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ABSTRACT: The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the ge-
nome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that
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function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate
and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell
fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on
the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several
recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and
multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development.
Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-
function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that,
together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to game-
tes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to
defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.

Key words: gametogenesis / transcription factors / infertility / germ cell / germ cell tumors / gene mutations / transcriptional profiling /

single-cell RNA-sequencing / pluripotent stem cells / in vitro differentiation

Introduction

Human embryo development, like that of other organisms, is charac-
terized by a series of cell-fate transitions from one cell type to an-
other, starting from pluripotent stem cells (PSCs) and progressively
specifying different lineages including extra-embryonic tissues, germ cell
and somatic cell lineages. The primordial germ cells (PGCs) arise early
in development as a small group of embryonic cells that will ultimately
give rise to sperm and oocytes, and pass on genetic information to
subsequent generations (Waters and Trainer, 1996; Donovan, [998;
Tang et al., 2016; Kobayashi and Surani, 2018). The correct functioning
of lineage specification is obviously critical; dysfunction during gameto-
genesis may lead to defects in germ cell development and/or function
underlying diverse genetic fertility syndromes (Krausz and Riera-
Escamilla, 2018; Xavier et al., 2021). In this review, we use the term
‘specification of cell fate or identity’ in reference to when a cell is com-
mitted to differentiate down a specific pathway if left in its normal
environment.

Germ cell development is dependent on the regulators of gene ex-
pression that function at multiple levels, including transcription factors
that orchestrate expression at the transcriptional level by binding to
enhancer or promoter regions of target genes. Following embryonic
genome activation, a series of transcription factors sequentially regu-
lates the activity of a host of genes involved in cell fate decisions, in-
cluding PGC specification and migration, sex determination, meiosis
and germ cell maturation. Concurrently, developmentally regulated
protein expression is also proceeding with coordination by RNA-
binding proteins, beginning at fertilization with the translation of mater-
nally inherited mRNA and continuing throughout germ cell develop-
ment, as evidenced by the number of RNA-binding proteins defined as
markers of late stages of germ cell lineages (Clark and Reijo Pera,
2006; Makar and Sasaki, 2020).

PGCs exhibit many properties of classic pluripotent cells, including
the property of pluripotency itself, and yet they are committed to the
germ cell lineage (Kuijk et al., 2011). The prime example or archetype
of a pluripotent cell type, namely embryonic stem cells (ESCs),
maintain their undifferentiated state via the activity of a defined set of
transcription factors, coordinately regulating those genes necessary for

reinforcing the pluripotent state, and suppressing lineage-specific genes
that would otherwise drive differentiation (Kim et al., 2008; Niwa,
2009; Ng and Surani, 2011). PGCs appear to employ a subset of
members of this set of genes while also adopting a distinct subset or
circuitry of transcription factors to define their identity and complete
three crucial developmental events: repress somatic programs; reac-
quire pluripotency; and reprogram genome-wide epigenetics. For ex-
ample, although human PGCs (hPGCs) are committed to the germ
cell lineage, they share expression of a subset of pluripotency genes
with human ESCs (hESCs), notably OCT4 (also known as POU5FI,
POU class 5 homeobox 1) and NANOG (Kehler et al., 2004; Hoei-
Hansen et al., 2005); however, other key pluripotency genes, such as
SOX2 (SRY-related HMG box-containing gene 2), are not expressed in
hPGCs (Perrett et al., 2008). Co-expression of pluripotency transcrip-
tion factors, as well as lineage specifiers, distinguishes hPGCs from all
other human embryonic cell types as well as mouse PGCs (mPGCs)
(Tang et al.,, 2015). To maintain cell identity, hPGCs likely require a
precise regulation/balance of pluripotency-related and lineage-specific
transcription factors to repress somatic differentiation and concurrently
activate germ cell programs.

A continuum of in vivo and in vitro models, based on human, mouse
and non-human primate cells, has been explored and leveraged to
study germ cell development, including the formation of PGCs, and
their specification from PSCs or ESCs (Li et al., 2020; Saitou and
Hayashi, 2021). While mouse models are extraordinarily useful given
their genetic malleability and ability to probe in vivo development of
engineered cells, the genetics of germ cell development has both simi-
larities and differences between species (Sasaki et al., 2016; Kojima
et al., 2017; Stirparo et al., 2018). For example, efforts to define a
core set of transcription factors sufficient for PGC specification have
succeeded in driving or even actively directing mouse cells further
down the germ cell lineage than what has been achieved in human cell
models (Niwa, 2009; Magnusddttir et al., 2013). Indeed, it is likely that
the microenvironment of the mouse gonad provides as yet undefined
signals to induce germ cell differentiation of PGCs; moreover, xeno-
transplantation and co-culture with somatic cells have provided a supe-
rior microenvironment for further development of in vitro-derived
PGC-like cells (Dominguez et al., 2014; Durruthy Durruthy et dl,
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2014; Ramathal et al., 2014). Finally, recent analyses of bona fide germ
cells in developing human embryos have provided insight into tran-
scription factor expression as well as their interactions and functions
during development (Otte et al., 2017; Wen and Tang, 2019;
Estermann and Smith, 2020; Li et al., 2020; La et al., 2021). Further
analyses of these experiments are likely to add to our library of tran-
scription factors potentially required for later stages of PGC function
and germ cell development.

Methods

PubMed database was used to search articles and reviews with the
following main keywords: human gametogenesis; transcription factors;
infertility; germ cell; germ cell tumors; infertility; gene mutations; single-
cell RNA-sequencing; pluripotent stem cells; in vitro differentiation; and
other key terms related to these subjects. The search period included
all publications until now (November 2021).

An overview of human
gametogenesis

A number of reviews have contrasted, analyzed and discussed gameto-
genesis across species including humans. Two excellent recent exam-
ples are the reviews of Li et al. (2020) and that of Saitou and Hayashi
(2021). In these reviews, in vivo and in vitro development are compared
and contrasted, and differences between the processes across species
are also highlighted. Here, we briefly provide an overview of human
gametogenesis that distills details in specification, migration, sex deter-
mination and male- and female-specific development and then we fo-
cus on transcription factors and their functions and associated
pathologies. Recent reviews and this work largely concur on major
aspects while providing different content; this is indicative of the field
of gametogenesis in vivo and in vitro maturing toward a common set of
foundational developmental and genetic principles.

In vivo, hPGCs are first identified in the posterior region of the yolk
sac, and begin to migrate to the genital ridge about 4 weeks post-
conception (McKay et al., 1953; Motta et al., 1997; Culty, 2009; Leitch
et al., 2013). Data from studies in the mouse indicate that signaling via
bone morphogenetic proteins (BMPs) released from the extraembry-
onic ectoderm and proximal endoderm, including BMP4, BMP8b and
BMP2, is essential for PGC specification (Lawson et al., 1999; Ohinata
et al., 2009). Analysis of human fetal ovary also demonstrates that the
expression of BMP2 and BMP4 may regulate the survival and migration
of hPGCs (Childs et al., 2010). In addition to BMPs, WNT (Wingless-
related integration site) signaling, which is an evolutionarily conserved
pathway in embryonic development, is required to activate the expres-
sion of many transcription factors that are indispensable in the specifi-
cation of PGCs (Aramaki et al., 2013). Finally, it is notable that a
recent study of non-human primates demonstrates that cynomolgus
monkey PGCs (cyPGCs) originate from the dorsal amnion instead of

the posterior epiblast as seen in murine development (Sasaki et dl.,
2016), suggesting the potential for distinct environmental cues for pri-
mate PGC specification versus other mammals.

Following specification, hPGCs gradually proliferate as they also gain
motility and initiate migration at 4-5weeks (Pereda et al., 2006;
Mamsen et al, 2012; Gomes Fernandes et al., 2018). Despite signifi-
cant differences in terms of migration rates and distances traveled,
PGC migration in all species has conserved elements (Pereda et dl.,
1998; Richardson and Lehmann, 2010; Grimaldi and Raz, 2020) includ-
ing: first, the acquisition of motility/initiation of migration; second, di-
rected migration; and third, termination of migration at the developing
gonad.

In terms of acquisition of motility and initiation of migration, once
PGCs are specified, specific molecular pathways direct the detachment
from neighboring cells and the extracellular matrix as a prerequisite to
motility. For example, studies in different organisms indicate that
downregulation of the cell-cell adhesion protein, E-cadherin, initiates
the migration process of PGCs.

Directed migration is regulated by attractive and repulsive cues.
Following initiation of migration, PGCs require cues for directionality.
PGCs from different organisms migrate along different paths while
interacting with diverse cell types and the extracellular matrix.
Immunohistochemistry and electron microscopy studies suggest that
hPGCs preferentially migrate along autonomic nerve fibers and
Schwann cells from the dorsal hind gut mesentery to the developing
gonad (Mollgard et al., 2010; Mamsen et al., 2012). The migration is
accompanied by a wave of chemical cues expressed by the surround-
ing somatic cells. Appropriate migration and survival of PGCs are
instructed by both an intrinsic transcriptional program and external
guidance cues. Stem cell factor, lipids and c-KIT (receptor tyrosine ki-
nase) as well as G protein-coupled receptor signaling are implicated as
attractive guidance cues for PGC migration to the genital ridge
(Molyneaux et al., 2003; Hoyer et al., 2005). Similar to mouse PGCs
(Hayashi et al., 2007; Saitou and Yamaji, 2012), migratory hPGCs
maintain a gene expression program characteristic of pluripotency,
with sustained expression of pluripotency factors such as OCT4 and
NANOG. hPGCs also maintain a broad developmental potential, retain-
ing the capacity for both germ cell and somatic cell differentiation.

