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ABSTRACT: Many pregnancy complications are the result of dysfunction in the placenta. The pathogenic mechanisms of placenta-
mediated pregnancy complications, however, are unclear. Abnormal placental development in these conditions begins in the first trimester,
but no symptoms are observed during this period. To elucidate effective preventative treatments, understanding the differentiation and de-
velopment of human placenta is crucial. This review elucidates the uniqueness of the human placenta in early development from the aspect
of structural characteristics and molecular markers. We summarise the morphogenesis of human placenta based on human specimens and
then compile molecular markers that have been clarified by immunostaining and RNA-sequencing data across species. Relevant studies
were identified using the PubMed database and Google Scholar search engines up to March 2020. All articles were independently screened
for eligibility by the authors based on titles and abstracts. In particular, the authors carefully examined literature on human placentation.
This review integrates the development of human placentation from morphological approaches in comparison with other species and pro-
vides new insights into trophoblast molecular markers. The morphological features of human early placentation are described in Carnegie
stages (CS), from CS3 (floating blastocyst) to CS9 (emerging point of tertiary villi). Molecular markers are described for each type of tro-
phoblast involved in human placental development. We summarise the character of human trophoblast cell lines and explain how long-
term culture system of human cytotrophoblast, both monolayer and spheroid, established in recent studies allows for the generation of hu-
man trophoblast cell lines. Due to differences in developmental features among species, it is desirable to understand early placentation in
humans. In addition, reliable molecular markers that reflect normal human trophoblast are needed to advance trophoblast research. In the
clinical setting, these markers can be valuable means for morphologically and functionally assessing placenta-mediated pregnancy complica-
tions and provide early prediction and management of these diseases.

Key words: Carnegie stages / cell surface markers / early pregnancy / embryogenesis / extra-embryonic tissue / gene expression /

trophoblast / trophoblast differentiation / placenta / placental development

Introduction

The placenta plays a vital role in the development of the foetus and in
the maintenance of pregnancy, including pregnancy-specific hormone
production, nutrient transfer, gas exchange and immunotolerance.
Abnormalities in the trophoblast, the functional cell type of the placenta,
can cause inadequate placentation, leading to preeclampsia, the birth of
small-for-gestational age neonates, placental abruption and late preg-
nancy loss. These placenta-mediated pregnancy complications are esti-
mated to occur in 15% of pregnancies and are associated with the
morbidity and mortality of the mother and foetus (Wilcox et al., 1988;
Wang et al., 2003; Froen et al., 2004; Kuklina et al., 2009; Damodaram
et al, 201 1; Larsen et al.,, 2013; Lees et al., 2013; Rodger et al., 2016;
Hiersch et al., 2017; Skeith and Rodger, 2017). However, the patho-
genic mechanisms of these diseases remain unclear, and there are no ef-
fective treatments for placental dysfunction at the present time.

Placental dysfunction begins in the first trimester of pregnancy, be-
fore symptom occurrence (Burton and Jauniaux, 2004; Redman, 2014;
Khong et al., 2015). In order to elucidate the pathogenesis of various
pregnancy complications, it is important to understand the develop-
ment of normal placenta. Placental development has been mainly de-
scribed based on mouse embryogenesis and mouse trophoblast stem
cells, but human placenta has unique morphology and trophoblast dif-
ferentiation. This review elucidates this uniqueness from the aspect of
structural development and molecular markers.

Cellular differentiation of the
placenta

Cellularly, the placenta is primarily constituted of trophoblasts, but also
includes stroma cells, macrophages and foetal endothelial cells (FECs).
In this review, we focus on trophoblasts, which are responsible for the

main function of the placenta. Trophoblast lineage, which describes the
developmental sequence of the placenta, consists of trophectoderm
(TE), cytotrophoblast (CT), syncytiotrophoblast (ST) and extravillous
trophoblast (EVT; also called intermediate trophoblast) (Fig. 1A) (Lee
et al., 2016). These cell types are morphologically and functionally dis-
tinct. The TE, which is the outermost layer of the blastocyst (Fig. 2A), is
the precursor of all trophoblasts. It contributes largely to implantation.
The CT is a uninuclear cell that is mitotically active and the progenitor of
ST and EVT. The ST is a multinucleated cell that is generated from the
fusion of uninuclear CT and is mitotically inactive. The ST serves as a
place for nutrient transport, gas exchange and pregnancy hormone se-
cretion. The microvilli on the surface of ST increase the efficiency of nu-
trient and gas exchange (Teasdale and Jean-Jacques, 1985). The EVT,
also a uninuclear cell, is involved in the remodelling of maternal spiral ar-
teries depending on the blood supply.

Human placental development
in Carnegie stages

The differentiation and histological maturation of placental cells occur
over a fixed time course. Morphological changes of human embryo de-
velopment are described using Carnegie stages (CS) (O’Rahilly and
Midiller, 1987). CS can also be applied to human placental development,
especially the earlier stages of human embryo development, such as
CS5a-c. Here we review early CS and the foetal period (Fig. 2).

Carnegie stages | and 2 (Days 1-3)

The zygote starts from one cell fertilised oocyte. Cleavage begins, and
finally the morula is formed. Differentiation into the placental lineage
has not started yet.
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Figure 1. Flow chart of trophoblast cell lineage from trophoblast origin to terminal differentiation between human and mouse.
(A) Human. TE, the origin of all trophoblasts, differentiates into cytotrophoblast. Cytotrophoblasts, which have high-proliferation capacity, can differ-
entiate into syncytiotrophoblasts and extravillous trophoblasts (EVT). EVTs are mainly categorised by location, such as implantation site EVT and cho-
rionic laeve EVT. Whether trophectoderm differentiates into primitive syncytiotrophoblast though the stage of cytotrophoblast is controversial. The
dashed lines indicate the differentiation pathway from trophectoderm to primitive syncytiotrophoblast. (B) Mouse. Polar trophectoderm differenti-
ates into the main part of mouse placenta. Spongiotrophoblast is the putative mouse counterpart of human cytotrophoblast in cytotrophoblast cell
columns. Spongiotrophoblast differentiates into both mouse TGCs and glycogen cells (glycogen trophoblasts), which are analogous to human EVT.

Mural trophectoderm stops proliferating and forms TGCs.

Carnegie stage 3 (Days 4-6)

CS3 describes the blastocyst stage. The blastocyst is still enclosed in the
zone pellucida, where it floats freely and ‘hatches’ from this surrounding
extracellular matrix before implantation. At the early blastocyst stage,
two cell groups, the inner cell mass (ICM) and outer cell layer, or TE,
are visible. At the late blastocyst stage (expanded blastocyst), the ICM
segregates into epiblast and primitive endoderm (hypoblast).

Carnegie stage 4 (Days 6-7)

At CS4, the blastocyst is anchored to the endometrium, and interac-
tion between the embryo and maternal tissue begins (Fig. 2A) (Hill,
2020). The TE, which is the source of all trophoblast subtypes, shows
a distinct polarisation. The TE plays an important role in embryo im-
plantation and interaction with the maternal endometrium.

Carnegie stage 5 (Days 7-12)

At CS5, implantation is complete, and development of the trophoblast
progresses. Based on the original classification of CS, CS5 is further
subdivided into stages 5a, 5b and 5c based on trophoblast
differentiation.

Carnegie stage 5a (Days 7-8)

At CS5a, the trophoblast exists as a mass of cells and is called solid
trophoblast (Fig. 2B). Two distinct layers of cells (bilaminar germ disc),

epiblast and primitive endoderm, appear. The amniotic cavity appears
between the epiblast and TE and the yolk sac appears between primi-
tive endoderm and TE.

Carnegie stage 5b (Days 9-10)

At CS5b, the trophoblast has two morphologically and functionally dis-
tinct layers of cells; the inner layer (i.e. CT) and outer layer (i.e. ST)
(Fig. 2C). Lacunae appear in primitive ST, in which small vacuoles fuse
with each other, thus leading to CS5b also being called ‘lacunar stage’
or ‘primitive syncytium’ (Fig. 2C) (Hertig et al, 1956; Boyd and
Hamilton, 1970; James et al., 2012). Tissue specimens at the time of
implantation indicate that CT and ST emerge concurrently (O’Rahilly
and Miller, 1987), however, whether TE differentiates into primitive
ST through a CT stage is controversial (Boyd and Hamilton, 1970;
Knofler and Pollheimer, 2013).

Carnegie stage 5c (Days 11-12)

In CS5¢, the primitive ST continues to penetrate into the endome-
trium, maternal capillaries connect with lacunae in the primitive ST,
and maternal bloods flow into the lacunae. The ST forms about three
quarters of the total trophoblastic shell, and the CT constitutes the
remaining one-quarter (O’Rahilly and Miiller, 1987).
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Figure 2. Early development of human placenta based on Carnegie stages. (A) Carnegie stage 4 (embryonic Days 6—7). Blastocyst is an-
chored on the endometrium. (B) Carnegie stage 5a (embryonic Days 7-8). Blastocyst invades the endometrium, and trophectoderm becomes solid
trophoblast. In addition, the bilaminar germ disc and amniotic cavity appear. (C) Carnegie stage 5b (embryonic Days 9—10). There are two distinct
layers of trophoblast: cytotrophoblast layer and syncytiotrophoblast layer. (D) Carnegie stage 7 (embryonic Days |5—17). Secondary villi consist of
cytotrophoblast, syncytiotrophoblast and extra-embryonic mesoderm. Images published from https://embryology.med.unsw.edu.au with permission

from Dr. Mark Anthony Hill (Hill, 2020).

Carnegie stage 6 (Days 13-14)

CS6 marks the first stage of chorionic villi development, when the CT
grows externally and penetrates into the primitive ST to form cellular
columns. The columns are called primary villi and have two cellular layers
(Fig. 3A); the outer layer is ST, and the inner layer is CT. The embryonic
body at this stage is now about 0.2 mm diameter in size. Furthermore,
extra-embryonic cavities coalesce to form the chorionic cavity.

Carnegie stage 7 (Days 15-17)

At the second stage of chorionic villi development, i.e. CS7, extra-
embryonic mesoderm proliferates and penetrates into the core of the
primary villi. This structure, in which extra-embryonic mesoderm is
surrounded by CT and ST, is called the ‘secondary villi" (Figs 2D, 3B).
The embryonic body is now about 0.4 mm in size at the diameter.
Laterality is established, gastrulation starts and germ layers are formed
from the epiblast.

Carnegie stages 8 and 9 (Days 18-21) and
later embryonic stages

Extra-embryonic mesoderm in the secondary villi differentiates, and
blood cells and vessels are developed. The vessels of the villi connect

with the vessels of the embryonic body, and the maternal-placental
(uteroplacental) blood circulation begins. This structure is called the
‘tertiary vill' and is completed by the end of Week 8 after fertilisation
(Fig. 3C). The third stage of chorionic villi development (from Weeks
3 to 8 after fertilisation) is quite long; the embryonic body has three
germ layers and organogenesis begins. Furthermore, at the end of
Week 8 after fertilisation, the tertiary villi have been completed, and
organogenesis has ended.

Cellular differentiation and structural development of the placenta oc-
cur during the early embryonic stages, and CS5b-9 is important for
these phenomena (O’Rahilly and Mdiller, 1987). They are not only the
periods of organogenesis in the embryonic body, but also the periods of
placental differentiation. It is very difficult to obtain samples of embryo
and placental specimens, thus, most direct observations of CS depend
on old serial sections from a few collections of human embryos.

The foetal embryonic stage

At Week 8 after fertilisation, when the tertiary villi have developed,
EVT emerges at the front edge of the villi. In other words, EVT is dif-
ferentiated from CT cell columns. EVT forms plugs in the maternal spi-
ral arteries to occlude these arteries and block maternal blood from
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Figure 3. Structure of chorionic villi. The development of chorionic villi proceeds through three stages: primary, secondary and tertiary villi.
The stages are defined by the number of layers and composite cell type. (A) A transverse section of primary chorionic villi. The villi consist of a cyto-
trophoblast core and syncytiotrophoblast. (B) A transverse section of secondary chorionic villi. Extra-embryonic mesoderm grows into the core of
the villi. (C) A transverse section of tertiary chorionic villi. Extra-embryonic mesoderm differentiates into red blood cells and small blood vessels,

forming the villous capillary system.

flowing into intervillous spaces, although whether the plugs obstruct
these arteries completely is controversial (Kurjak and Kupesic, 1996;
Valentin et al., 1996; Weiss et al., 2016; Roberts et al., 2017). The ox-
ygen tension of the intervillous space is at a low concentration at 6-8
weeks after fertilisation, otherwise known as the plugged stage
(Rodesch et al., 1992; James et al., 2006). At Week 12 after fertilisa-
tion, the EVT plugs dissolve, and the oxygen tension changes from low
to normal oxygen concentration (Hustin et al., 1988; Jauniaux et al.,
1991; Rodesch et al,. 1992; Coppens et dl., 1996; James et al., 2006a).
Accordingly, low oxygen tension stimulates CT proliferation, and nor-
mal oxygen tension stimulates CT differentiation into ST and EVT
(Genbacev et al, 1997; James et al., 2006b; Tuuli et al, 2011).
Recently, it was reported that low oxygen tension promotes immature
EVT differentiation (Wakeland et al, 2017; Chang et al., 2018;
Treissman et al., 2020); therefore, the role of oxygen concentration in
EVT differentiation needs to be examined in detail. EVT replaces arte-
rial endothelial and vascular smooth muscles, and this remodelling
transforms maternal spiral arteries into low-resistance, high-flow con-
duits. Consequently, the intervillous space is filled with high amounts
of maternal blood (Pijnenborg et al., 2006).

The ST forms the outer layer of the chorionic villi that contacts di-
rectly with the maternal vascular space and functions to exchange gases
and metabolites between the mother and foetus (Benirschke et al.,
2000; Lee et al., 2016). The other main function of ST is to produce
most pregnancy-specific proteins and hormones. CT and ST are located
on the villi; therefore, these cell types are called villous trophoblasts. In
contrast, EVT infiltrates the decidua, myometrium and maternal spinal
arteries. The functions of the EVT are to anchor the foetus to the uter-
ine wall, maximise oxygen delivery and establish the maternal-foetal

interface (Graham and Lala, 1992; Benirschke et al., 2012b; Lee et dl.,
2016). The EVT is largely composed of uninuclear cells (Kurman et al.,
1984) with various morphologies including round, polyhedral or spindle
shape (Kaufmann and Castellucci, 1997; Gersell and Kraus, 201 1). In
humans, the placenta is mainly constituted of CT, ST and EVT (Fig. |A).

Human placental development
with molecular markers

The anatomical boundary of the placenta has not been defined well,
which has motivated a search for new molecular markers. The pla-
centa includes cells that originate from TE and ICM and ultimately
from the fertilised oocyte. The TE gives rise to all placental epithelium
(CT, ST and EVT), whereas the ICM gives rise to stroma cells (placen-
tal connective tissue cell), Hofbauer cells (placental villous macro-
phage) and FECs. Whether the placenta is also comprised of
maternal-derived cells is controversial. We therefore exclude
maternal-derived cells, such as decidua, decidual natural killer cells,
dendritic cells, decidual macrophages, maternal endothelial cells and
epithelial glandular cells, from our definition in this review (Fig. 4A).
Details of each trophoblast subtype are described in the sections
‘Cellular differentiation of the placenta’ and ‘Human placental develop-
ment in Carnegie stages’ above.

Trophoblasts can be identified in accordance with their anatomical
location, cellular morphology and expression of particular markers
in vivo (Hsi et al., 1991). On the other hand, stage-specific molecular
markers are very important for the characterisation because there is
no spatial information in vitro. Below we summarise cellular stage-
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Figure 4. lllustration of human and mouse placental structures. (A) Human placental structures (villous type). Chorionic villi consist of a
mesenchymal core, inner layer of cytotrophoblast and outer layer of syncytiotrophoblast. The chorionic villi protrude into the intervillous space and
are bathed directly in maternal blood. Syncytiotrophoblast-derived extracellular vesicles and pregnancy-specific hormones are released directly into
the maternal circulation. Hofbauer cells are macrophages in the mesenchymal core of chorionic villi and these often localise close to foetal endothelial
cells and villous cytotrophoblasts. Cytotrophoblasts are located in cell columns and differentiate into extravillous trophoblasts (EVT). EVT invade into
the maternal decidua and maternal spiral arteries. (B) Mouse placental structures (labyrinth type). The polar trophectoderm gives rise to the ectopla-
cental cone and extra-embryonic ectoderm. Mouse trophoblast stem cells can be derived from either polar trophectoderm or extra-embryonic ecto-
derm. The precursors for multilayered syncytiotrophoblasts and TGCs reside within the extra-embryonic ectoderm. In addition, precursors within
the ectoplacental cone differentiate into spongiotrophoblasts (SpTs), TGCs and glycogen cells (glycogen trophoblasts). SpTs are located in the junc-
tional zone, and TGCs exist at the borderline between the maternal decidua and SpT layer. Glycogen cells exist in the SpT layer and maternal de-
cidua. In the mouse, there are three layers of trophoblasts between the maternal and foetal blood: the trichorial trophoblast layers consist of two
syncytial layers and a single mononuclear layer; the mononuclear layer is in proximity to the maternal blood. Adjacent to the mononuclear tropho-
blast layer are two layers of syncytiotrophoblasts which are in contact with the foetal blood.
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specific molecular markers based on comprehensive immunostaining,
microarray and RNA-sequencing analyses (Table ).

Pan-trophoblast

GATA3, TFAP2C and KRT7 are the consensus markers of ‘first tri-
mester trophoblasts’ in vivo and in vitro (Lee et al., 2016). Importantly,
Lee et al. confirmed the above consensus markers with post-
implantation placenta, which assures GATA3, TFAP2C and KRT7 are
expressed in CT, ST and EVT (Table I) (Lee et dl., 2016; Liu et dl.,
2018; Okae et al., 2018; Vento-Tormo et al., 2018). Therefore, CT,
ST and EVT can be distinguished using these consensus markers in
combination with other markers. