism of dif-
ferentiation, in comparison with current models.

Future perspectives

Organoids as tools to answer scientific
questions

Organoids for different organs have been employed to study devel-
opment, stem-cell to stromal—cell interactions and mechanisms of
disease, or to experiment with personalized therapy strategies.
Among these models are the intestinal organoids, consisting of small-
intestine-crypt-villus-like structures generated from murine primary
adult stem cells (Sato et al., 2009) and more recently from human ES
and iPS cells (Spence et al., 201 I). These organoids can be genetically
manipulated by electroporation (Fujii et al., 2015) or viral (Drost
et al., 2016a) delivery of transgenes or by Cas9 RNA-guided endo-
nuclease (Drost et al., 2016a; Fujii et al., 2015) to study cell signalling
and stem-cell niche homoeostasis mechanisms of the intestinal crypt.

Another important improvement in the field of regenerative medicine
was the establishment of protocols to create artificial vasculature in vitro
(Morgan et al., 2013; Zheng et al., 2012). This is an important aspect
because lack of a vascular network limits the size of the organoids, since
nutrients can only reach the cells by diffusion. The presence of micro-
vasculature in organoids is also important as regards possible transplant-
ation of an in vitro generated organ. To address this aspect, researchers
thought to combine human umbilical vein endothelial cells (HUVECs)
(Takebe et al., 2013) or human dermal microvascular endothelial cells
(Heller et al., 2016) in the initial cell suspensions that later generated
vascularized liver-buds and buccal mucosa organoids.

In vitro models of diseases representing a situation closer to that
in vivo are another application of organoid technologies. The generation
of prostate organoids from healthy primary cells and cancer cells has
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been reported (Drost et dl., 201 6b; Chua et al., 2014). Moreover, gen-
etic modifications in commonly affected genes of colorectal cancer
have been induced in primary cells, by Cas9 RNA-guided endonuclease
(Drost et al., 2015) or viral transfection (Li et al, 2014), which were
subsequently cultured in a 3D system to form intestinal organoids.
Such approaches are promising in modelling cancer and its microenvir-
onment, along with other in vitro techniques and in vivo models.

In addition to the above, organoids formed from immature primary
cells or early-stage differentiated pluripotent stem cells give the
opportunity to study the initial steps of development of various
organs (Takebe et al., 2013; Lancaster et al., 2013; Takasato et dl.,
2015). Co-culture of hepatic endoderm cells differentiated from
human iPS cells with HUVECs and human mesenchymal stem cells in
Matrigel resulted in liver-bud organoids modelling early human liver
development in vitro (Takebe et al., 2013). Moreover, cerebral orga-
noids displaying distinct brain regions have also been generated by
the differentiation of human ES cells (Lancaster et al., 2013).
Although not completely as observed in vivo, these organoids demon-
strated distinct characteristics of human brain organogenesis, making
them valuable in the study of cerebral development in vitro. Another
example of a developmental study in vitro is the formation of kidney
organoids from human iPS cells in 3D culture conditions (Takasato
et al, 2015). The genetic transcriptional similarities between the
organoids generated in vitro and the human foetal kidney in the first
trimester make this system a promising tool to study cellular interac-
tions during development and to model human kidney diseases.

The described strategies have already been demonstrated to be
important in exploring physiology, pathology and the development of vari-
ous organs in vitro. In the next section, we outline potential experiments
by applying the concepts and methodologies described for the generation
of other organoids to study, among other things, SSC niche, testicular dis-
ease and development. In view of this, a testicular organoid simply consti-
tuted of Sertoli and germ cells will be used as the platform to design and
explain our proposed testicular organoid applications (Fig. 3).

Testicular organoids: exploring niche,
disease and developmental events

There is an urgent need to understand the SSC niche and the basic
mechanisms governing this microenvironment. This information
would provide valuable clues about the processes of SSC self-
renewal and differentiation in vivo that can afterwards be logically
translated to in vitro applications. The niche of SSCs is simpler and
more localized in small organisms such as Caenorhabditis elegans and
Drosophila melanogaster and, because of this, much more studied and
understood. In these organisms, SSCs are closely located to specia-
lized somatic cells in the apical compartment of the male gonads that
promotes SSCs self-renewal. SSCs differentiation starts when they
move away from these locations (Kimble and White, 1981; Tulina
and Matunis, 2001; Kiger et al., 2001). However, in mammals the
SSC niche is not restricted to one individual location, but rather dis-
tributed throughout the seminiferous tubules in the testis (Ogawa
et al., 2005; Yoshida et al., 2007; Ikami et al., 2015). Although a lot
remains unknown, studies using mice suggested that components of
the vascular system (Yoshida et al, 2007) and paracrine factors
secreted by stromal cells, such as GDNF (Meng et al., 2000; Kubota
et al., 2004) and colony-stimulating factor | (CSF-1) (Kokkinaki et al.,

2009; Oatley et al., 2009), might have an essential role in the SSC
niche in vivo by promoting SSC self-renewal.

An in vitro system that supports the SSC niche would be appreciated
in the study of SSC self-renewal and differentiation. For this purpose,
testicular organoids might offer a suitable model and a simple approach
to test candidate factors related to SSC self-renewal, such as paracrine
factors secreted in the SSC niche (e.g. GDNF and CSF-1), because dis-
tinct niche components could be reassembled and manipulated in vitro.
One possibility for testing these paracrine factors might be the gener-
ation of a testicular organoid system composed of Sertoli and SSCs cul-
tured in medium supplemented with growth factors of interest. The
potential of the tested growth factor in SSC self-renewal or differenti-
ation could be verified by the increased capacity of a organoid cultured
in testing conditions to support SSCs when compared with a organoid
cultured in control conditions (Fig. 3A).

As discussed above, the mammalian SSC niche is restricted to fac-
ultative regions of the seminiferous tubules and just a few cells from
the whole Sertoli cell population in the testis are associated with this
niche (Ogawa et al., 2005; Yoshida et al., 2007). To model this situ-
ation in vitro, an organoid system composed of wild-type Sertoli cells,
SSCs and a minimal fraction of green fluorescent protein (GFP)-
marked Sertoli cells over-expressing a candidate factor for SSC
self-renewal might be applied (Fig. 3B). Primary Sertoli cells could be
genetically modified by electroporation or viral delivery of transgenes,
or by Cas9 RNA-guided endonuclease and then co-cultured with
SSCs and wild-type Sertoli cells. In this hypothetical system, it would
be interesting to investigate first if there would be increased prolifer-
ation or self-renewal of SSCs particularly associated with the GFP-
positive Sertoli cells, and secondly if there would be decreased
self-renewal and/or initiation of differentiation of those germ cells
that would be progressively further from the GFP-positive cells and
harboured by the wild-type Sertoli cells (Fig. 3B).

Although Sertoli cells are necessary components in the SSC niche,
other players such as microvasculature are thought to have an import-
ant role in this microenvironment (Yoshida et al., 2007). In order to
investigate the role of microvasculature in the SSC niche, a testicular
organoid generated from wild-type Sertoli cells, SSCs and an endothe-
lial cell line, such as HUVECs, might be used to generate a capillary net-
work in a manner similar to that achieved for liver-bud and buccal
mucosa organoids (Takebe et al., 2013; Heller et al., 2016). In this the-
oretical system, one might explore the effect of endothelial cells in SSC
self-renewal by comparison of SSC proliferation rates between orga-
noids with and without capillary network (Fig. 3C). Moreover, the
indirect effect of endothelial cells on SSC self-renewal via expression of
a particular factor by Sertoli cells might also be investigated. To explore
this, a gene of interest would be associated with the expression of GFP
in Sertoli cells. Comparison of vascularized and non-vascularized orga-
noids would allow identification of the effect of endothelial cells on
expression of the investigated factor via GFP expression in Sertoli cells
and ultimately the effect on SSC self-renewal by way of the prolifer-
ation rate of these cells (Fig. 3D).

Testicular organoids might also be applied to study testicular cancer
in vitro. Organoids generated from Sertoli cells of carcinogenic testicular
tissues could be used to study the influence of cancer microenvironment
on germ cell proliferation in vitro. Moreover, the generation of testicu-
lar organoids from carcinogenic testicular tissue could help to identify
transformed signalling pathways and genetic modifications that lead to
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candidate factor for SSC self-renewal; (round arrow) proliferation or self-renewal of SSCs special associated with GFP-positive Sertoli cells; (bended
arrow) decreased self-renewal and/or initiation of differentiation. (C) Testicular organoid generated from Wt SCs, SSCs and endothelial cells (ECs).
(D) Tracking the indirect effect of endothelial cells in SSC self-renewal by the application of testicular organoids composed of Sertoli cells expressing
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unbalanced tissue homoeostasis in both carcinogenic and non-
carcinogenic cells of the testicular cancer microenvironment.
Understanding of the mechanisms regulating development is funda-
mental in the field of regenerative medicine and ultimately our knowl-
edge of testicular development might be applied to the generation
and differentiation of testicular cells in vitro. As demonstrated in
regard to other organs (Takebe et al., 2013; Lancaster et al., 2013;
Takasato et al., 2015), the application of human ES and iPS cells to
model initial stages of testicular development will potentiate studies
in this area, especially if access to human foetal material is restricted.
Several protocols to differentiate ES and iPS cells or transdifferentiate
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somatic cells into testicular somatic (ES (Bucay et al, 2009; Yang
et al.,, 2015; Kjartansdottir et al., 2015); transdifferentiation (Buganim
et al., 2012)) or germ-cell lines (ES (Bucay et al., 2009; Lim et dl.,
2014; Kjartansdottir et al., 2015); iPS (Panula et al., 201 |; Yang et al.,
2012; Cai et al., 2013); transdifferentiation (Medrano et al., 2016; Ge
et al., 2015)) have already been reported and sooner or later 3D co-
cultures of these early differentiated cells might produce testicular
organoids for the study of testicular development. However, more
standardized and reproducible protocols to differentiate pluripotent
stem cells into testicular cells are needed to generate consistent
results in terms of organoid formation and experimental outcomes.
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In addition to the above, human testicular organoids produced
from primary cells or derived from the differentiation of pluripotent
stem cells might also represent a platform to test the safety and effi-
ciency of future in vivo genetic therapies (Fig. 3E), which have already
been employed to rescue spermatogenesis in vivo in a murine model
(Yomogida et al., 2002; lkawa et al., 2002; Kanatsu-Shinohara et al.,
2002), representing one possible solution to the problem of the lack
of an in vivo model as regards the human testis.

Conclusions

The development of testicular organoids will bring the opportunity to
explore testicular physiology in vitro by means of simpler and more
convenient methodologies, as already demonstrated in other scien-
tific areas, allowing researchers to address more challenging ques-
tions. More complete comprehension of how the germ cell niche is
regulated will be essential to manipulate SSC self-renewal and differ-
entiation in vitro and extend these methodologies to clinical applica-
tions in reproductive medicine. To achieve this goal, the experimental
strategies outlined in this review might represent the first steps in the
application of testicular organoids in the search for unknown factors
ruling this microenvironment. Overall, testicular organoids do not
represent a revolutionary technology but instead an innovative plat-
form to reassemble testis-like structures on a small scale and in a
controlled in vitro environment that in the short term can be applied
to back up previous models in answering current and future scientific
interrogations in the field of reproductive medicine and biology.
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