Concerning termination of migration at the developing gonad, al-
though there is no evidence for sex-specific differences during PGC mi-
gration, once PGCs arrive at the target gonad, motility is lost as the
PGCs acquire sex-specific properties to contribute to gonad formation
with somatic cells. Studies in mouse PGC development indicate that a
change in cell adhesion may play a role in reduced mobility (Bendel-
Stenzel et al., 2000; Di Carlo and De Felici, 2000). However, the set
of proteins responsible and their precise modes of action have yet to
be identified and characterized in full. PGCs that fail to exit the nerve
branches at the gonadal site may continue to migrate to other organs,
such as the abdomen, adrenal glands, heart, lungs, and central nervous
system. If they are not eliminated by apoptosis, these stray germ cells
may give rise to germ cell tumors (Mamsen et al., 2012).
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Upon arriving at the genital ridge, PGCs interact with somatic cells and
form the bipotential gonads. Sex determination of the gonad is a pro-
cess by which the bipotential gonads differentiate into either testes or
ovaries at gestational weeks 6—7 onward (Baker, 1963; Jorgensen
et al, 2012). Interestingly, sex determination of germ cells is depen-
dent on external signals from the somatic environment rather than
solely on the sex chromosome composition (XX or XY). Studies in
mouse models confirmed this mechanism by demonstrating that XY
germ cells can develop into oocytes in female chimeric embryos and
XX germ cells can develop into prospermatogonia in male chimeric
embryos (Ford et al, 1975; Burgoyne et al, 1988; Palmer and
Burgoyne, 1991; Patek et al., 1991). In the XX testis, the XX germ
cells enter spermatogenesis and become prospermatogonia; however,
they are eliminated before differentiation into spermatogonia. In the
XY ovary, the XY germ cells enter meiosis and continue to differenti-
ate as the primary oocytes; however, their fertility depends on species,
genetic background and causes of sex reversal (Taketo-Hosotani et dl.,
1989; Heard and Turner, 2011). The developmental fate of the bipo-
tential gonad is dependent on a delicate balance of pro-testis and pro-
ovary pathways in the supporting somatic cell lineage. To initiate male
differentiation to the testis, the pro-testis pathway, characterized by the
SRY (Sex-determining Region on the Y chromosome)-SOX9 (SRY-related
HMG bOX-containing gene 9)-FGF9 (Fibroblast Growth Factor 9) gene net-
work, needs to be activated to induce differentiation of the somatic cells
into the male-specific Sertoli cells, and simultaneous repression of the
ovarian pathway. In females, continuous activation of pro-ovary path-
ways, characterized by the RSPO1 (R-Spondin|)-WNT4-B-catenin signal-
ing pathway, promotes differentiation of somatic cells to granulosa cells,
leading to ovarian development. Once the somatic sex of the gonad is
determined, sexual development of the rest of the embryo can progress.
In males, the testes produce testosterone and anti-Mdllerian hormone
(AMH) to induce the formation of other organs in the male reproductive
system and promote degeneration of the Miillerian duct. In females, the
ovaries produce estrogen, which triggers development of the uterus, ovi-
ducts and cervix from the Millerian duct. In response to somatic
sex-determining cues, germ cells in female embryos initiate oogenesis
and enter meiosis before birth. In contrast, male germ cells enter a
mitotic arrest and do not enter meiosis until after birth.

Most of what we know of female germ cell development in vivo derives
from studies in mice and rats with similarities observed in human fetal
development, as well. After arriving at the genital ridge, female germ cells
continue to proliferate through mitotic divisions with incomplete cytoki-
nesis, to form oogonia cysts. In response to retinoic acid signals, oogonia
cells then start meiosis and differentiate into primary oocytes (Bowles
et al, 2006; Koubova et al., 2006). Meiosis initiates with prophase |
stage, which is classically divided into five distinctive sub-stages based on
the conformation of chromosomes: leptotene (prophase begins, chro-
mosome start to condense), zygotene (synapsis begins), pachytene
(crossing over), diplotene (synapsis ends) and diakinesis (prophase ends,
nuclear membrane disintegrates). Primary oocytes arrest at the dictyate
stage and become quiescent until sexual maturation. Around this time,

the germ cell cyst breaks down, and the majority of oocytes that are not
surrounded by somatic cells succumb to apoptosis and/or autophagy
(Goldsmith, 1990; Pepling and Spradling, 2001; Escobar et al, 2010).
Surviving oocytes are assembled into primordial follicles with pre-
granulosa cells; the primordial follicles are the reservoir of germ cells for
the entire female reproductive life. At birth in humans, there are approx-
imately 400 000 primordial follicles, and this number gradually declines
with age (Block, 1953; Forabosco et al., 1991; Gougeon, 1996). During a
woman'’s reproductive life, approximately 400 follicles will undergo ovula-
tion. With the onset of puberty, oocyte meiotic maturation is initiated
by hormone stimulation, particularly by LH signaling molecules
(Mehlmann, 2005). LH releases oocytes from meiotic prophase arrest
and induces them to complete the first meiotic division and produce the
first polar body. The second meiotic division begins immediately but
pauses at metaphase, where the oocyte remains arrested until fertiliza-
tion. The second meiotic division is triggered by the penetration of the
sperm, and the second polar body will be formed at the same time.

Upon arriving at the genital ridge of a male embryo, male fetal germ
cells (FGCs) will not enter meiosis en masse. Instead, at this stage in
normal testis development, somatic cells and FGCs begin to differenti-
ate into seminiferous tubules with germs cells in the center and Sertoli
cells at the periphery (Wilhelm et al., 2007). Somatic cells will provide
the niche for developing FGCs. Spermatogenesis starts in early
puberty, and it is a continuous cellular differentiation process that can
be classified into four distinctive stages:

® Mitotic proliferation and maturation to generate spermatogonia
(SPG). Spermatogonia are composed of three subtypes of cells: Type
A (dark) cells (spermatogonia stem cells (SSCs) that do not undergo
active mitosis), Type A (pale) cells (SSC that undergo active mitosis
and divide to produce Type B cells), and Type B cells, which undergo
growth and become spermatocytes.

® Two rounds of meiotic division to form haploid spermatocytes (SPC).

® Morphological transformation of spherical SPCs to elongated sperma-

tids (SPT), a process also referred to as spermiogenesis.

Final maturation of SPT to spermatozoa and release into the lumen

of the seminiferous tubules, with the sperm passing through the epi-

didymis to undergo final maturation (Clermont, 1972).

These four processes are interdependent and regulated by the somatic
niche of the seminiferous tubules that is composed of three major cell
types: Sertoli, peritubular and Leydig cells. It is estimated that the
entire process of human spermatogenesis takes about 74 days (Heller
and Clermont, 1964; Amann, 2008).

Intrinsic expression pattern of
transcription factors in bona
fide developing germ cells

Considering the complexity of the development pathways of germ
cells in humans and the relation to the processes outlined above, it is
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clear that given the rarity of germ cells in developing human embryos
and the poor resolution of germ cell isolation methods, it is not possi-
ble to profile development and gene expression patterns at all stages.
In addition, bulk RNA-seq or microarray analysis cannot resolve the
heterogeneity within germ cells, which is essential for understanding
the precise trajectory in which development occurs (Raser and
O’Shea, 2005; Plass et al., 2018). Transcriptome profiling at the single-
cell level (i.e. single-cell RNA-sequencing: scRNA-seq) has been used
to overcome this limitation by comprehensively measuring mRNA lev-
els within all individual germ cells at a given developmental stage, and
has been applied to diverse biological systems to begin to explore the
potential molecular mechanisms for development (Junker and van
Oudenaarden, 2014; Raj et al., 2018; Genga et dl., 2019; Han et dl.,
2020). Since 2013, a handful of reports have characterized the tran-
scriptional dynamics during human germ cell development by analyzing
human fetal and adult tissues using scRNA-seq. These studies were re-
cently reviewed (Li et al., 2020). Here, we focus on transcription fac-
tors that potentially act as master regulators to activate the unique
gene expression program for each specific stage of germ cells (Fig. |;
Table I). We note that expression of a gene does not imply function;
moreover, it is highly likely that genes are expressed at stages other
than those that have been assayed and/or only briefly during
development.

The gene expression patterns of migrating and mitotic PGCs are simi-
lar in male and female germ cells. There is continued expression of
transcription factors associated with pluripotency and ESCs, such as
POUSF| /0CT4, NANOG and PRDM[4 (PR/SET domain 14) (Guo et dl.,
2015), although at different levels relative to pre-implantation epiblasts
(EPl) (Yan et al, 2013; Blakeley et al., 2015; Guo et al, 2015;
Petropoulos et al., 2016; Li et al, 2017; Stirparo et al., 2018; Zhou
et al., 2019). Concurrently, however, transcription factors that are di-
agnostic of germline cells, such as PRDMI(PR/SET domain |) and
TFAP2C (Transcription Factor AP-2 gamma), and somatic lineages, such
as BRACHYURY (T) and EOMES (eomesodermin), are also expressed in
the same cells (Guo et al., 2015; Tang et al., 2015). A recent finding
has also demonstrated that during hPGC specification, the classic en-
dodermal transcription factor marker protein, SOXI17 (SRY-related
HMG box-containing gene 17), is required for hPGC commitment in
an in vitro model of hPGC differentiation (Irie et al., 2015). Moreover,
scRNA-seq data of human gonadal PGCs in vivo confirmed the pres-
ence of SOXI7 in early migrating and mitotic PGCs, consistent with
its essential role in hPGC function (Guo et dl., 2015).

To shed light on the critical transcriptional regulation in sex determina-
tion, scRNA-seq analyses were performed on both germ cells and
their gonadal niche cells in multiple studies (Guo et al., 2015; Li et al.,
2017; Chitiashvili et al., 2020; Guo et al., 2021; Zhao et al., 2021).
Male sex determination initiates with activation of the Y chromosome-

specific transcription factor, SRY, a dominant determinant for testis dif-
ferentiation (Berta et al, 1990; Gubbay et al, 1990; Koopman et dl.,
1990; Sinclair et al., 1990; Kashimada and Koopman, 2010).
Transcription factors that regulate SRY function and have been shown
likely to be required for male sex determination include WT I (Wilms’
tumor gene), NR5A | (nuclear receptor subfamily 5 group A member
I), GATA4(GATA binding protein 4), FOG2(FOG family member 2)
and CBX2 (chromobox2) (Sekido and Lovell-Badge, 2008). Once SRY
is activated, it acts by upregulating the expression of SOX9, which
then activates a cascade including AMH, prostaglandins and steroido-
genic genes, to promote complete organogenesis of the testis in
humans and suppress the pro-ovary pathways (Koopman, 2001;
Kozhukhar, 2012). SRY is also a direct target of the WTI. WTI is a
zinc finger containing DNA-binding protein that activates the expres-
sion of SRY in the initial sex determination process in humans
(Shimamura et al, 1997; Hossain and Saunders, 2001; Matsuzawa-
Watanabe et al., 2003). Other transcription factors that are essential
for early testis differentiation include NR5AI, a highly conserved nu-
clear receptor transcription factor that interacts with SRY to regulate
SOX9 expression during the differentiation of Sertoli cells (Sekido and
Lovell-Badge, 2008; Rotgers et al., 2018; Stevant and Nef, 2019).
GATAA4, a zinc finger transcription factor, also cooperatively interacts
with NR5A| to regulate downstream genes critical for testis differenti-
ation (Viger et al., 2008). Similarly, FOG2, a zinc finger cofactor, is sug-
gested to be involved in testis determination through interaction with
Gata4, potentially by modulating the activity of GATA4, and regulating
the expression of SRY and SOX9 (Zaytouni et al., 2011). CBX2, a
component of the polycomb group (PcG) complex of regulatory pro-
teins, has been reported to act in testis determination by activating the
expression of NR5AI and SRY and repressing genes involved in fetal
ovarian development (Biason-Lauber et al., 2009). Transcription fac-
tors belonging to the doublesex and mab-3 related transcription factor
(DMRT) family, including DMRT I, 2 and 3, are found to be evolution-
arily conserved sex-determining transcription factors. DMRTI is a
male-specific transcription factor gene which functions at multiple
stages during male germ cell and Sertoli cell development to support
spermatogonial development by antagonizing FOXL2 (forkhead box
L2) activity and repressing the oogenesis program (Matson et dl,
2011). Mouse models found that DMRT [-mutant mice fail to develop
functional testes, and continued expression of DMRTI is necessary to
prevent female reprogramming in the postnatal testis (Matson et dl,
2011). Mutation of DMRT transcription factors causes abnormal testic-
ular formation and feminization (Ottolenghi and McElreavey, 2000).

Female sex determination is regulated by transcription factors associ-
ated with RSPO |-WNT4-B-catenin signaling pathways. FOXL2 is con-
sidered a gatekeeper transcription factor for ovarian identity
(Uhlenhaut et al., 2009; Pannetier and Pailhoux, 2010) and promotes
ovary development by blocking testis development through transcrip-
tional repression of SOX9 (Crisponi et al., 2001; De Baere et al., 2002;
Udar et al., 2003; Nallathambi et al., 2007; Hersmus et al., 2008; Shah
et al, 2009; Auguste et al, 2011). Consistent with its critical role in
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ovarian cell function, somatic mutations in FOXL2 are found in nearly
all cases of adult granulosa cell tumors of the ovary (Jamieson and
Fuller, 2012). Other genes, such as NR5AI, may regulate anti-testis
gene expression in the ovary; in 46, XX individuals, NR5A| synergizes
with B-catenin to upregulate the expression of anti-testis genes (e.g.
DAX 1 /NROB [ (Dosage-sensitive sex reversal-Adrenal hypoplasia congenita
critical region on the X chromosome, gene 1)) and possibly pro-ovarian
genes (Gummow et al., 2003; Hossain and Saunders, 2003; Jordan
et al., 2003; Mizusaki et al., 2003).

Upon arriving at the genital ridge of a male embryo, germ cells arrest
mitotically and transcription factors involved in cell cycle arrest, such
as EBF3 (EBF transcription factor 3), are specifically upregulated (Guo
et al, 2015). Several groups have profiled the transcriptional trajectory
across the entire spectrum of human adult spermatogenesis.
Transcription factors mainly involved in repressing gene expression
(e.g. E2F4 (E2F transcription factor 4), HMGAI (high mobility group
AT-hook 1)) are enriched in SSCs, consistent with their slow prolifera-
tion rate. After progressing to the differentiating SPG, cell cycle
activation-associated genes, such as KIT and Kl67, are significantly
upregulated to ensure active proliferation and differentiation. Later,
transcription factors involved in meiotic sex chromosome inactivation,
homolog synapsis and meiotic recombination, such as OVOLI (Ovo
like transcription repressor 1), SOHLH| (spermatogenesis and oogen-
esis specific basic helix-loop-helix 1) and DMRT]I, are upregulated to
initiate the meiotic gene expression program (Guo et al., 2017, 2018;
Hermann et al., 2018; Wang et dl., 2018; Sohni et al., 2019). As SPC
complete their differentiation into SPT, nearly all these transcription
factors are downregulated as the overall level of transcription gradually
declines (Wang et al, 2018), with the exception of CHD5 (chromodo-
main helicase DNA binding protein 5), which is highly enriched in early
SPT (Wang et al., 2018). This is probably because of its involvement in
the process of condensation of spermatid chromatin by regulating his-
tone hyperacetylation and the replacement of histones by transition
proteins in chromatin (Li et al., 2014).

After arriving at the genital ridge, female germ cells rapidly lose expres-
sion of pluripotency transcription factors, for example, POU5SFI/
OCT4 (Rajpert-De Meyts et al., 2004; Stoop et al., 2005). Oogonia
cells then undergo three sequential stages instructed by stage-specific
transcription factors to generate fertilization-competent oocytes: the
retinoic acid-responsive stage, the meiotic prophase stage and the folli-
culogenesis stage. Li et al. provided a thorough study to identify master
transcription factors for germ cell development in the fetal stage (Li
et al, 2017) using the ARACNe (algorithm for the reconstruction of
accurate cellular networks) algorithm. ARACNe identifies master regu-
lators of development by correlation of expression of transcription fac-
tors and their target genes across various cell types. Their analyses
indicate that ZNF208 (ZiNc Finger protein 208), YBXI (Y-BoX-binding

protein ) and ZNF791 might be critical for the female mitotic phase,
whereas HES6 (HES family BHLH transcription factor 6), MAEL
(Maelstrom spermatogenic transposon silencer 6), ZGLP| (Zinc finger
GATA-Like protein 1), ZNF362, ZBTBI | (ZiNc Finger and BTB domain
containing 11), HOXA5 (HomeobOX A5), HOXB6, HMGB3 (High
Mobility Group box3) and PBX| (PBX homeobox ) are the potential
transcriptional regulators in the retinoic acid-responsive phase. Meiotic
recombination transcription factor proteins LHX8 (LIM homeobox 8),
together with NR4A2, ZNF382, MGA (MAX dimerization protein),
RLF (RLF zinc finger), ZIC4 (Zic Family Member 4), PAXBPI (PAX3
and PAX7 binding protein), HSF2 (heat shock transcription factor 2),
DMRTA2 (DMRT like family A2) and L3MBTLI (L3MBTL histone
methyl-lysine binding protein ), are implicated in shaping the gene ex-
pression program for meiosis in the meiotic prophase (Guo et dl.,
2015). Then cells start to express master transcriptional regulators,
such as NOBOX (NOBOX oogenesis homeobox) and FIGLA (factor
in germline alpha, also known as FIGLa or FIGay), to initiate the unique
transcription network for folliculogenesis (Li et al, 2017; Wagner
et al., 2020; Ye et al., 2020). Human folliculogenesis is a complex pro-
cess comprising five key stages (primordial, primary, secondary, antral
and preovulatory follicles). The development of follicles is considered
to be associated with highly dynamic transcriptional regulation (Aquila
and De Amicis, 2014). Zhang et al., explored the dynamic transcrip-
tomes of the human oocyte, together with the neighboring granulosa
cells across the entire process of follicular development, and identified
potential master transcription factors for each stage using the
ARACNEe algorithm (Zhang et al., 2018). Interestingly, once cells begin
follicular development, the DNA methyltransferases DNMTI,
DNMT3A and DNMT3B are highly expressed at all stages of oocyte
development, suggesting that maintaining a high level of DNA methyla-
tion is essential for oocyte maturation.

Transcription factor mutations
associated with human
infertility

Despite enormous progress in human reproductive physiology, the un-
derlying causes of diverse reproductive diseases, especially infertility,
remains obscure. However, whole-exon sequencing or whole-genome
sequencing analyses has identified thousands of gene mutations or var-
jiants that may be related to human infertility. These results suggest
that most human reproductive diseases that were previously catego-
rized as idiopathic may be of genetic origin. We have summarized
mutations that were identified within transcription factors associated
with human reproductive diseases in Table II.

Disorders of sex development (DSD) are defined as congenital condi-
tions with a mismatch between sex chromosomes and gonadal/ana-
tomical sex. DSD are generally classified into three categories: Sex
chromosomes DSD; 46, XX DSD; and 46, XY DSD. Sex

220z Re 61 uo 1sanb Aq ZE8EFSY/E L £/€/8Z/010E/pANWNY/WO0"dNO"oILSPEDE//:SARY W) PAPEOUMOQ



324

Fang et al.

Table Il Transcription factor mutations reported to be associated with human infertility.

Disease

Associated transcription factors

Disorders of sex development

Swyer syndrome

Sex reversal

Denys-Drash
syndrome
Frasier syndrome

Gonadal dysgenesis

Cryptorchidism

Male infertility

NOA

NOA

NOA

SCos, MA

Female infertility
POI*

POI*

POI*

POI*

POI*

POI*
POI*

POI*

SRY

SOX9
SOX3

WTI

WTI

NR5AI
GATA4
FOG2
CBX2
DMRTI/2

HOXD13, SOX2, ESRI,
NR5AI, ZNF2 14,
ZNF215, ARX

DMRT I, PRDM9, ESR2, AR,
KDM5D, NROB I, NR5AI,
SOX9, NPAS2, PGR
SOHLHI

SOX8

YBXI, YBX2

FOXL2

LHX8

FOXO3A, FOXOIA

FIGLA

AIRE

NOBOX
SALL4

Description

Mutations in the SRY gene are the cause of 15% to
20% of cases of Swyer syndrome.

Copy number variants or mutations in the regulatory
regions of the genes lead to human sex reversal.

Heterozygous mutations in the zinc finger domain of
WT1 gene cause Denys-Drash syndrome.

A mutation in a splice donor site in WT] leads to
Frasier syndrome.

Mutations in these transcription factors are associ-
ated with gonadal dysgenesis.

Single gene mutations are associated with
cryptorchidism.

The paper screened OMIM database and identified
genes related to human male infertility- and NOA -

SOHLH | mutations are associated with loss of tes-
ticular reproductive capacity.

SOX8 mutations were found at increased frequency
in oligozoospermic men as compared with fertile/
normospermic control populations.

YBXI and YBX2 protein was markedly downregu-
lated in SCOS and MA samples.

FoxI2 appears predominantly in the ovary and was
first identified as mutated in a syndrome involving
risk of POI.

Preferentially expressed in germ cells and critical for
mammalian oogenesis.

Potentially causal mutations for POI.

Two plausible mutations in the FIGLA gene were
identified among 100 POI cases (2%), whereas none
were present among 304 ethnically matched
controls.

Mutations in AIRE gene are likely cause polyglandular
syndrome, which is associated with POI.

Homeobox mutation causes POI.

Two novel variants (c.541G>A (p. Val |8 Met) and

c. 2449A>G (p. Thr817Ala)) might be POl-associ-
ated gene variants.

Two novel heterozygous mutations p. P126S and p.
R370H were identified to be involved in POI.

References

Arboleda et al. (2014);
Baxter and Vilain (2013)

Croft et al. (2018a);
Croft et al. (2018b);
Gonen et al. (2018);
Vetro et al. (2015);
Laumonnier et al. (2002)
Pelletier et al. (1991)

Klamt et al. (1998);

El-Khairi and Achermann
(2012)

Tannour-Louet et al.
(2010)

Wang et al. (2018)

Nakamura et al. (2017)

Portnoi et al. (2018)
Choi et al. (2010)

Alikhani et al. (2017)

Schlessinger et al. (2010)
Crisponi et al. (2001)
De Baere et al. (2005)

Lakhal et al. (2008)

Gersak et al. (2004)

Harris et al. (2002)
Qin et al. (2007)

Watkins et al. (2006)
Lakhal et al. (2008)
Zhao et al. (2008)

McLaren et al. (2003)

Qin et al. (2007)
Wang et al. (2009)

Wang et al. (2015)

Continued
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Table Il Continued

ESRI gene variants are associated with both age at
natural menopause and premature ovarian failure.

The combination of TP63 and BMP15 alterations

Description References

Qinetal., (2012)
Weel (1999)

Bestetti et al. (2021)

contributes to the ovarian dysgenesis and early onset

Disease Associated transcription factors
POI* ESRI
POI TP63
POI.
POI LHX8, NOBOX, FOXL2,

SOHLH I, FIGLA

Combined functional and bibliographic analyses iden-
tified several novel or recurrent deleterious hetero-

Bouilly et al. (2016)

zygous mutations in POI patients.

"MA, maturation arrest; NOA, non-obstructive azoospermia; POI, premature ovarian insufficiency (also known as premature ovarian failure); SCOS, Sertoli cell-only syndrome.

chromosome DSDs include 45, X Turner Syndrome, 47, XX Y
Klinefelter Syndrome and 45,X/46,XY gonadal dysgenesis.

46,XX DSD includes disorders of ovarian development and disor-
ders of the synthesis of congenital adrenal hyperplasia. 46,XY DSD
includes disorders of testicular development, defects in testosterone
biosynthesis, and impaired testosterone action (Lee et al., 2006). The
estimated frequency of DSD is approximately | in 2000-5500 new-
borns (Hughes et al., 2007), and the frequency is as high as 1:200 to
1:300 if all genital congenital anomalies, including cryptorchidism and
hypospadias, are considered (Nordenvall et al., 2014). Genetic screen-
ing has identified many gene mutations associated with DSD, account-
ing for nearly 50% of the causality of cases; a few of the mutations are
found in transcription factors, as described below.

SRY is the founding member of the SOX class of transcription fac-
tors, several of which play critical roles at multiple stages of germ cell
development, including SOX8 (Portnoi et al, 2018), SOX9 (Vining
et al, 2021) and SOXI7 (Irie et al., 2015; Sybirna et al., 2019). DSD
are most commonly associated with mutations in SRY gene or malfunc-
tion of the SRY protein (McElreavy et al., 1992). For example, muta-
tions in the SRY gene are the cause of 15-20% of cases of Swyer
syndrome, which is characterized by failure in the development of the
sex glands (Baxter and Vilain, 2013; Arboleda et al., 2014). Mutations
within the DNA-binding HMG-domain of SRY often lead to gonadal
dysgenesis (McElreavey and Fellous, 1999).

SOX9 is a direct target of SRY and is essential for Sertoli cell devel-
opment in testis formation. Copy number variants or mutation in non-
coding regulatory regions upstream of the SOX9 gene lead to human
sex reversal, including XY male to female DSD and XX female to
male (Vetro et al., 2015; Gonen et al., 2018; Croft et al., 2018a,b).

SOX3 (SRY-related HMG box-containing gene 3) is a gene closely
related to SRY and SOX9. Loss-of-function mutations of SOX3 gene
are linked with mental retardation and growth hormone deficiency
(Raymond et al., 1999; Laumonnier et al., 2002). De novo duplication
of SOX3 gene or its upstream regulatory region has been reported in
DSD 46, XX male sex reversal (Sutton et al., 2011; Moalem et dl.,
2012; Haines et dl., 2015; Vetro et al., 2015; Grinspon et al., 2016).

WTI is a zinc finger transcription factor known to be associated
with kidney cancer. Heterozygous mutations in the zinc finger domain
of WTI gene cause Denys-Drash syndrome, characterized by renal
failure and 46, XY gonadal dysgenesis. A mutation in a splice donor
site in WTI, which results in the loss of a specific isoform of WTI,

leads to Frasier syndrome, which is characterized by 46, XY gonadal
dysgenesis (Pelletier et al, 1991; Klamt et al., 1998; Hossain and
Saunders, 2001).

NROBIIDAXI (nuclear receptor subfamily 0, group B, member
| /DSS-AHC critical region of the X chromosome, genel) encodes an
orphan nuclear receptor. Duplication of DAX| has been reported to
be associated with 46, XY DSD (Baumstark et al, 1996; Sanlaville
et al., 2004).

NR5AI is associated with a wide range of reproductive anomalies,
including 46, XY gonadal dysgenesis (El-Khairi and Achermann, 2012).

GATA4 is often linked to congenital heart defects. However, a re-
cent study identified a familial case of a heterozygous mutation in the
conserved N-terminal zinc finger domain of GATA4. Three of the fam-
ily members present 46, XY DSD (Lourenco et al., 201 ). A 35-kb de-
letion downstream of GATA4 was also discovered in a 46, XY
complete gonadal dysgenesis patient with no evidence of heart disease
(White et al., 201 1).

FOG2 is suggested, by human sequencing analysis, to play roles in
testis determination. Two cases of 46, XY gonadal dysgenesis, are
reported to bear translocations that included the FOG2 locus on chro-
mosome 8 (Finelli et al., 2007; Tan et al., 2012). Missense mutations in
the FOG2 gene are also identified in two independent cases of 46, XY
gonadal dysgenesis (Bashamboo et dl., 2014).

CBX2Presence of 46, XY gonadal dysgenesis in a girl is reported to
be associated with loss-of-function mutations in the human CBX2
gene (Biason-Lauber et al., 2009).

DMRT1/2 deletion of chromosome 9 (9p), which contains DMRT |
and DMRT2 genes, is associated with 46, XY DSD. It is suggested that
gonadal dysgenesis may result from the combined hemizygosity of
DMRTI| and DMRT2 (Raymond et al, 1999; Ledig et al, 2012;
Buonocore et al., 2019).

Many male infertility syndromes result from large chromosomal dele-
tions, translocations or aneuploidies, often involving the sex chromo-
somes. Klinefelter syndrome (karyotype: 47, XXY) is the most
common chromosomal aberration, detected in up to 14% of infertile
males with azoospermia. Characterization of deletions in the Y chro-
mosome, which lead to male infertility, allowed identification of the
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founding member of the DAZ (deleted in azoospermia) family of RNA-
binding genes required for spermatogenesis (Reijo et al., 1995). More
recently, many genetic infertility syndromes have been associated with
single-gene mutations, some of which are mentioned above in the con-
text of their role in germ cell development. While mutations in any in-
dividual gene contribute to a small number of infertility cases, the
overall importance of transcriptional regulation in the appropriate de-
velopment of germ cell lineages is underscored by the number of these
syndromes that are characterized by transcription factor mutations.

DMRT is infrequently mutated or deleted in patients with nonob-
structive azoospermia (NOA) (Lopes et al., 2013; Tewes et al., 2014),
defined as no sperm in the ejaculate owing to failure of spermatogene-
sis and the most severe form of male infertility.

DAXIINROBI DAXI| mutations cause X-linked adrenal hypoplasia
congenita and hypogonadotropic hypogonadism (Muscatelli et al.,
1994; Zanaria et al., 1994; Jadhav et al, 2011), human syndromes
which are characterized by hormonal imbalances leading to azoosper-
mia. DAX| mutations have also been identified in sporadic cases of
NOA, with pathogenic mutations leading to impaired function of the
protein (Wang et al., 2018).

NR5AI regulates a large number of steroidogenic enzymes and
other genes critical for male germ cell development. Mutations in
NR5A| are associated with several male infertility syndromes including
cryptorchidism (Tannour-Louet et al., 2010), which is a condition in
which one or both of the testes fail to descend from the abdomen
into the scrotum. Characterization of the NR5A [ gene in infertile males
found missense mutations in [—4% of men with azoospermia to severe
oligozoospermia. Oligozoospermia is characterized by low sperm
count, usually defined as fewer than 15 million sperm per millilitre of
semen.

SOHLH| encodes a germ cell-specific transcription factor acting in
both males and females that is required for spermatogonia differentia-
tion, spermatocyte production and correct testis morphology in
mouse models (Ballow et al., 2006; Barrios et al., 2012; Suzuki et dl.,
2012; Rossi, 2013; Toyoda et dl., 2014), as well as oogenesis (Pangas
et al., 2006; Toyoda et al., 2014; Shin et al., 2017). Mutations that are
found in a subset of patients with NOA impair the transcriptional ac-
tivity of SOHLHI (Choi et al, 2010; Nakamura et al., 2017), likely
contributing to the defect in normal spermatogenesis in these patients.

HSF2 encodes a testis-specific transcription factor required for sper-
matogenesis and seminiferous tubule formation in male mice (Wang
et al., 2003, 2004). An investigation of HSF2 in patients with idiopathic
azoospermia identified deleterious mutations in less than 1% of
patients. However, one of these mutations caused not only loss-of-
function of the transcriptional activity of the protein, but also a
dominant-negative effect on the wild-type allele, underscoring a precise
requirement for this pathway in spermatogenesis (Mou et al., 2013).

TAF4B (TATA box-binding protein-associated factor 4B) is predom-
inantly expressed in the testis relative to other organs in the body. A
non-sense mutation that results in truncated TAF4B proteins is identi-
fied as a disease locus in two unrelated consanguineous families suffer-
ing from azoospermia and oligozoospermia (Ayhan et al., 2014). The
truncated protein has reduced DNA binding activity and weakened

interaction with TAFI2, which is essential for DNA binding at the
core promoters of a subset of genes (Gazit et al., 2009).

ZMYNDI5 (zinc finger MYND-Type containing protein 15) acts as
a histone deacetylase-dependent transcriptional repressor essential for
spermiogenesis and male fertility. A mutation that leads to premature
termination of the protein is associated with azoospermia. The trun-
cated domain of the protein is implicated in signal transduction (Yan
et al., 2010).

There is growing evidence that genetic mutations are present in as
many as 10% of female infertility conditions, including ovulatory disor-
ders (e.g. Kallmann syndrome), chromosomal abnormalities (e.g.
Turner’s syndrome), endometriosis, pelvic adhesions, tubal abnormali-
ties and hyperprolactinemia. We summarize mutations in transcription
factors that are associated with a small subset of female infertility con-
ditions, including premature ovarian insufficiency (POI), also known as
premature or primary ovarian failure, (characterized by a loss of ovar-
ian function before the age of 40years), and uterine leiomyomata, a
benign smooth muscle tumor in the uterus.

FOXL2 is one of several forkhead domain-containing transcription
factor genes involved in female germ cell development (Gersak et al.,
2004). It is expressed in ovarian follicular and stromal cells and acts as
a lineage-determining regulator of ovarian differentiation. FOXL2 was
first identified as containing the causative mutation in blepharophimo-
sis, ptosis and epicanthus inversus syndrome, a facial development syn-
drome characterized by POI (Crisponi et al., 2001). Subsequently,
FOXL2 mutations have been identified in other female infertility syn-
dromes, including sporadic cases of POI (Harris et al., 2002; De Baere
et al., 2005; Nallathambi et al., 2007).

FIGLA is a female-specific transcription factor that acts early in oo-
cyte development to initiate the expression of key genes required for
folliculogenesis (Li et al., 2017; Wagner et al., 2020; Ye et al., 2020).
FIGLA is a germ cell-specific basic helix-loop-helix transcription factor
required for follicle formation in mice (Soyal et al, 2000; Hu et dl,
2010). Studies of women with POlhave identified mutations in FIGLA,
which disrupt its interaction with transcriptional co-regulators (Zhao
et al., 2008; Bouilly et al., 2016).

NOBOX is a homeodomain-containing transcription factor which
has also been shown to be required for folliculogenesis and oocyte-
specific gene expression in mouse models (Rajkovic et al, 2004).
Mutations of NOBOX have been found in up to 6% of sporadic cases
of POl in women. The resulting amino acid substitutions in the home-
odomain or transactivation domain lead to impaired transcriptional ac-
tivity (Qin et al., 2007; Bouilly et al., 2016).

NRS5AI is essential for both male and female germ cell develop-
ment. Mutations in NR5A[ are associated with POI (Philibert et dl,
2010).

SALL4 (SAL-like 4) encodes a putative zinc finger transcription fac-
tor that plays an important role in the maintenance of pluripotent
stem cells and the development of oocytes. A genetic study focused
on Chinese women with non-syndromic POlhas identified two
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probable gene mutations associated with the occurrence of POI
(Wang et al., 2009).

FOXOIAI3A (forkhead box ol A/3A) is expressed in the ovary and
thought to play roles in ovarian development. Causal mutations were
identified in POI patients, although the pathological role is yet undeter-
mined (Watkins et al., 2006).

MEDI2 (medicator complex subunit 12) is a well-known causal
gene for uterine leiomyomas. Approximately 60% of patients with
uterine leiomyomas have somatic MED |2 mutations in some form, in-
cluding missense, insertion and deletion. Most of the mutations are lo-
calized to exon 2 of the MEDI2 gene, suggesting that this domain is
the major functional domain contributing to the genesis of uterine leio-
myomas (Halder et al., 2015; Heinonen et al., 2017; Ajabnoor et dl.,
2018).

Transcription factors as
diagnostic markers for
germ cell tumors

Human germ cell tumors (GCTs) are neoplasms presenting in the
gonads, primarily in the testes. The transcriptome of GCTs is highly
similar to authentic FGCs; thus, GCT cell lines are frequently used as a
model to study the function of FGCs (Irie et al., 2015). GCTs can be
broadly categorized into seminoma and non-seminomatous GCTs
(Oosterhuis and Looijenga, 2005; Vasdev et al, 2013). Seminoma
GCTs grow and spread more slowly and are sensitive to chemother-
apy and/or radiation therapy. Non-seminomatous GCTs are divided
into four subtypes: embryonal carcinoma, yolk sac carcinoma, chorio-
Compared with seminoma, non-
seminomatous GCTs are very variable in phenotype and prognosis.
Non-seminomatous GCTs tend to grow faster, have an earlier mean

carcinoma and teratoma.

age at the time of diagnosis, and have a lower 5-year survival rate
(Litchfield et al., 2016; Costa et al, 2017; Shen et al, 2018).
Identification of molecular signatures to differentiate subtypes of GCTs
is therefore crucial for determining prognostication and subtype-based
selection of treatment. Thus, a number of studies have been con-
ducted to identify signature genes for each subtype, and transcription
factors are promising to be useful as distinct biomarkers for different
categories of GCTs (Alagaratnam et al., 201 |; Litchfield et al., 2017).
GCTs are thought to originate from FGCs since pluripotency tran-
scription factors are highly expressed in the precursor lesion of GCTs.
Master transcription factors for pluripotency, namely OCTH4,
NANOG, SOX2 and LIN28 (Lin-28 homolog A), are key markers of
certain types of GCTs, implicating their roles in maintenance of these
malignant cells in the growth of this tumor (Skakkebaek, 1972, 2002;
Looijenga et al, 2003; Cheng et al., 2004; Hart et al., 2005; Hoei-
Hansen et al., 2005; Cheng et al., 2007; West et al., 2009; Gillis et dl.,
2011). Clinically, these pluripotency factors are emerging as diagnostic
markers for both testicular and ovarian GCTs (Gillis et al., 2011).
Immunohistochemistry studies in primary samples have suggested
OCT4 and NANOG as sensitive and specific markers for identifying
GCTs (Jones et al., 2004; de Jong et al., 2005; Richie, 2005; de Jong
and Looijenga, 2006; Jung et al., 2006). However, these two

transcription factors alone do not provide the specificity necessary to
distinguish between seminomatous and non-seminomatous tumors
(Ulbright and Young, 2005). Recent gene expression profiling and im-
munohistochemistry analyses have suggested that the combination of
expression patterns of multiple transcription factors may serve as a
feature to differentiate seminomatous and subtypes of non-
seminomatous GCTs (Santagata et al., 2007). For example, seminomas
are found to be positive for OCT4 and NANOG and negative for
SOX2, whereas embryonal carcinomas are positive for all three pluri-
potency markers. Besides pluripotency transcription factors, other cru-
cial transcriptional regulators of FGC development are also indicated
as diagnostic markers for GCTs. For example, the expression pattern
of SOXI7, a critical regulator of hPGC specification, can also distin-
guish seminoma from embryonal carcinoma when combined with
SOX2 (Nonaka, 2009). Immunohistochemistry of TFAP2C, another
essential transcription factor for germ cell development, has also been
evaluated for the diagnosis of multiple subtypes of GCTs (Pauls et al.,
2005).

Core transcriptional network
for hPGC specification
identified by in vitro
differentiation

Although both mutations linked to infertility and gene expression in
various stages of human germ cell development contribute to identifi-
cation of genes that act at specific stages of development, functional
analysis is necessary to validate their developmental roles and pinpoint
underlying mechanisms. Recent developments in stem cell biology and
gene editing provide an opportunity to recapitulate human germ cell
development in vitro and to functionally dissect genetic requirements.
A key step in developing in vitro gametogenesis is identifying and char-
acterizing genetic determinants in a robust model for germ cell specifi-
cation. While it is clear that in vitro-derived germ cells lack important
characteristics of authentic FGCs (notably, the ability to efficiently de-
velop into gametes in vitro), in vitro gametogenesis provides a viable
system to explore the core transcriptional machinery for germ cell
specification.

Numerous studies have contributed to protocols for directing germ
cell differentiation from hPSCs, starting from both hESCs and human
induced pluripotent stem cells (hiPSCs). Currently, human primordial
germ cell-like cells (RPGCLCs) can be induced using rationally designed
cocktails of growth factors and small molecules that have emerged
over the years (Kee et al., 2006, 2009; Easley et al., 2012; Irie et al.,
2015; Sasaki et al., 2015; Sugawa et al, 2015; Jung et al, 2017;
Yamashiro et al., 2018; Murase et al., 2020), or induced by ectopic ex-
pression of genes associated with germ cell development, especially
transcription factors (Kee et al., 2009; Qiu et al., 2013; Yu et al., 2014;
Irie et al., 2015; Medrano et al., 2016; Panula et al., 2016; Jung et dl.,
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2017; Fang et al., 2018; Kojima et al., 2021). To induce maturation and
more advanced differentiation in vitro, hPGCLCs are often co-cultured
with somatic cells (Park et al., 2009; Lin et al., 2014; Yamashiro et dl.,
2018). In addition, xenotransplantation assays have been extensively
applied to promote in vivo maturation of in vitro-derived germ cells.
Two recent review articles have summarized progress and strategies
of in vitro gametogenesis (Li et al., 2020; Saitou and Hayashi, 2021).

Delineation of the conditions and factors required to promote in vitro
PGC differentiation have set the stage for genetic studies that can
probe the function and hierarchies of transcription factors during
hPGC specification (Fig. 2). Several transcription factors which are usu-
ally involved in lineage specification during embryogenesis have been

reported to be repurposed in PGCs to form a specific transcriptional
network that may act to safeguard human germ cell fate by maintaining
pluripotent status while repressing differentiation. In response to
WNT (Kojima et al, 2017) and ACTIVIN signals, the mesoderm
specifier EOMES activates SOX/7, an endoderm specifier, which in
turn upregulates PRDM|. Deletion of EOMES in hPSCs significantly
impacts their competence toward hPGCLC differentiation (Chen
et al., 2017; Kojima et al., 2017). SOXI7 can also be induced directly
by BMP signaling to activate germ cell programs: conversely, SOX/7-
null hESCs cannot undergo hPGCLC specification (Irie et al., 2015;
Tang et al., 2015). The trophoblast marker GATA3 is an immediate ef-
fector of the BMP pathway and regulates SOX/7 and TFAP2C.
Accordingly, GATA3 null mutations significantly decreased hPGCLC in-
duction efficiency in response to BMP signals (Kojima et al, 2021).
PRDM | is a transcriptional repressor that acts as one of the key signa-
ture genes for germ cell fate (Ohinata et al., 2005; Irie et al., 2015;
Kobayashi et al., 2017). PRDM/ function is tightly controlled by
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Figure 2. The core transcriptional network in human pluripotent stem cells and primordial germ cells. Arrows with pointed tips
represent activation, and arrows with vertical line tips represent inhibition. In pluripotent stem cells, FGF2, WNT and ACTIVIN signaling pathways
are essential to activate the gene expression program for pluripotency. In response to the signals, OCT4, SOX2 and NANOG are activated and
form a core transcriptional network that suppresses the somatic and germline gene expression program. Once human pluripotent stem cells (hPSCs)
start to differentiate toward germline, WNT3, ACTIVIN and BMP4 signals activate EOMES and GATA3, which then activate the expression of a few
transcription factors essential for germ cell development, including SOX|17, TFPAP2C and PRDMI. Moderate expression of pluripotency transcrip-
tion factor OCT4 is also critical for human germ cell development. Upon differentiation, the expression of OCT4 is gradually reduced, and the ex-
pression of its functional partner in hPSCs, SOX2, is diminished. Instead, OCT4 partners with PAX5 in human primordial germ cells (hPGCs) to

activate the expression of PRDMI.
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multiple transcription factors to repress somatic differentiation during
the process of hPGCLC specification; in PRDM I-deficient or PRDM |-
knockdown cells, germline differentiation potential is significantly im-
paired, and somatic lineage genes are de-repressed (Lin et al., 2014;
Sasaki et al., 2015). Part of the role of PRDMI protein is to suppress
SOX2 expression and consequently inhibit neuronal differentiation di-
rectly. A study that examined hPGCLC specification in TFAP2C™/~
cells found that TFAP2C acts upstream of PRDM | and plays a dominant
role in repressing somatic programs in hPGCLCs (Kojima et al., 2017).
Another study used single-cell sequencing in TFAP2C™"~ cells during
hPGCLC specification and confirmed that TFAP2C functions upstream
of both PRDM| and SOX|7, acting to prevent cells from adopting so-
matic fates and thus safeguard germ cell fate (Chen et al., 2019).

In addition to transcription factors that act in specifying lineages in
development, pluripotency transcription factors are important in germ
cell development. One of the unique features of hPGCs compared
with other cell types of the body during development is that they
share with hPSCs the expression of several pluripotency genes, includ-
ing a pluripotency master regulator OCT4/POUSF|. In both mouse and
human embryo development, OCT4 is initially expressed in all blasto-
meres of the embryo; subsequently, expression is restricted to the plu-
ripotent stem cells of the inner cell mass. During gastrulation OCT4
level is maintained in epiblast cells and after gastrulation OCT4 expres-
sion is confined exclusively to germ cells (Scholer et al., 1990; Scholer,
1991; Yeom et al, 1996; Nichols et al., 1998; Pesce and Scholer,
2001). Mouse embryos depleted of OCT4 fail to form an inner cell
mass and the cells are committed to the trophoblast lineage (Nichols
et al., 1998); However, conditional knock out of OCT4 in mouse PGCs
leads to apoptosis of PGCs rather than cell fate change to the tro-
phectodermal lineage (Kehler et al, 2004), suggesting that OCT4 is
playing distinct roles in these two distinct cell types. To dissect the
roles of OCT4 in hPSCs and hPGCs, Fang et al. (2018) compared
genome-wide binding of OCT4 in hPSCs and hPGCs (the latter from
human fetal testis samples). They discovered that OCT4 repressed
neuronal differentiation in both hPSCs and hPGCs, while it regulated a
unique set of genes during germ cell differentiation by switching part-
ners from SOX2 to PAXS5 (paired box 5). In hPSCs, OCT4 and SOX2
interact and form a protein complex to cooperatively bind and regu-
late target genes in order to activate or maintain pluripotency (Herr
and Cleary, 1995; Nichols et al., 1998; Wegner, 1999; Niwa et al.,
2000; Avilion et al., 2003). As hPSCs begin to differentiate toward a
germline fate, the expression of SOX2 is diminished and OCT4
switches functional partners to PAX5 as germ cells are specified. The
PAX5-OCT4 complex functions in activation of PRDM/ expression
and other genes implicated in PGC specification. PAX5 null mutations
have significantly reduced PRDM| expression and impaired germ cell
potential in hPSC xenotransplants in vivo. Hence, the PAX5-OCT4-
PRDMI proteins function as a genetic switch in the transition from a
pluripotent state to germline (Fang et al., 2018). PRDM |4, another hu-
man pluripotency gene, is also critical for the acquisition and mainte-
nance of the hPGCLC-competent state (Sybirna et al., 2020); it
functions to activate OCT4 expression and to upregulate PRDM/ (Chia
et al., 2010). Loss of PRDM 4 function results in significantly reduced

efficiency of in vitro differentiation and an aberrant transcriptome of the
resultant hPGCLCs (Sybirna et al., 2020).

Overexpression of SOXI7 leads to the generation of hPGCLCs
without BMP induction, suggesting that SOXI7 is at the top of the
transcriptional hierarchy for hPGCLC specification and is sufficient for
human germ cell fate acquisition (Irie et al., 2015). Although a major
role of SOXI7 is to activate TFAP2C and PRDM I, forced expression of
TFAP2C could not generate hPGCLCs, even in conjunction with
PRDM | overexpression (Kobayashi et al., 2017). These results suggest
that while TFAP2C is indispensable for hPGCLC specification, it is insuf-
ficient on its own for germline induction. Recent work reported that
the GATA family of transcription factors (GATA2/3), combined with
SOX17 and TFAP2C, act as a minimum requirement to replace BMP
signaling and confer germ cell fate on incipient mesoderm-like cells
(iMeLCs) (Kojima et al, 202l). In total, these genetic studies of
hPGCs in vitro begin to allow the construction of a network of tran-
scription factors that are involved in hPGC specification and matura-
tion (Fig. 2).

Murine and human germ cells
are characterized by
evolutionarily distinct
transcriptional networks

Prior to recent advances in stem cell biology and sequencing technolo-
gies, our understanding of germ cell development relied almost solely
on animal models. However, germline commitment occurs within a
limited window of embryo development, when the morphology of em-
bryos and the timing of germ line specification diverges significantly be-
tween different species, including mice and humans (Sybirna et al.,
2019) (Fig. 3). Notably, mouse embryos develop as an egg cylinder,
and mouse PGCs (mPGCs) are clustered in the proximal epiblast
around the time of primitive streak formation (Tam and Behringer,
1997; Anderson et al., 2000; McLaren, 2003). Human embryos pre-
sent as a bilaminar disc and, based on the studies in non-human pri-
mates, hPGCs probably arise prior to primitive streak formation from
the dorsal amnion, which is physically separate from the posterior epi-
blast (Behringer et al, 2000; Rossant, 2015; Sasaki et al., 2016;
Kobayashi et al., 2017). Given such major developmental differences in
terms of timing, shape and cell origin, it is not surprising that the intrin-
sic transcriptional network required for PGC emergence also has di-
vergent components and functions. In mPGCs, the Prdm|, Tfap2c and
Prdm14 proteins constitute a core transcriptional network that is es-
sential for PGC specification in vivo (Ohinata et al., 2005; Yamaji et al.,
2008; Weber et al, 2010) and sufficient to induce germ cell fate
in vitro (Magnusdottir et al., 2013; Nakaki et al., 2013). In contrast, the
expression of PRDM/4 in humans is strongly downregulated from
hPSCs to hPGCs (Sugawa et al, 2015), and SOXI7 has instead
emerged as the critical determinant for hPGC specification (Irie et al.,
2015). Pluripotency genes OCT4 and NANOG are re-expressed in both
mPGCs (Murakami et al., 2016) and hPGCs (Guo et al., 2015; Tang
et al., 2015), and SOX2 is absent in hPGCs (Lin et al., 2014) although
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Figure 3. Differences in transcription factor expression between murine and human germ cells. E, embryonic day; ICM, inner cell
mass; WK, week. Green marks the genes specifically expressed in mouse germ cell development, and red marks the genes specifically expressed in

human germ cell development.

it is required for mouse PGC survival and proliferation (Campolo
et al, 2013). In addition, the mesoderm specifier gene T/Brachyury is
essential for robust activation of Prdm/ and Prdml4 in mPGCs
(Aramaki et al., 2013) but this role is replaced by another mesoderm
gene, EOMES, in hPGCs (Chen et dl.,, 2017; Kojima et al., 2017). The
co-expression of pluripotency genes and lineage specifier genes persists
to the sex determination stage when PGCs differentiate to spermato-
gonia and oogonia in both mice and humans.

The expression of pluripotency genes also differs during germ cell
development in mice and humans. In male mice, expression of OCT4
persists as cell fate transits from PGCs to the undifferentiated SPG
stage, and expression is downregulated once cells enter meiosis
(Pesce et al., 1998; Tadokoro et al., 2002). However, OCT4 expres-
sion, specifically isoform OCT4A (translated from transcript variant 1),
is more restricted during male development in humans, being confined

to hPSCs and hPGCs. In female mice, the expression of OCT4 is
downregulated by the onset of meiotic prophase and then re-activated
after birth in oocytes within primary follicles and at the onset of follicu-
logenesis (Pesce et al., 1998; Anderson et al., 2007). In humans, the
number of OCT4 positive cells peaks by gestational week 8 and dimin-
ishes after week 9, as oogonia enter meiosis (Kerr et al, 2008).
NANOG has a similar expression pattern to OCT4 (Hoei-Hansen et al.,
2005). Once FGCs arrive at the gonads and progress toward meiosis,
pluripotency-related transcription factors undergo significant downre-
gulation and are diminished in all adult reproductive tissues.

The FOXO subclass of the forkhead box transcription factors are
key regulators of mouse reproduction (Brosens et al., 2009). FOXO03 is
required to suppress primordial follicle activation in females as FOX03-
null female mice display age-dependent infertility (Castrillon et al.,
2003; Hosaka et al, 2004), and FOXOI! is essential for SSCs
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maintenance and the initiation of spermatogenesis in males (Goertz
et al, 2011). While FOXO! expression in spermatogonia and granulosa
cells is conserved between humans and mice (Richards et al., 2002;
Liu et al., 2013), FOXO3 is not expressed in primordial oocytes in
humans (Tarnawa et al., 2013), suggesting that other members of the
FOXO transcription factor family may replace its function. FOXO6,
which has been identified as an upregulated gene in human oocytes by
scRNA-seq, may be a potential candidate for this substitution of
FOXO3 function.

A unique transcriptional
network defines human germ
cells

The maintenance of cell identity in FGCs requires the repression of so-
matic lineages in concert with the activation of germ cell programs
(Figs 2 and 4). Of note, human FGCs are defined by a unique tran-
scriptional network that comprises germ cell-specific genes together
with somatic lineage specifiers and pluripotency genes. How these
transcription factors, which are master regulators for various cell types,

function differently from their canonical roles in driving germ cell fate is
an intriguing and fundamental question in the field of human germ cell
developmental genetics. One hypothesis is that transcription factors
work in different protein complexes to perform cell-type-specific roles.
In support of this, Fang et al. (2018) observed that OCT4 switches
partners from SOX2 in hPSCs to PAX5 and PRDMI proteins in hu-
man FGCs (Fang et al., 2018). While continuing to repress differentia-
tion toward ectoderm, importantly in human FGCs, OCT4 shifts its
binding from pluripotency-related genes to germline-specific genes to
activate germ cell fate, coincident with the switch in activity of the re-
spective OCT4 complexes.

An alternate but not necessarily mutually exclusive hypothesis is that
the delicate balance of different transcription factors defines germ cells.
Lineage specifiers that belong to the three germ layers and trophecto-
derm (SOXI17, EOMES, PAXS5 and GATAs), as well as pluripotency
proteins (OCT4, NANOG), are all expressed in human FGCs and
function as drivers of the germ cell lineage, as demonstrated by diverse
functional studies. Thus, these master regulators of differentiation and
pluripotency must be regulated to modulate their canonical functions
(Fig. 4). For example, while the SOX/7 gene encodes a classical endo-
derm specifier and plays a critical role in normal hPGC specification,
over-expression of SOX/7 beyond a PGC-competent window favors
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the expression of endoderm genes rather than direction toward a
germ cell fate (Kobayashi et al., 2017). In response to hPGC specifica-
tion, the dosage and actions of these transcription factors must be bal-
anced so that cell identity extends beyond pluripotency but is not co-
opted toward any specific somatic lineages. It is likely that other germ
cell determinants are activated to inhibit further somatic lineage differ-
entiation and reinforce commitment of cells to the germline. For ex-
ample, as a transcriptional repressor, PRDMI activity in hPGCs
represses expression of somatic lineage genes (Irie et al., 2015; Sasaki
et al,, 2015). In support of this, a recent study demonstrated that high-
dosage overexpression of SOX/7 in hPSCs leads to aberrant expres-
sion of endoderm markers, which could be rescued by simultaneously
providing a comparable dose of PRDMI protein (Kobayashi et dl.,
2017). Given the importance of PRDM|[ in hPGCs, its activation may
be safeguarded by multiple transcription factors to assure its appropri-
ate expression to maintain germ cell identity.

The gap between hPGCLCs and
bona fide hPGCs and beyond

Despite advances in our knowledge of transcription factor function in
PGC specification, in vitro-derived hPGCLCs do not progress further
down the germ cell lineage efficiently and do not readily enter or com-
plete meiosis to produce functional germ cells. Accordingly, gene ex-
pression analysis of in vivo hPGCs from developing human embryos has
revealed clear differences with hPGCLCs (Table IIl) (Gkountela et dl.,
2013, 2015; Tang et al., 2015; Chen et al., 2018; Sybirna et al., 2020).
Most notably, late-stage hPGC markers, such as DAZL (deleted in azo-
ospermia), VASA/DDX4 (DEAD-box helicase 4), and PIWILI (Piwi like
RNA-mediated gene silencing 1), are not activated in hPGCLC models
(Irie et al., 2015) suggesting a lack of activation of necessary transcrip-
tion factors to induce the transcriptional program of later germ cell
stages in vitro. Indeed, a time-course analysis of early- versus late-
gestation cyPGCs found that the gene expression signature of
hPGCLCs is more similar to early-stage PGCs than later-gestation
PGCs, which have been most commonly profiled from human samples
(Sasaki et al., 2016). Several transcription factors enriched in expression
in ‘late’ cyPGCs, such as RNFI7 (ring finger protein |7) and KRBOX/
(KRAB Box domain containing 1), lack expression in hPGCLCs, and
are known to function in late-stage germ cell development.

The wealth of expression data now available from hPGCs in vivo, as
well as different models of hPGCLC generation, might enable the unbi-
ased identification of new transcription factors that may drive hPGC
specification beyond the current state achievable in vitro (Gkountela
et al., 2015; Chen et al.,, 2018). We have identified transcription fac-
tors whose expression is induced in hPGCs or hPGCLCs and found
several notable transcription factor classes present in vivo that are not
activated in vitro (Table Ill). For example, DMRT-family transcription
factors are known to play a role in sex determination in many organ-
isms, and both DMRTI| and DMRTC2 are found in hPGCs (Guo
et al, 2015), but are not expressed in hPGCLCs. Consistent with their
well-known role in embryonic development, many homeobox-
containing genes, including both classic Hox cluster transcription

factors as well as other homeodomain-containing transcription factors,
such as ALX4 (ALX homeobox 4), EMX1/2 (empty spiracles homeo-
box 1/2), ESXI| (ESX homeobox 1), SIX1/2 (Sineoculis homeobox
homolog |/2) and LHX2/8 (LIM-homeodomain protein 2/8), are pre-
sent in hPGCs but not hPGCLCs. This enrichment of homeodomain
transcription factors is somewhat surprising given that repression of
homeobox genes is a well-known feature of developing PGCs, so this
may reflect contamination from somatic cells. Finally, some members
of other transcription factor classes, such as PAX and SOX-domain
transcription factors, are active in in vivo but not in vitro models of
PGCs. Different gene expression profiles could be linked to different
developmental timing (or different development trajectories between
in vitro differentiation or in vivo development) or aberrant gene expres-
sion. It is likely that future efforts to derive germ cell-like cells in vitro
will require the expression or activation of transcriptional programs of
one or more of these transcription factors, either by exogenous gene
introduction or identification of upstream signaling pathways, which
can be activated by the addition of extracellular factors.

In addition to identification of stage-specific gene expression profiles,
it is equally important to compare the epigenetic status of in vitro de-
rived germ cells with that of bona fide germ cells. Global erasure of
DNA methylation, with the exception of some repetitive elements, is
the hallmark of in vivo hPGC development (Leitch et al., 2013; Irie
et al, 2015). Several transcription factors are involved in the epigenetic
modeling of hPGCs. PRDMI and SOXI7 function in maintaining the
epigenetic program of 5-methylcytosine (5mC) erasure from week 4
to week 9. Partial erasure of 5mC and enrichment of 5hmC is also ob-
served in the in vitro differentiation system. In hPGCLCs, loss of
PRDMI inhibits the initiation of DNA demethylation while the expres-
sion of SOXI7 activates PRDMI, which then sustains the epigenetic
program toward global 5mC erasure (Tang et al., 2015). Comparisons
of the epigenome of in vitro derived hPGCLCs to that in vivo provides
instruction on the progress of generation of germ cells.

Studies incorporating
xenotransplantation

Previous research in multiple different stem-cell based experimental
systems has demonstrated that cell and tissue transplantation is the
gold standard for testing cell identity and function (Hanna et al., 2007,
Nelson et al, 2009; Weissman, 2012; Takahashi and Yamanaka,
2013). As noted in a recent review, transplantation may provide the
first ability to demonstrate the feasibility of generating PGCLC-derived,
fully mature gametes in primates, including humans (Saitou and
Hayashi, 2021). Three types of studies have been reported with differ-
ent transplantation strategies and are summarized below.

In the first studies, whole slices of testicular tissue were transplanted
from non-human primates (Macaca fascicularis) to a subcutaneous re-
gion of the back or side of male nude mice (Liu et al, 2016). The
results indicated that xenotransplanted testis tissue from young mam-
mals, including mice and monkeys, is capable of undergoing full and
complete spermatogenesis in xenografts. Moreover, monkey xeno-
grafts to nude mice were capable of generating sperm capable of
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Table Il Transcription factors reported to be expressed in bona fide hPGCs and in vitro derived hPGCLCs.

Bona fide hPGCs In vitro derived hPGCLCs Functions in repro-
duction based on
Gkountela Gkountela Chen et al. Sasaki Chen et al. Sybirna Mouse Genome
etal. (2013) etal. (2015) (2018) etal. (2015) (2018) et al. (2020) Informatics (MGI)
ALX4 ALX4 ALX4 ALX4 Male sterility
BNCI BNCI BNCI BNCI Required for testis
development
CDXI| CDXI| CDXI| CDXI|
DLX5 DLX5 DLX5
DMRT I DMRTI DMRT I DMRT I Male sterility, disorga-
nized seminiferous
tubules
DMRTC2 DMRTC2 Male sterility
EMX2 EMX2 EMX2 Bipotential gonad
marker
ESXI ESXI ESXI Role in spermatogenesis
GATA2/3/4 GATA2/3/4 GATA2/3/4
HOXA2 HOXA2
HOXA3/4/5/7/9 HOXA3/4/5/7/9 HOXA3/4/5/7/9
HOXB3/4/5 HOXB3/4/5
HOXB7 HOXB7
HOXC4 HOXC4 HOXC4
HOXC9 HOXC9
HOXD3 HOXD3
HOXD9 HOXD9 HOXD9
IRXI IRXI IRXI
IRX4 IRX4
IRX6 IRX6 IRX6
KLF2 KLF2
KLF4 KLF4 KLF4
LHXI LHXI
LHX2 LHX2
MSX2 MSX2 MSX2
NR2F2 NR2F2 NR2F2
OSR2 OSR2
PAX5 PAX5 PGCs development
PAX8 PAX8 PAX8 Male infertility
RNFI17 RNFI7 RNFI7 RNFI7 Testis specific; regulates
piRNA maturation
RUNX3 RUNX3 RUNX3
SIXI SIXI
SOXI15 SOXI15 SOXI15
SOX17 SOX17 SOX17
T T T
TBX2 TBX2
TBX3 TBX3 TBX3 TBX3
TBX5 TBX5
TCLIA TCLIA
TFAP2C TFAP2C TFAP2C

Continued
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Table Ill Continued

Bona fide hPGCs In vitro derived hPGCLCs Functions in repro-
duction based on
Gkountela Gkountela Chen et al. Sasaki Chen et al. Sybirna Mouse Genome
etal. (2013) etal. (2015) (2018) etal. (2015) (2018) etal. (2020) Informatics (MGI)
TFCP2LI TFCP2LI TFCP2LI TFCP2LI TFCP2LI
TLX2 TLX2
ZEBI ZEBI

PiIRNA, Piwi-interacting RNA.

producing monkey offspring when sperm derived from the xenografts
testis tissues from juvenile wild-type (WT) and transgenic cynomolgus
monkeys (M. fascicularis) were used for assisted reproduction. These
results may inform future strategies for in vitro gametogenesis.

Second, in an elegant set of proof-of-concept experiments, Rhesus ma-
caque testicular tissue that was cryopreserved as an experimental valida-
tion of fertility preservation for prepubertal human patients was used in
autologous transplantation (Fayomi et dl., 2019). Prepubertal testicular tis-
sue that had been cryopreserved was autologously grafted under the
back skin and scrotal skin of castrated pubertal R. macaque monkeys.
Results indicated that mature sperm were produced that were capable of
fertilizing R. macaque oocytes and culminating in live birth. This suggests
that in non-human primates there is the capability for full gametogenesis,
from spermatogonia to mature sperm, through autologous grafting.

Third, in studies reported in several manuscripts, the ability of germ
cells to engraft was used to assess validity and quantitative and qualita-
tive aspects of in vitro gametogenesis. In these studies, the ability of
hPGCLCs to engraft in mouse seminiferous tubules following differenti-
ation in vitro was tested (Dominguez et al., 2014; Durruthy-Durruthy
et al., 2014; Ramathal et al.,, 2014; Medrano et al., 2016; Fang et dl.,
2018). Results demonstrated that the ability to differentiate and pro-
duce engraftable germ cells was dependent on the genetic composition
of the parental iPSC lines used to produce PGCLCs. Thus, PGCLCs
differentiated from iPSC lines with Y chromosome deletions that are
linked to poor or no spermatogenesis were shown to have limited en-
graftment relative to PGCLCs without genetic abnormalities derived
from fertile men; similar results were also observed with PGCLCs
produced from lines with numerical sex chromosome abnormalities
(Dominguez et al., 2014; Durruthy-Durruthy et al., 2014; Ramathal
et al, 2014). In contrast, over-expression of key germ cell-specific
genes was associated with increased engraftment (Medrano et al.,
2016; Panula et al., 2016; Fang et al., 2018). Furthermore, these
studies documented the migration of PGCLCs to the basement
membrane of spermatogenic tubules and expression of spermato-
gonial markers. As expected, however, complete spermatogenesis
was not observed owing to the evolutionary distance between
mice and humans. Instead, as reported previously, in transplanta-
tion with human SSC the germ cells migrate to the seminiferous
tubule basement membrane and proliferate to form chains and
patches of spermatogonia that persist in the long term but do not
appear to initiate or complete meiosis (Nagano et al., 2002;
Hermann et al., 2010; Dovey et al., 2013).

Conclusion and future
perspectives

The identification and functional characterization of transcription fac-
tors implicated in human germ cell development may not only increase
our understanding of the fundamental genetic basis of pluripotency and
heredity, but also may help to dissect the causative mechanisms of
germline diseases and provide potential strategies for treatment
(Fig. 5). With recent advances in stem cell biology and genetic and epi-
genetic profiling, there is the ability to compare and contrast data
across different species, including human-specific aspects of germ cell
development. Transcription factors that are specifically expressed or
upregulated at critical developmental stages have the potential to act
as master regulators of germ cell development. In addition to methods
such as scRNA-seq that provide cell type-specific transcriptome infor-
mation, rapid development of other single-cell ‘multi-omics’ technolo-
gies will integrate various components of genomic and epigenomic
information, including DNA methylation, histone modification, chroma-
tin accessibility, RNA expression and protein abundance within the
same cell, enabling an in-depth understanding of gene regulatory mech-
anisms. Furthermore, advances in single-molecule imaging allow us to
track the dynamic processes of development within a single cell at high
spatial and temporal resolution. Together with these new technologies,
we can develop a more comprehensive set of hypotheses to test our
understanding of cell fate decisions, identity and the function of cells in
normal germ cell development, physiology and disease. Knowledge of
key transcription factors required for directed stem cell differentiation
promises to provide additional tools to directly probe the function of
putative master regulatory transcription factors in germ cell develop-
ment through gain and loss-of-function studies.

Successes in modeling mouse germ cell differentiation and gamete
formation have thus far translated to human systems only in part, indi-
cating gaps in knowledge of human-specific factors involved in mature
germ cell development. Current methods of human germ cell differen-
tiation in vitro still remain inefficient, asynchronous, and prone to vari-
ability, with a majority of the initial pluripotent cells differentiating
toward various somatic lineages spontaneously. The efficiency of
hPGCLC progression to more mature germ cells is also still very low
(Tang et al., 2016). Developing multiple, testable strategies to differen-
tiate hPSCs toward functional oogonia/spermatogonia efficiently is es-
sential to model the entire germline development and diseases.
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Figure 5. Improving human reproduction research through transcription factor-induced in vitro differentiation models.

ESC, embryonic stem cell

In recent years, the biomedical community has witnessed the devel-
opment of iPSC technology, which spawned a new era of controlling
cell fate by modulating master transcription factors (Takahashi and
Yamanaka, 2006; Takahashi et al, 2007). The successes in mouse
germ cell differentiation enhance the prospect of transcription factor-
induced differentiation of hESCs to hPGCs, and beyond. However,
multiple transcriptome analyses have revealed that human germ cells
acquire a unique transcriptional network, which is distinct from that of
mouse germ cells and from that of any other human cell type. The
germ cell transcriptome is composed of a surprising combination of
core germ cell-specific genes, somatic lineage specifiers, and pluripo-
tency genes. We and others have hypothesized that these lineage
specifiers cooperate with the pluripotency networks to act as the earli-
est molecular switch in the developmental transition from PSCs to the
germ cell lineage (Fig. 4). Counteracting the activity of lineage speci-
fiers, and continued transcription by pluripotency proteins, synergisti-
cally represses somatic lineages and activates germ cell programs to
maintain germ cell identity. The identification and overexpression of
these master transcription factors of human germ cells in hPSCs may

enable faithful and efficient in vitro production of bona fide human germ
cells and contribute to diagnosis and applications in human germ cell
pathologies.

Numerous protocols over the years have attempted to mimic
the spatial component of embryonic development by stimulation of
differentiating cells in 3D aggregates. However, these methods can
expose cells at different positions in the aggregates to varying levels
of extracellular signals, leading to heterogeneity in differentiation.
The ability to maintain cells in a uniform monolayer and induce cell
fate change by overexpression of transcription factors could en-
hance differentiation efficiency while improving final purity. More
importantly, this strategy would reduce the complexity and variabil-
ity of current protocols and enhance the widespread availability of
germ cell research, as well as reproducibility, between laboratories.
Simplifying and increasing the efficiency of differentiation of germ
cells will also allow previously challenging studies, such as high-
throughput drug discovery and genetic screening assays, thereby
accelerating our understanding of human germ cell biology, and ex-
pediting infertility research.
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Finally, the ability to culture hPSCs and hPGCs indefinitely in vitro, in
addition to providing an excellent model for germ cell research, could
permit the repair of genetic defects in germ cell development by gene
editing tools, for example, clustered regularly interspaced short palin-
dromic repeats (CRISPR) technology. Note that in vitro hPSC
differentiation-based methods or disease-modeling studies cannot dimin-
ish the importance of animal disease models for studying disease mecha-
nisms or the downstream characterization and validation of putative
drugs. However, the use of in vitro hPSC differentiation-based studies is
providing additional tools for the identification of human-specific genes
and pathways of development, and thereby accelerate the overall drug
development process to treat human reproductive disease.
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