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* Transcriptome studies of in vitro placental cultures

» Knowledge gaps and future directions

* Conclusion

BACKGROUND: The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development
and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health
and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal
maternal—placental-foetal physiology and pathologies.

OBJECTIVE AND RATIONALE: To date, many studies have examined the human placental transcriptome, but often within a narrow
focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cel-
lular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes,
summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and
support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the po-
tential of transcript profiling in future studies.

SEARCH METHODS: The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute data-
set repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’
and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies.

OUTCOMES: The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complica-
tions, exposures during pregnancy and in vitro placental cultures. The median sample size was |3 (interquartile range 8-29). Transcriptome
studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more re-
cent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single
cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample
selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully con-
sidered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal
mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized.

WIDER IMPLICATIONS: Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and
linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in
enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future
adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and
sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical
characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.

Key words: placenta / decidua / transcriptome / microarray / RNA sequencing / pregnancy / trophoblast / development / pre-
eclampsia

Introduction

The human placenta undergoes rapid growth and development usually
over a span of 9 months. Serving as the maternal-foetal interface, the
placenta facilitates communication between mother and child through-
out gestation. Therefore, investigating the placenta provides a window
into how the pregnancy has progressed and an insight into the poten-
tial health trajectory of the child. To better understand maternal—pla-
cental-foetal health, especially in the context of pregnancy

complications, numerous microarrays and RNA-sequencing studies
have been performed to profile the placental transcriptome. Recent
rapid technological advancements in ‘omics’ have enabled parallel gath-
ering of large datasets from maternal, placental and foetal tissues
across gestation.

This review summarizes genome-wide human placental transcrip-
tome studies performed over the last two decades. We provide an
overview of transcriptome study methods, outline the important con-
siderations for study design and interpretation, discuss past study
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results and highlight knowledge gaps that should be addressed in future
studies. As the review is focussed on human placental studies, animal
studies will not be referred to. Studies in other mammals (Barreto
et al, 2011; Buckberry et al., 2017; Carter, 2018) have undoubtedly
provided additional valuable perspectives on placental health and dis-
ease and have added to knowledge on comparative placentation
across species.

Transcript profiling methods

Two methods used to obtain genome-wide placental transcript profiles
are microarrays and RNA sequencing. These high-throughput technol-
ogies generate large amounts of data and offer a means to analyse the
placenta in an unbiased manner.

Microarrays utilize short oligonucleotide probes embedded on a chip,
which when hybridized to specific RNA or DNA sequences present in
the sample emits fluorescence (Cox et al., 2015), allowing simulta-
neous quantitation of many gene transcripts. Commercially available
chips from Affymetrix, Agilent and lllumina are commonly used in pla-
cental research, although a few studies have custom-made theirs. The
main drawback of microarray chips is that a gene-specific probe must
be present for a gene to be detected. As the earliest placental micro-
array studies were performed around the time the first human ge-
nome was sequenced, not all transcripts were detectable by gene
probes available at that time. Moreover, RNA biology was not as well
understood as it is now with the current knowledge of non-coding
RNA and RNA gene silencing. Additionally, microarray probes are
species-specific. Nevertheless, given established bioinformatics pipe-
lines and readily available statistical tools to analyse microarray data,
with publically available datasets for comparison from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) and the European Bioinformatics Institute (EBI)
ArrayExpress repositories, microarrays continue to be widely used
(Cox et al., 2015).

Next-generation RNA sequencing is more sensitive than conventional
microarray and generates a fuller picture of the placental transcrip-
tome. The lllumina Hiseq and Genome Analyzer Il systems are the
most popular platforms in placental research and are increasingly used
as the price of sequencing falls. Sequencing can detect rare and novel
RNA transcripts, identify single-nucleotide variants in both coding and
non-coding RNA of all lengths, and is not species-dependent.
Furthermore, recent development of microfluidics technology with
RNA sequencing allows transcripts of individual cells to be determined,
which was not previously possible (Hu et al., 2018b). However, single-
cell RNA sequencing of the syncytiotrophoblast, which forms the
placental cellular barrier, remains a challenge since its large size and
multi-nucleated nature does not permit its isolation with microfluidics
technology. The targeted sequencing depth or number of reads se-
quenced per sample is dependent on experimental aims and design.
For instance, the ENCODE guidelines recommend a minimum se-
quencing depth of 30 million reads for bulk RNA sequencing that is

commonly used for differential gene expression analysis, while 10000
to 50000 reads per cell in single-cell sequencing are sufficient to clas-
sify cells in an unbiased manner (Haque et al, 2017). Another
question-dependent experimental design consideration is whether to
sequence library preparations from ribosomal RNA (rRNA)-depleted
total RNA (including non-coding RNA) or those enriched for mRNA
transcripts by poly A+ selection. Given the vast potential of RNA se-
quencing, it is unsurprising that its use is growing exponentially in pla-
cental research.

Why profile the human
placental transcriptome?

In most pregnancies, the villous placenta is genetically identical to the
foetus and is the first foetal-placental tissue in direct contact with the
maternal exposome. The placental transcriptome may, therefore, rep-
resent to an extent both inherent foetal characteristics and the foetal
response to the intrauterine environment. Data generated from
genome-wide profiling of the human placenta have several uses. Firstly,
analyses of normal placentas throughout gestation enhances under-
standing of healthy development, which serves as a reference point for
studies of how the placenta responds and adapts to various exposures
and challenges in complicated pregnancies. Secondly, by analysing pla-
centas from compromised pregnancies, pathological changes linked
with different clinical phenotypes can be identified and utilized for de-
veloping biomarkers or targets for prediction, diagnosis and therapeu-
tic interventions. For instance, placental-specific gene products that are
secreted into the maternal circulation can serve as a non-invasive di-
rect readout of placental function and an indirect measure of foetal
wellbeing (Cox et al., 2015). One such success story of transcript pro-
filing is sFLTI, which was first identified to be up-regulated in pre-
eclamptic placentas by microarray (Maynard et al., 2003) and is now
being trialled in clinical screening to predict if a pregnant woman is at
risk of developing pre-eclampsia (Zeisler et al., 2016). Additionally,
knowledge of the dysfunctional molecular processes at the maternal—
foetal interface provides novel insights into the potential causal
mechanisms underlying placental pathologies, which may open up new
avenues for developing preventative measures for pregnancy complica-
tions. Moreover, the placenta functions as the intermediary between
mother and child, participating in the normal programming of the de-
veloping foetus to face the prevailing environmental conditions of ex
utero life (Burton et al., 2016). Understanding these programming
mechanisms and deviations in pathological conditions opens up the
possibility of modifying offspring growth and health trajectories arising
from compromised intrauterine environments, through interventions
that target the placenta, or identifying at-risk children who will benefit
from close follow-up and early childhood interventions.

Placental transcriptome: search
methods and study themes

The PubMed database and the NCBI GEO and EBI ArrayExpress re-
positories were used to identify relevant studies and human placental
transcriptome datasets, respectively up to May 2019. Our search
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included terms such as ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcrip-
tome’, ‘microarray’, ‘RNA sequencing’ and was refined by restricting
only to human studies and genome-wide datasets. Additional studies
were identified by references within articles.

We identified a total of 179 unique genome-wide datasets related
to human placenta. These datasets collectively represent the genome-
wide transcriptomes of around 3000 placentas since 2004. Most of
these datasets were generated within the last five years, highlighting
the rapid expansion of human placental transcriptome studies, with a
clear preferential shift towards RNA sequencing from conventional
microarrays in the field.

Placental transcriptome studies can broadly be divided into four
main study themes: healthy placental development (Table ), pregnancy
complications (Table Il), exposures during pregnancy (Table Ill) and
in vitro placental cultures (Table IV). The tables list studies in chrono-
logical order and studies with fewer than five samples are presented
separately in Supplementary Table SI. Studies in each theme are sum-
marized and discussed in the context of the following considerations.

Important considerations for
placental transcriptome studies

Good study design is critical to harness the potential of genome-wide
transcript profiling of the placenta. Key aspects to be considered in
study design are subject recruitment, sample processing at delivery,
transcript profiling and data analysis methods and data validation
(Fig. 1), all of which may represent potential pitfalls and limit the valid-
ity of conclusions that can be drawn.

Two main points to consider in subject recruitment are selection crite-
ria and sample size. Firstly, the selection process in case—control stud-
ies should ensure suitable controls are chosen to compare with
pathological cases identified by well-defined and established clinical def-
initions. As will be discussed in subsequent sections, varied clinical cri-
teria can impact study findings and reproducibility. Hence, a consensus
about research definitions of common pregnancy complications should
be reached to make full use of available resources. The selection pro-
cess must also determine if variables, such as gestational age, sex, la-
bour status, mode of delivery and treatment modalities, which are
known to affect placental gene transcription, are part of the inclusion/
exclusion criteria. Researchers should also recognize a caveat of sam-
pling placenta from the first half of pregnancy, is that the pregnancy
outcome of an electively terminated pregnancy cannot truly be guaran-
teed as healthy as the final outcome cannot be determined, thus inter-
pretation of findings involving such samples must take this into
account.

Secondly, inadequate sample size may affect statistical power and
study reproducibility. Although the average number of placentas pro-
filed in each study is ~28, this is largely skewed by eight large studies
of more than 100 placentas each. The median number of placentas
profiled per study is merely |3 (interquartile range 8-29). It is noted
that while around one in five studies used fewer than 10 placentas, a
considerable number of these smaller studies were performed when
the use of profiling technologies were in their infancy and they were

valuable in providing an early proof of concept for application in the
field. Nevertheless, meta-analysis may be a means to overcome the
effects of sample size in some of these earlier studies and small studies
of rare conditions. While the choice of study inclusion ultimately rests
on the researchers performing the meta-analysis, we strongly recom-
mend caution with including very small studies with fewer than five
samples (Supplementary Table Sl) as study batch effects are unlikely to
be sufficiently corrected for in such cases. Hence, future studies should
aim for much larger sample sizes that are adequately powered to an-
swer the study question, to improve reproducibility and verify the find-
ings of past studies going forward.

Another important factor is the placental sampling procedure at deliv-
ery. The region of the placenta to biopsy is dependent on the question
asked (Fig. 2). For instance, studies addressing invasion of the extravil-
lous trophoblast into the maternal decidua sample the basal plate
(Winn et al., 2009), while those investigating the maternal—foetal trans-
fer across the syncytiotrophoblast would sample the villous placenta
(Bari et al.,, 2016). Unwanted variation may arise from inappropriate
sampling of the placenta, such as non-removal of the decidua for stud-
ies of the villous placenta, inclusion of infarcted areas and insufficient
cleaning to remove excess blood. Another consideration is the impor-
tance of multisite sampling of the same region as several studies estab-
lished intra-placental variation of gene expression (Pidoux et al., 2004;
Hughes et al., 2015). The ideal way is to run replicate samples of each
placenta, although this may not always be practical given that the cost
of genome-wide transcript profiling is still relatively high per sample.
An alternative is to pool RNA from multiple sites of the region of in-
terest for each placenta and to have a large enough number of differ-
ent placentas, so as to ensure differential expression patterns identified
are related to the condition studied, rather than normal intra- and
inter-individual biological variability.

RNA integrity is also vital for proper interpretation of transcriptome
data. RNA integrity is determined by measuring the 28S to 185 rRNA
ratio or assessing the RNA integrity number (RIN) by a commercially
available algorithm. Some placental RNA transcripts are more suscepti-
ble to degradation than others due to differences in post-transcriptional
regulation (Reiman et al, 2017). Rapidly degrading transcripts are
enriched among those encoding membrane components or proteins
with transporter function, while stable transcripts are primarily those in-
volved in intracellular function (Reiman et al, 2017). A major determi-
nant of RNA integrity is the time taken to fully immerse in RNAlater or
snap-freeze placental biopsies following delivery, which shows an inverse
correlation with RIN values (Fajardy et al., 2009; Jobarteh et al., 2014).
Biopsies are often rinsed in ice-cold buffer to remove maternal blood
contamination prior to RNA preservation, but this step may also alter
the transcript profile, particularly at the villous sprouts, which are tran-
scriptionally sensitive to mechanical disturbances (Burton et al., 2014).
Storage length prior to RNA extraction may affect the RIN value as
well, depending on preservation methods used (Martin et al, 2017).
Flash-frozen samples appear more sensitive to RNA degradation over a
long period of storage, compared with RNAlater-preserved samples
(Fajardy et al, 2009; Martin et al, 2017). Therefore, RNAlater-
preservation is preferential for better placental RNA quality as com-
pared to snap-freezing in liquid nitrogen (Wolfe et al., 2014; Pisarska
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et al, 2016). However, if the sample is limited and there are plans to
utilize the tissue for other types of analysis, a potential drawback is that
preservation in RNAlater, which has a high salt content and denatures
proteins, may interfere with future analysis of native proteins and other
techniques. Therefore, researchers should ideally work as efficiently as
possible with RNase-free equipment and consumables while handling
the placenta, although it is ultimately up to the researcher how they
wish to process and store their placental samples.

Following sample collection, various RNA isolation and possibly enrich-
ment methods may be required, depending on which RNA species
(e.g. long non-coding RNA or mRNA) are being studied. After RNA
isolation, the choice of profiling platform and data analysis is another
consideration. While either microarray or RNA sequencing can be
used to determine genome-wide transcriptomes, as mentioned earlier,
they each have their advantages and disadvantages (thoroughly
reviewed by Cox et al, 2015). Data analysis considerations include
whether to identify differentially expressed genes or broad categories
of dysregulated pathways in case—control studies and to ensure ade-
quate statistical adjustment to account for multiple testing, i.e. false dis-
covery correction. Technical notes and methods to visualize these
data are further discussed in a recent review by Konwar et al. (2019).

Another key aspect is to validate the findings from transcriptome anal-
yses. Expression changes should ideally be confirmed at the RNA and
protein levels by techniques, such as real-time qPCR, immunoblotting,
enzyme-linked immunosorbent assays and immunohistochemistry.
Furthermore, in vitro functional assays with primary explant cultures or
isolated cells and in vivo animal models would provide deeper mecha-
nistic insights into the role of identified genes.

Transcriptome studies of
healthy placental development

Studies assessing healthy placentas (Table I) have three general aims:
to investigate transcriptome changes across gestation, to characterize
cell populations within the placenta or to determine the regulation and
variability of gene expression across individual placentas.

Transcriptome datasets exist for each trimester of pregnancy, allowing
identification of gestation-specific signatures (Table |: Gestation effects).
Two microarray datasets contain placental expression profiles across
all trimesters and serve as useful references of the temporal changes
that occur during development (Mikheev et al., 2008; Soncin et al.,
2018). Unsurprisingly, a common finding of first-trimester studies is an
enrichment of highly expressed genes involved in cell proliferation and
cell-cycle regulation (Mikheev et al., 2008; Sitras et al., 2012; Lim et al.,
2017b; Soncin et al., 2018), which reflects rapid placental growth in
early gestation. Interrogation of a large third-trimester microarray data-
set of 57 placentas in conjunction with detailed histological analyses

enabled markers of normal villous maturation to be identified, which
was used to establish a method to calculate the molecular age in
weeks of a given placenta, enabling a maturation measure to be
assigned to placentas from pathological pregnancies (Leavey et al.,
2017). However, the overall number of just under 300 placentas rep-
resented by these datasets is still relatively small, particularly for the
first and second trimesters with data from only 73 and 2| placentas
respectively, and expanding the number of samples profiled will enable
elimination of spurious findings and further refinement of gestation-
specific transcriptome signatures of placental development.

The placenta comprises many different cell types. To improve resolu-
tion of gene expression to the cellular level, multiple studies have per-
formed global profiling of isolated cells or primary cell cultures from
the maternal—foetal interface (Table I: Cellular characterization and dif-
ferentiation). However, an important caveat is that in addition to vary-
ing cell purity of the derived sample, differences may arise in the
cellular response to the isolation and/or culture methods, which could
become a source of bias and lead to data artefacts that are indistin-
guishable from naturally occurring in vivo differences. Moreover, aside
from one study, datasets in this theme are derived from studies with
fewer than |3 individual placentas each, with the majority having five
or fewer. This is understandable, given the technical complexities and
high time investment involved in isolating and culturing placental cells.
However, such a limitation may lead to conclusions that may not fully
reflect the natural diversity between individual placentas. Nonetheless,
they can still serve as valuable baseline references for future studies in
this area.

Trophoblast cells are unique to the placenta and therefore a major
cell type specifically targeted for genome-wide transcript profiling.
Cytotrophoblast cells are precursors of the extravillous trophoblast
and syncytiotrophoblast. Extravillous trophoblast cells are responsible
for maternal tissue invasion and placentation, while syncytiotrophoblast
forms the maternal—foetal exchange barrier and acts as a major source
of endocrine and paracrine factors for supporting pregnancy.
However, common trophoblast isolation methods disrupt the multi-
nucleated synctiotrophoblast layer, resulting in most studies focussing
on just the cytotrophoblast and extravillous trophoblast cells.
Extrapolation of their results to the understanding of syncytiotropho-
blast function must, therefore, be made with extreme caution.
Furthermore, one key finding is that cultured term placental tropho-
blast cells, as well as endothelial cells, have sex-specific expression pat-
terns, with the male placental transcriptome enriched for pathways
involved in the immune system and inflammatory response, which may
partly explain the general observation of poorer outcomes for preg-
nancies with a male foetus (Cvitic et al.,, 2013). Hence, future studies
should consider having a large enough sample size to stratify analyses
by sex or be able to account for the possible influence of sex on the
cell-specific gene expression profiles.

Recent studies have used single-cell RNA sequencing with microflui-
dics to characterize gene expression profiles of a variety of individual
cells at the maternal—foetal interface. Although the first single-cell study
only sequenced 87 cells from just two-term placentas (Pavlicev et al.,
2017), it provided an important proof of concept for successfully ap-
plying this technology to interrogate the placental transcriptome.
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Additionally, given the limitation of microfluidics in isolating large cells,
the authors utilized laser microdissection to facilitate more accurate
profiling of the large multi-nucleated syncytiotrophoblast (Pavlicev
et al., 2017), in sharp contrast to subsequent studies that merely disso-
ciated placental tissues and then reported cellular characterization of
the syncytiotrophoblast. Although one of these studies acknowledged
the shortcomings of the cellular dissociation approach that undoubt-
edly alters transcript profiles, and the possible under-representation of
synctiotrophoblast profiling in the data (Suryawanshi et al., 2018), this
consideration was neglected and ignored by the rest (Tsang et al.,
2017; Liu et al., 2018; Vento-Tormo et al., 2018). Hence, the current
available data are likely biased and not fully reflective of syncytiotro-
phoblast gene expression across gestation, and should be viewed and
used with some caution. Given the important role the syncytiotropho-
blast serves as the active cellular and regulatory barrier between
mother and foetus, future studies should strive to better profile the
synctiotrophoblast, and ensure isolation methods are carefully justified
and weaknesses accounted for to allow proper interpretation of
findings.

Another methodological factor to consider is the additional mechan-
ical stress following tissue dissociation imposed by either a pre-
enrichment of cells by magnetic bead separation (Liu et al., 2018) or
pre-sorting of cells by fluorescence-activated cell sorting (Vento-
Tormo et al., 2018), which may potentially modify the observed gene
expression patterns. A first-trimester study without prior pre-selection
did, however, demonstrate a good correlation (Pearson r value of
0.86) of the multi-cell transcriptome of an average villi assessed by
single-cell RNA sequencing with that assessed by bulk tissue RNA se-
quencing, suggesting that overall, tissue dissociation and subsequent
microfluidics techniques have only minor effects on the gene expres-
sion profiles for most dissociated cells (Suryawanshi et al, 2018).
Thus, these latter single-cell sequencing studies can be considered to
have collectively established for the first time, at the single-cell level,
cell-specific gene expression profiles of the maternal-foetal interface
throughout gestation, which serve as a potential reference to deconvo-
lute placental cellular heterogeneity in future bulk tissue studies.

Another purpose of analysing the healthy placental transcriptome is to
discover how gene expression is regulated and its variability across dif-
ferent regions of each placenta and between individuals (Table I: Gene
expression variation and regulation). One study of third-trimester pla-
centas estimated that while more than half of term placental gene vari-
ation was due to differences between individuals, a significant third of
variation was attributable to intra-individual differences, compared with
only <10% of variation due to ethnic background (Hughes et dl.,
2015). Foetal-placental sex is a major contributor to inter-individual
variation, with sexual dimorphism predominantly arising from differen-
tial expression of genes on the sex chromosomes (Gonzalez et dl.,
2018). Some of the observed differences between individuals and be-
tween tissue biopsies of the same placenta likely also arise from cellu-
lar heterogeneity, as evidenced by a single-cell sequencing study
showing different cellular proportions between individual samples biop-
sied from within the same placental region and from sample replicates
obtained from the same placenta (Tsang et al., 2017). Furthermore,
multi-regional sampling of the placenta and associated tissues, such as

the decidua and umbilical cord, highlights distinct gene expression pat-
terns associated with each sampling region (Sood et al., 2006; Kim
et al., 2012). All of these underscore the importance of sampling re-
gion selection (Fig. 2) and having a sufficiently large sample size with
multi-site sampling of the same region within each placenta to over-
come variations, due to sample collection and intra-individual and
inter-individual placental differences, to produce robust datasets reflec-
tive of the true ‘experimental’ group differences in question.

Additionally, there are clusters of genes that demonstrate relatively
consistent placental expression between individuals and throughout
pregnancy regardless of gestation, while others are trimester-specific
and even show conserved expression patterns between humans and
mice (Buckberry et al., 2017). These consistently expressed genes are
likely key regulatory genes indispensable for normal overall placental
function and for directing temporal-specific changes relating to the par-
ticular requisite functions of the placenta at each trimester.

Attempts to discover what underlies placental gene transcriptional
regulation have explored genotype and methylation, which are DNA-
based, in association with the transcriptome. Indeed, two large RNA
sequencing studies comprising a total of 239 individual placentas with
genotype data showed a consistent overlap of 381 expression quanti-
tative trait loci (eQTLs), suggesting that the placental expression of
genes in these loci are under stringent genetic control (Peng et dl,
2017; Delahaye et dl., 2018). Methylation is also associated with varia-
tion in placental gene expression. Dual profiling of the third-trimester
placental transcriptome and methylome showed that DNA methyla-
tion accounted for a greater variance of birthweight than gene expres-
sion profiles at a single timepoint, and identified MSX| and GRBI0
methylation as potential master regulators in the transcriptional control
of growth-related genes in the term placenta (Turan et al., 2012).
Hence, these studies highlight the complexities of placental gene ex-
pression regulation which may drive the large variation of expression
observed between and within individual placentas and subsequent
birth outcomes.

Placental transcriptome studies
of pregnancy complications

Improved understanding of the pathophysiology of pregnancy compli-
cations is a main driver for interrogating the placental transcriptome
(Table ). Studies in this research theme have compared placentas
from the normal and pathological states and are discussed taking into
account the considerations of study design mentioned above.

Pre-eclampsia, a serious hypertensive disorder of pregnancy, is the
most common pathology in which the placenta has been profiled, with
40 datasets produced from a total of |192 placentas (44% affected).
These datasets represent approximately a fifth of all placental tran-
scriptome datasets (Table Il:Pre-eclampsia). Given the nature of pre-
eclampsia, difficulty in prediction of its onset and challenges with sam-
pling placenta from ongoing pregnancies, most of the placentas profiled
were collected in the third trimester at delivery, during the advanced
stages of the disorder. Nevertheless, there is a single study of 12 sam-
ples collected from controls and women who subsequently developed
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-{ Time to collection I

I Placental transcriptome study

Transcriptional profiling and
data analysis methods
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.

| Run single or pooled samples I

Data analysis
+ Differential gene expression significance threshold
* Gene set enrichment anlaysis

Downstream validation
gPCR, immunoblotting and in vitre/in vive functional analyses

Figure I. Key aspects to consider for placental transcriptome studies.

pre-eclampsia (Founds et al., 2009). This study utilized surplus tissue
obtained from first-trimester chorionic villus sampling and demon-
strated placental dysregulation of genes involved in immune modula-
tion, inflammation and cell motility months before the clinical
manifestation of pre-eclampsia (Founds et al., 2009), highlighting the
early development of this insidious disease in the placenta. This data-
set, while small, serves as a rare reference of the early placenta with
known outcomes at delivery.

Expression profiling studies at the pre-eclamptic maternal—foetal in-
terface frequently and consistently reveal dysregulated expression of
genes involved in the oxidative stress and inflammatory pathways (Eide
et al, 2008; Loset et al., 201 |; Tsai et al., 201 |; Song et al., 2013; Yong
et al, 2015; Tong et al., 2018). Moreover, abnormal gene expression
signatures of extravillous trophoblast cells, which was identified by the
first single-cell RNA sequencing study of pre-eclamptic placenta, were
also detectable in the maternal circulation in pre-eclampsia and may po-
tentially serve as a non-invasive marker or ‘liquid biopsy’ of anomalous
placental function in the future (Tsang et al., 2017). Collectively, these
studies highlight how pre-eclampsia affects multiple molecular pathways
and functions of cells of both maternal and foetal origin at the placental
interface, thereby underscoring the complexity of disease pathophysiol-
ogy and the potential to develop some of these differentially expressed
genes as biomarkers of pre-eclampsia.

Attempts have been made to delineate pre-eclampsia from other
complications, such as gestational diabetes mellitus (GDM), intrauter-
ine growth restriction (IUGR) and macrosomia (Sitras et al., 2009a;
Mayor-Lynn et al., 201 1; Nishizawa et al, 2011; Guo et al., 2013;
Sober et al., 2015; Lekva et al., 2016; Gibbs et al., 2019). Results of

these studies are consistent with the notion that pre-eclampsia is het-
erogeneous, comprising of multiple molecular subtypes that distinctly
cluster with other pregnancy pathologies (Guo et al., 2013; Gibbs
et al., 2019), suggestive of a shared aetiology or pathophysiology in-
volving the placenta (Nishizawa et al., 201 |; Sober et al., 2015).
Molecular subtypes also seem to associate with gestation at onset of
pre-eclampsia and placental histological findings, and efforts have been
made to further characterize these subsets. Several studies sought to
refine the sample population by either considering only early-onset pre-
eclampsia developing before 34 weeks’ gestation (Varkonyi et al., 201 1;
Blair et al., 2013; Than et al., 2018), only late-onset pre-eclampsia de-
veloping from 34 weeks’ gestation (Sober et al., 2015; Lekva et dl,
2016) or both (Nishizawa et al., 2007; Sitras et al., 2009b; Junus et al.,
2012; Liang et al., 2016; Tong et al., 2018). A major issue in considering
gestational age in placental studies is what construes an appropriate
control. Of the 34 studies including preterm pre-eclampsia cases, about
21% used only preterm controls, while around 44% used only term
controls, with the remainder including both preterm and term controls.
Utilizing preterm controls in pre-eclampsia studies may actually con-
found study findings, given that preterm controls are frequently derived
from those with premature rupture of membranes or preterm labour,
which are also pregnancy pathologies and not an ideal reference of nor-
mal human pregnancy (Cox et al., 2015). Conversely, it could be ar-
gued that the most severe pre-eclamptic cases are usually delivered
preterm and should be compared with similarly preterm but non-pre-
eclamptic cases since term gestation brings in another dimension that is
unrelated to the pathology of pre-eclampsia and observed differences
may be due purely to the effect of gestation rather than pre-eclampsia.
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Figure 2. Placental regions commonly sampled for transcriptome analyses.

Hence, there remains no clear consensus within the field about the
most optimal control for pre-eclamptic cases requiring preterm delivery
and readers should carefully consider the interpretation of study findings
whichever control is used.

Intrauterine growth restriction/small for
gestational age

IUGR is the failure of a foetus to reach its full genetic growth potential
in utero. Clinically, IUGR is often diagnosed with ultrasound findings of
a small for gestational age (SGA) baby below the 10th centile, associ-
ated with abnormal uteroplacental blood flow (Kingdom et al., 2018).
This review considers |7 datasets representing a total of 72| placentas
of which 26% were either from SGA- or IUGR-affected pregnancies
(Table 1l: IUGR/SGA). Most placental transcriptome studies utilized
only the criterion of SGA (McCarthy et al., 2007; Sabri et al., 2014;
Sober et al., 2015; Deyssenroth et al., 2017; Verheecke et al., 2018;
Gibbs et al, 2019), while some studies excluded those who may be
healthy and constitutionally small, by including an additional criterion of
a small abdominal circumference below the fifth centile (Guo et dl.,
2013; Madeleneau et al., 2015) or ultrasound findings of abnormal ute-
roplacental blood flow indicative of placental insufficiency (Roh et dl.,
2005; Sitras et al., 2009a; Struwe et al., 2010; Nishizawa et al., 201 [;
Dunk et al, 2012; Majewska et al., 2019). However, while some of
these IUGR cases may be explained by maternal smoking, pre-
eclampsia or chemotherapy during pregnancy (Sitras et al, 2009a;
Dunk et al., 2012; Verheecke et al., 2018), a considerable number of
cases have no specific identifiable underlying cause and are termed idi-
opathic (Nishizawa et al., 201 1). Hence, a common and clear research
definition of IUGR s lacking within the placenta community. Moreover,
as discussed earlier, gestational age is another potential confounder,
with 8 out of || studies that included preterm IUGR cases utilizing
term controls.

Nevertheless, a degree of consistency exists between these various
studies, hinting at shared placental pathways involved in the pathophys-
iology of IUGR regardless of gestation. Dysregulated expression of
genes involved in the processes of placental growth signalling, mito-
chondrial respiration and a hypoxic response was observed in multiple
IUGR studies (Roh et al., 2005; McCarthy et al., 2007; Struwe et dl.,
2010; Guo et al., 2013; Sabri et al., 2014; Madeleneau et al., 2015;
Deyssenroth et al., 2017; Verheecke et al., 2018). Several studies also
demonstrated a substantial overlap between pre-eclampsia and nor-
motensive growth restriction, encompassing genes involved in the mo-
lecular processes of placental angiogenesis and immune regulation
(Sitras et al., 2009a; Nishizawa et al., 201 |; Dunk et dl., 2012; Guo
et al., 2013; Sober et al., 2015; Gibbs et al., 2019; Majewska et dl.,
2019). Additional research to increase understanding of placental func-
tion in growth-compromised pregnancies could improve diagnosis and
management of cases.

Macrosomiallarge for gestational age

Conversely, some infants are macrosomic or large for gestational age
(LGA). At present, four studies comprising 263 placentas (28% af-
fected) have examined the placental transcriptome in relation to ex-
cessive intrauterine growth (Table ll: Macrosomia/LGA). As with
growth restriction, little consensus exists on defining excessive growth.
Some studies selected cases based on an absolute birthweight cut-off
of >4 kg (Song et al., 2018), while others utilize birthweight percentiles
customized for sex and gestational age at a cut-off of over 90th per-
centile (Sabri et al., 2014; Sober et al, 2015; Deyssenroth et al.,
2017); both of which do not account for the possibility of including
normal constitutionally large babies. One study demonstrated that pla-
centas of LGA babies had similar expression patterns to that of late-
onset pre-eclampsia, which is often not associated with growth restric-
tion, alluding to some common disturbances in placental function
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(Sober et al, 2015). Growing evidence also indicates that besides
short-term morbidities of birth trauma, excessive intrauterine growth
is also associated with poorer long-term cardiometabolic outcomes in
offspring (Szostak-Wegierek, 2014). Thus, being large at birth should
not be regarded as benign and more resources should be dedicated to
understanding the possible placental mechanisms involved to prevent
the potential intrauterine programming of adverse health outcomes
manifesting in later life.

Rates of GDM are rising worldwide. Follow-up studies suggest intra-
uterine exposure to maternal hyperglycaemia leads to poorer health
outcomes in offspring (Binder et al., 2015). A total of 10 studies have
profiled 282 placentas (44% affected) with respect to GDM (Table II:
GDM). Again, criteria used to define GDM is varied. The World
Health Organisation changed the criteria for diagnosis quite substan-
tially between its 1999 and 2013 guidelines, while the American
College of Obstetricians and Gynaecologists, UK National Institute for
Health and Care Excellence and other countries continue using differ-
ent diagnostic criteria (Meek, 2017). Nonetheless, most studies dem-
onstrate that immune and inflammatory genes are among the most
consistently dysregulated in placentas from GDM pregnancies (Radaelli
et al.,, 2003; Enquobahrie et al., 2009; Zhao et al., 201 I; Binder et al.,
2015). In contrast, two transcriptome studies found few or no signifi-
cant placental expression changes between GDM and controls (Sober
et al, 2015; Lekva et al., 2016). However, these two studies had other
pathological groups including pre-eclampsia, SGA or LGA, and such as
the statistical power may have been insufficient to identify differentially
expressed genes or clusters associated with each condition, although
the overall sample size was large (Sober et al., 2015; Lekva et dl.,
2016).

Studies have also considered other forms of diabetes in pregnancy,
such as pre-existing type | and type Il diabetes (Radaelli et al., 2009;
Alexander et al., 2018) or tried to account for differences in maternal
obesity, which is more common in diabetic groups compared with
controls (Bari et al., 2016). However, as the numbers of each diabetic
type or BMI group are small, more studies are needed to confirm if
the identified differences are due to diabetes or obesity. Another issue
is that of selective reporting. For example, in a genome-wide transcrip-
tome study of type | diabetes and GDM cases and controls, the
authors chose to report only pre-selected genes involved in glucose
and lipid metabolism based on fold changes without correcting for
multiple testing (Radaelli et al., 2009), which is a biased approach and
some results may turn out to be chance findings. Further studies are
also needed to resolve the transcript differences associated with GDM
management (diet-control, metformin or insulin treatment) or quality
of glycaemic control, functionally explore the biological significance of
identified placental gene expression alterations, and expand knowledge
into the underlying pathophysiology of GDM and its possible implica-
tions for offspring health.

Infections during pregnancy not only affect the mother but can also im-
pact the foetus via the placenta. Three studies (total n=53 placentas,
40% affected) have examined the transcriptome of placentas exposed
to malaria, Trypanosoma cruzi and infections leading to preterm birth

(Table Il: Antenatal infections and inflammation). Expectedly, all af-
fected placentas, regardless of infection type, show dramatic up-
regulation of genes involved in the immune and inflammatory response
(Muehlenbachs et al., 2007; Ackerman et al., 2016; Juiz et al., 2018).
Better understanding of the functional significance of these transcrip-
tomic alterations may lead to the identification of biomarkers or thera-
peutic targets for improved clinical management of infections during
pregnancy, and reduce infection-induced preterm birth and adverse
developmental programming.

Placental inflammation may also occur in the absence of an infection.
At present, two studies (total n=31 placentas, 52% affected) have ex-
amined cases of placental inflammation without infection (Table II:
Antenatal infections and inflammations). Placentas with villitis of un-
known aetiology show transcript profiles distinct from that of cho-
rioamnionitis caused by an infection, suggesting that the pathology may
arise from maternal-foetal histoincompatibility (Kim et al., 2009).
Comparison of the chronically inflamed placenta with controls also
suggests a key role of T cells in mediating maternal immune tolerance
of foetal antigens, which may underlie chronic placental inflammation
(Raman et al., 2015). Nevertheless, given the small number of studies
with low sample sizes, larger studies in this area are clearly needed to
confirm the findings of these past studies. It would also be interesting
to explore the transcriptome profiles of autoimmune conditions, such
as systemic lupus erythematosus, and those pregnancies exposed to
immunosuppressive therapy (e.g. post-organ transplant), as these con-
ditions are associated with increased risk of adverse pregnancy
outcomes.

The exact mechanisms of parturition remain elusive. Presently, five
datasets have examined 89 placentas and decidua in relation to labour
onset (Table II: Labour), of which four involved preterm labour (27%
affected). The inflammatory response is consistently identified as the
most dysregulated process at the preterm labour placental interface
(Chim et al., 2012; Bukowski et al, 2017; Rinaldi et al, 2017).
Aberrant expression of genes involved in extracellular matrix remodel-
ling is also implicated in preterm labour, which may in turn be affected
by abnormal expression of miRNAs (Mayor-Lynn et al, 2011; Chim
et al, 2012). Further refinement and validation of these labour-
associated molecular factors in larger studies will enhance understand-
ing of the normal parturition process and may lead to development of
novel biomarkers to predict the onset of labour in pregnant women
and interventions for either prevention of preterm labour or obstetri-
cally indicated induction of labour.

Recurrent miscarriage (RM) is the repeated loss of pregnancy in the
early stages and affects around | in 50 couples (Rull et al., 2013). The
precise cause(s) of RM is unknown for many couples, but five small
studies (n=50 placentas, 42% affected) have investigated the placental
transcriptome to uncover the potential factors involved in unexplained
RM (Table Il: RM). It is nonetheless difficult to distinguish between
transcriptomic changes that lead to the miscarriage as opposed to
those that change as a result of the miscarriage process. Moreover,
given that products of conception may remain in utero for days after
pregnancy failure or embryo/foetal demise, placental RNA quality may
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be compromised by the time of collection and be another study con-
founder. Controls in such studies are those of elective termination of
pregnancies with no known anomalies. However, the use of such con-
trols is based on an underlying assumption that these pregnancies
would have ended well without any complications, which is impossible
to verify. A proposed alternative control could be first-trimester pla-
centas collected from women who had previous successful term preg-
nancies, but happen to experience their first miscarriage, which
presumably would likely be of a conceptus-originated aetiology rather
than a parental-originated aetiology that is more likely in cases of RM.

Despite questions over suitability of controls and very small sample
sizes, current studies still provide an initial insight into potential mecha-
nisms. For instance, a microarray study identified tumour necrosis
factor-related apoptosis-inducing ligand (TRAIL) as highly expressed in
RM placentas, which was detectable in the circulation of women both
at the point of miscarriage and also prior to miscarriage (i.e. in women
who subsequently had a miscarriage following prospective blood sam-
pling), as compared with controls (Rull et al., 2013). Increased circulat-
ing TRAIL was verified in an independent study, which also
demonstrated adverse effects of high TRAIL concentrations on tro-
phoblast function in vitro (Agostinis et al., 2012), indicating TRAIL as a
potential biomarker and determinant of pregnancy failure in early ges-
tation. Other studies show association of RM with transcription fac-
tors, such as E2F and YYI, non-coding RNAs and DNA methylation
(Sober et al., 2016; Tian et al., 2016; Huang et al., 2018; Yu et dl.,
2018), which are yet to be validated in larger datasets.

Profiling placentas containing chromosomal abnormalities provide a
unique opportunity to study in vivo effects of genetic aberrations and
inform on the pathogenesis of complications that occur as the preg-
nancy progresses. Just two studies have examined 38 placentas (58%
affected) so far (Table Il: Chromosomal abnormalities). Interrogating
the trisomy 21 placental transcriptome revealed differential expression
of genes associated with neurodevelopment, cancer and diabetes (Lim
et al, 2017a), which may explain the disease risks of trisomy 2| indi-
viduals. Other transcriptomic investigation of placentas of either tri-
somy |13, 18 or 21 showed that several highly expressed genes were
located on the respective trisomic chromosome, which is reflective of
gene dosage (Bianco et dl., 2016). However, most of the up-regulated
genes were surprisingly not located on the trisomic chromosome, sug-
gesting knock-on effects genome-wide (Bianco et al., 2016). These
studies suggest that the observed phenotypes of aneuploidy, including
pregnancy loss and IUGR, may arise from the collective effects of gene
dosage and complex downstream genome-wide dysregulation of genes
in the placenta (Bianco et al., 2016).

Intrahepatic cholestasis of pregnancy (IHCP), also known as obstetric
cholestasis, is associated with preterm delivery and stillbirths (Bicocca
et al., 2018). The aetiology of the observed maternal pruritus and liver
impairment may be associated with an enhanced response to in-
creased oestrogen production in pregnancy resulting in abnormal hep-
atobiliary transport (Bicocca et al.,, 2018). At present, only one study
of 30 placentas (67% affected) has examined the genome-wide placen-
tal transcript profile (Table Il: Intrahepatic cholestasis of pregnancy).

This study showed dysregulation of genes involved in vascular endo-
thelial growth factor, G-protein-coupled receptor and immune-related
signalling, with a greater dysregulation correlating with disease severity,
thus, implicating abnormal placental angiogenesis and immune re-
sponse in the pathophysiology of IHCP (Du et al., 2014). As with the
other complications of pregnancy previously discussed, severe cases
tended to deliver preterm and gestational age may be a confounder
influencing the results observed since the study used term controls.
Further studies are, therefore, needed to extend the knowledge of pla-
cental involvement in this complication of pregnancy.

Placental transcriptome studies
of exposures during pregnancy

Many maternal sociodemographic factors, lifestyle and environmental
exposures have been linked with pregnancy complications and off-
spring health adversity. A better understanding of how these different
exposures affect the placenta will provide a greater insight into the
pathophysiology and biological pathways leading to complications and
abnormal programming of offspring health. As such, studies in this re-
search theme examined placentas from pregnancies with different
exposures from assisted reproduction and various clinical trial interven-
tions to pre-existing maternal conditions (Table II).

Alarmingly, a growing number of women are entering pregnancy in an
obese state worldwide. Being obese markedly increases the risks of
pregnancy complications, such as pre-eclampsia, GDM and preterm
delivery (Sureshchandra et al., 2018). Transcript profiling of placentas
from obese women may uncover the underlying basis of their height-
ened risk of pregnancy complications and the molecular mechanisms
involved in programming offspring health. Five placental transcriptome
studies (n=242, 44% affected) have considered maternal obesity
(Table lll: Obesity). Two studies similarly found enrichment of differen-
tially expressed genes involved in angiogenesis, lipid metabolism and
the immune/inflammatory response (Saben et al, 2014a; Altmae
et al., 2017). A different study identified perturbed placental nutrient
transport as another consequence of exposure to the maternal obesity
milieu (Sureshchandra et al, 2018), which could alter foetal growth
and postnatal health trajectories. Indeed, a large study of 183 placentas
examining maternal pre-pregnancy BMI as a continuous variable dem-
onstrated that gene clusters enriched for maternal immune dysregula-
tion were positively associated with maternal BMI and negatively
associated with low birth weight, providing evidence of a molecular ba-
sis to the relationship between the two (Cox et al., 2019). Therefore,
the placenta exposed to maternal obesity is characterized by immune
dysregulation, which can have widespread effects on placental function
and foetal growth and development.

Tobacco smoke is an external environmental exposure that is detri-
mental to pregnancy. Global profiling of smoke-exposed placentas in
four studies (n= 197, 30% affected, Table Il: Smoking) showed harmful
and dysregulating effects of tobacco smoke on different aspects of
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placental growth and metabolism (Huuskonen et al., 2008; Bruchova
et al, 2010; Votavova et dl., 201 |; Votavova et al., 2012). Comparison
of smoke-induced transcriptomic changes in placenta by active or pas-
sive smoking showed a substantial overlap between both groups com-
pared with the non-smoking group in biological processes, such as lipid
metabolism, oxidative stress and blood coagulation (Votavova et dl.,
2012), suggesting that these common molecular placental mechanisms
are involved in transmitting the harm of smoking to the growing foetus
be it active or passive. As such, these placental pathways could be po-
tential intervention targets to modify the pregnancy outcomes of those
exposed to any type of tobacco smoke during gestation.

Various nutritional or drug interventions are being explored in clinical
trials to improve pregnancy outcomes. While treatments may show
promising results in vitro on placental cell cultures and in vivo in animal
models, many have not shown the desired effect upon testing in most
clinical trials. Transcript profiling of placentas from women treated as
part of a clinical trial during pregnancy may thus provide valuable
insights into the underlying molecular mechanisms affected, inter-
individual variability in effects and possible explanation for trial findings.
We identified three studies that analysed a total of 136 placentas from
clinical trials (Table II: Clinical trials). A study conducted on placentas
collected from women supplemented with a low or high dose of cho-
line from the start of the third trimester, with the intention of improv-
ing placental vascular function and reducing the risk of developing
pre-eclampsia, showed widespread effects on the placental transcrip-
tome, particularly on processes involved in vascular regulation (Jiang
et al, 2013). A promising finding was significantly reduced expression
of the pre-eclampsia-associated FLT/ gene, which can induce systemic
vascular dysfunction at high protein concentrations, thus providing a
molecular basis for the utility of choline supplementation during preg-
nancy (Jiang et al., 2013). Omega-3 fatty acid supplementation altered
placental expression of genes involved in cell-cycle regulation in a sexu-
ally dimorphic manner with greater changes occurring in pregnancies
with female foetuses, which correlated with offspring birthweight and
birthweight centiles (Sedimeier et al., 2014). This study highlights the
placental response to omega-3 supplementation and the potential
mechanisms involved in modulating foetal growth and postnatal devel-
opment (Sedimeier et al., 2014). A third study examined placentas col-
lected from obese women who were treated with metformin or a
placebo (Chiswick et al., 2016), with the aim of determining if there
were any changes in genes regulating foetal growth or metabolism.
However, while the transcriptome dataset is publically available along-
side complementary methylome data, the study findings remain unpub-
lished. Nevertheless, this dataset serves as a valuable resource to
understand the effects of metformin on the placenta and acts as a pos-
sible reference for studies involving metformin in treatment of GDM.

With the global rise of ART, more pregnancies are now being con-
ceived by IVF, which is associated with poorer pregnancy outcomes
(Nelissen et al., 2014). Three studies have examined the IVF placental
transcriptome in the first and third trimesters (n= 169 placentas, 28%
exposed, Table llI: In vitro fertilization). To determine which differen-
tially expressed genes are related more specifically to IVF, the largest

study of 141 first-trimester chorionic villus samples included a non-IVF
ART group alongside spontaneous conceptions for comparison and
identified CACNA I, which codes for a calcium channel subunit, as one
such gene (Lee et al., 2019). Further comparison between just the IVF
and non-IVF ART groups showed differential expression of SLCI8A2,
CCL21, FXYD2, PAEP and DNER, which supports the notion that IVF
also has distinct effects on the placenta compared with other types of
ART (Lee et al,, 2019). However, as ART are used primarily by cou-
ples who struggle to conceive naturally, discovered alterations may be
due to the underlying parental factors contributing to subfertility rather
than a result of ART used. Since infertility causes are so varied, such
as being due to structural defects of the reproductive tract, ovulatory
dysfunction, endometriosis, childhood cancer chemotherapy or unex-
plained maternal or paternal factors, stratifying by causes of infertility
may help discriminate the unique gene signatures for infertility as com-
pared with those that are consequential of ART in future studies.

Antenatal maternal mental health is of rising importance as cumulative
evidence suggests a potent impact on pregnancy and childhood out-
comes. Currently, only one study (n=20 placentas, 50% affected,
Table Ill: Antenatal depression) has examined the effects of maternal
depression and antidepressant treatment on the placental transcrip-
tome (Olivier et al.,, 2014). Most differentially expressed genes com-
pared with controls showed limited overlap between the untreated
and medically treated depression (Olivier et al., 2014). This suggests
that not only does depression itself affect the placental transcriptome,
but that depression and antidepressants have largely independent
effects on the placenta and that those treated with antidepressants
should be evaluated separately in future studies.

Transcriptome studies of
in vitro placental cultures

The key advantage of culturing in vitro explants or isolated cells from
the placenta is that we can determine the precise effects of altering a
single factor in well-controlled experimental conditions, without having
to contend with other inter-individual variability in inter-placental com-
parisons. Transcript profiling of cultured placental explants, primary
cells and cell lines have thus also contributed to increased understand-
ing of placental function, with many studies profiling the placental re-
sponse to various agents and treatments including hypoxia, irradiation,
growth factors, cytokines and infectious agents (Table Ill). Such in vitro
models have limitations including issues with cell purity of isolated pri-
mary cells, loss of 3D cytoarchitecture and absence of cell—cell interac-
tion in single-cell type cultures. Although placental explant and
organoid cultures may overcome some of these limitations, culture
conditions may not fully reflect in vivo conditions and could lead to
spurious findings as a result of altered responses to the exposure of in-
terest. Hence, transcriptome findings of in vitro models should be inter-
preted with some caution and further verified in ex vivo studies.

Most in vitro studies utilize primary trophoblast cultures from term pla-
centa or extended trophoblast cell lines. Given the common use of
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immortalized cell lines in placental research, widely-used trophoblast-
like cell lines were profiled to ascertain their genome-wide phenotype
and how representative they were of primary trophoblast (Burleigh
et al., 2007; Bilban et al., 2010; Apps et al., 201 |; Takao et al., 2011).
These studies found little overlap in the profiles between primary cells
and cell lines, and recommended caution in use of cell lines in placental
research (Burleigh et al., 2007; Bilban et al., 2010; Apps et al., 2011).
Another reason for genome-wide profiling of cultured trophoblast is
to characterize the differentiation process from cytotrophoblast to syn-
cytiotrophoblast (Shankar et al., 2015; Rouault et al., 2016; Yabe et al.,
2016; Zheng et al,, 2016; Robinson et al, 2017; Azar et al., 2018;
Gauster et al., 2018). Pairing genome-wide transcript profiling with tar-
geted gene manipulation using small RNA or plasmid technologies
allows gene regulatory effects to be determined alongside consequen-
tial effects on trophoblast cell function (Rigourd et al.,, 2008; Tauber
et al., 2010; Xie et al., 2014; Than et al., 2018), despite the potential
limitations in methodology discussed earlier.

Additionally, several studies have examined non-trophoblast cell types
in culture. For example, to expand knowledge on the genetic regula-
tion of placental vascularity, Augsten et al. (2011) performed a micro-
array on primary term placental endothelial cells treated with high-
density lipoprotein to assess how foetal lipoprotein, which contains a
considerably higher proportion of apoE than that of adults, alters pla-
cental vessel function. Another microarray study identified genes in-
volved in the immunoregulatory and pro-angiogenic function of first-
trimester decidual endothelial cells relative to another endothelial cell
type from skin (Agostinis et al, 2019), providing an insight into the
unique role of these maternal endothelial cells in modulating immune
tolerance of the foetus at the interface. Transcriptome studies of non-
trophoblastic cells remain few, and if conducted and interpreted with
the caution discussed previously, further investigations utilizing cultures
of these cell types may potentially enhance understanding of the com-
plex processes occurring in pregnancy.

Placental-derived cultures are also used to mimic in vivo exposures.
For instance, several datasets reflect the response profile of placental
explants, trophoblast cell lines, primary decidual and chorion organoid
cultures exposed to infectious agents — Coxiella bumetii, Trypanosoma
cruzi and Zika virus (Ben Amara et al., 2010; Weisblum et al., 2017;
Castillo et al., 2018), which are further informed by related studies
that examine the effects of immunomodulatory cytokines on placental
function (Ibrahim et al., 2016; Verma et al., 2018; Yockey et al., 2018).
One study characterized the molecular signatures of the response to
insulin in trophoblast cells cultured from first-trimester placentas of
lean and obese women, revealing that prior exposure to obesity
blunted trophoblast sensitivity to insulin (Lassance et al, 2015).
Notwithstanding the technical limitations that may impact transcrip-
tome findings, placental-derived cultures can add another dimension in
expanding knowledge of placental function, which may not be fully ap-
parent from study of tissues and immediately isolated cells.

Knowledge gaps and future
directions

Cellular heterogeneity of the human placenta is likely a major contrib-
uting factor to inconsistent transcriptome findings between studies.
With the advent of single-cell transcriptomics, it may be possible to
deconvolute the placental tissue transcriptome more readily and ac-
count for differences in tissue sampling in the near future.
Deconvolution may also highlight differences in placental cell composi-
tion due to the underlying pathology. Single-cell human placental tran-
scriptome profiles across all trimesters are now available and serve as
a basis to develop algorithms for deconvolutions (Table [). However,
sample sizes in these studies are relatively small between two and ten
placentas and with the current technical limitations requiring cell disso-
ciation, available datasets may include artefactual changes and not fully
capture the transcriptome of all placental cell types, particularly the
large multi-nucleated syncytiotrophoblast.

Meta-analysis of past studies enhances statistical power, which may
highlight novel molecular pathways or strengthen the evidence for pre-
viously identified genes. Indeed, multiple meta-analyses have been per-
formed for pre-eclampsia (Kleinrouweler et al., 2013; Moslehi et al.,
2013; Vaiman et al., 2013; van Uitert et al., 2015; Vaiman and Miralles,
2016; Brew et al, 2016) and preterm birth (Eidem et al, 2015;
Paquette et al., 2018), as well as for investigating sexual dimorphism of
the placenta (Buckberry et al., 2014) and understanding trophoblast
differentiation in the context of hydatidiform moles (Desterke et al.,
2018). Nevertheless, lack of data access can hamper the ability to per-
form powerful meta-analyses. For example, of the 10 transcript profil-
ing studies performed for GDM, only data from three studies are
publically available, representing less than a third of the profiled pla-
centas. Efforts are ongoing to make placental data more accessible.
For instance, the newly developed Placenta Atlas Tool centralized
database simplifies the search for relevant placental transcriptome
datasets and allows some basic analysis to be performed within the
site (llekis et al., 2019), providing a useful starting point for research-
ers. Consistent and clear reporting of experimental details, such as
specific microarray platforms utilized and poly A+ selection for mMRNA
enrichment in RNA sequencing studies, and of key clinical information
to inform on disease subtypes and severity are also critical in enabling
researchers to design proper integrative meta-analysis studies.

Traditionally, much focus was on protein-coding mRNA transcripts
that result in functional changes. However, growing evidence implicate
possible roles for non-coding RNA (e.g. long non-coding RNA,
miRNA, circular RNA) in the placenta (Cox et al., 2015). Differential
placental expression of non-coding RNAs has been investigated in pre-
eclampsia (Gunel et al., 2017; Hu et al., 2018a; Lykoudi et al., 2018;
Zhou et al., 2018), GDM (Li et al., 2015; Wang et al., 2019b), IUGR
or SGA pregnancies (Wen et al., 2017; Ostling et al., 2019) and early
pregnancy loss (Hosseini et al., 2018). The use of RNA sequencing
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Figure 3. Factors that influence the placental transcriptome and the associations of altered placental molecular pathways with
pregnancy complications or exposures. Dynamic transcriptional regulation of the placental interface throughout gestation is multi-factorial
(arrows). Differential regulation of specific molecular pathways identified in multiple placental transcriptome studies may highlight the potential under-
lying causal mechanisms involved in pregnancy complications or represent the placental mechanisms affected by pregnancy exposures (connecting
lines). GDM, gestational diabetes mellitus; IHCP, intrahepatic cholestasis of pregnancy; IUGR/SGA, intrauterine growth restriction/small for gesta-

tional age; LGA, large for gestational age; RM, recurrent miscarriage.

technologies to further characterize these non-coding RNAs provides
a tantalizing approach to identify and develop new biomarkers and
therapeutic targets for pregnancy complications. As such, researchers
may want to consider the different RNA extraction methods available
to enable capture of all placental RNA species, both coding and non-
coding, for analysis in future studies.

There is a paucity of genome-wide transcriptome studies in many
aspects of pregnancy (Supplementary Table SIl). The pre-eclamptic
placenta is disproportionately profiled as compared with other com-
mon pathologies of pregnancy including preterm labour, IUGR, GDM
and stillbirth (Table Il). Although an estimated 2.6 million stillbirths oc-
cur annually worldwide (Blencowe et al., 2016), of which ~40% are
unexplained (Reinebrant et al., 2018), no study has yet profiled pla-
centas from this devastating pregnancy complication, although such
studies could yield useful insights as to why a foetus dies in utero, espe-
cially in cases of unexplained stillbirth. Transcript profiling of abnormal
placental development, such as placenta praevia, placenta accreta and
molar pregnancy could also highlight the potential causative factors be-
hind their pathogenesis (Desterke et al., 2018), possibly enabling the
discovery of new approaches to treat or prevent the recurrence of
these pathologies in future pregnancies.

Additionally, even with much ongoing research effort to minimize in-
fectious diseases, pregnant women, being relatively immunosup-
pressed, remain at great risk of infections, such as malaria (Dellicour
et al, 2010) and have shown increased susceptibility to recent global
health emergencies, such as the swine flu pandemic and Ebola out-
break (Kourtis et al., 2014; Silasi et al., 2015). We propose that pla-
cental transcriptome studies be used to improve understanding of
how maternal infections affect the placenta, so as to identify the mech-
anistic pathways that can be targeted to reduce the transmission of
harm to the growing foetus.

Furthermore, given the increasingly recognized importance of the
maternal nutritional, mental and emotional states, the rise in women
exposed to harmful environmental and chemical exposures during
their pregnancies and the profound impacts these can have on the
pregnancy and the future health of the child (Hoirisch-Clapauch et al.,
2015; Lewis et al, 2015; Unger et al, 2016; Chen et al, 2018;
Henschke, 2019; Varshavsky et al., 2019), their effects on the placenta
are all deserving of further investigation, so as to increase ways of pro-
moting benefits of some lifestyles while minimizing adversity. Pre-
existing medical conditions (e.g. autoimmune and endocrine diseases,
thrombophilia) are strongly associated with an aberrant hormonal,
metabolic and inflammatory milieu that is detrimental to placentation,
and thus, such pregnancies are predisposed to significantly higher rates
of complications with poorer neonatal outcomes (Ali et al., 2016;
Vannuccini et al., 2016; Meakin et al., 2017; De Leo and Pearce, 2018;
De Carolis et al, 2019; Mitriuc et al, 2019; Stepien and Huttner,
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2019). Placental transcriptome analysis could thus reveal how such
conditions heighten a woman’s susceptibility to obstetric complica-
tions, which may lead to new treatments to prevent defective placen-
tal function and improve pregnancy outcomes in affected women.

Pregnancy-specific factors can also have profound consequences on
pregnancy outcomes. Given major societal changes, more women are
using ART to conceive and/or entering pregnancy at an older age,
both of which are associated with placental dysfunction and more ob-
stetric problems including IUGR and stillbirth (Nelissen et al., 2014;
Lean et al, 2017). Placental profiling may help reveal whether higher
rates of obstetric complications observed are due to underlying subfer-
tility or ART as suggested by animal studies (de Waal et al., 2015),
and enable appropriate strategies to be developed for mitigating
harms.

Frequently excluded from transcriptome studies, profiling placentas
from multiple pregnancies may also demonstrate the mechanisms in-
volved in the inherently elevated risk of obstetric complications
(Witteveen et al, 2016), which could be targeted to improve out-
comes for the mother and her children. Moreover, further studies of
twin placental transcriptomes with disconcordant intrauterine growth,
whereby the healthy twin can serve as a well-matched control (Roh
et al., 2005; Wen et al., 2017), may help elucidate novel mechanisms
of foetal growth that can be capitalized upon to improve IUGR
outcomes.

Integrating placental transcriptome data with other datasets including
other ‘omics’ and longitudinal data will enhance knowledge into
healthy placental development and disease mechanisms. A study com-
paring the pre-eclamptic placental transcriptome to the blood tran-
scriptome of cardiovascular disease identified significant overlap
between the two, and provided novel insights into possible shared
relationships between pregnancy complications and subsequent health
in the mother or child postnatally (Sitras et al., 2015). Placental tran-
script profiling in birth cohorts with comprehensive longitudinal follow-
up of the children may also potentially uncover new placental pro-
gramming mechanisms that can influence extrauterine life in the longer
term. Indeed, previously identified placental eQTLs were predictive of
birthweight and subsequent childhood obesity in a cohort study,
highlighting the role of placental gene expression in modulating postna-
tal outcomes, and such genes could serve as potential molecular tar-
gets for interventions (Peng et al, 2018). Besides profiling more
placentas from additional birth cohorts, it is of great interest to exam-
ine currently available birth cohort-related placental transcriptome
datasets for any possible associations with childhood outcomes
(Binder et al., 2015; Cox et al., 2019). In doing so, we may be able to
develop a catalogue of placental biomarkers predictive of future health,
which could be used to identify offspring at high risk of subsequent
poor health. Thus, the placenta may serve as a unique window into
the future extrauterine life of the offspring and provide an opportunity
to intervene and change the health trajectories of those exposed to an
adverse intrauterine environment.

Conclusion

Placental transcript profiling presents enormous potential to enhance
understanding of healthy placental development and function, highlight
the possible underlying causal and consequential mechanisms of preg-
nancy complications (Fig. 3), and predict and improve the health out-
comes of mothers and offspring from compromised pregnancies.
Challenges in obtaining sufficient numbers of quality samples with clear
clinical characteristics will need to be overcome to drive the field for-
ward. Current data may also be capitalized upon by performing meta-
analyses to increase statistical power, although interpretation of find-
ings will need to carefully account for limitations, such as inconsistent
clinical criteria between studies and gestational age matching of cases
and controls. Furthermore, additional resources should be dedicated
to analyse placentas from the understudied areas, which will enable
the dynamic complexities of the placental transcriptome to be more
fully appreciated.

Supplementary data

Supplementary data are available at Human Reproduction Update
online.
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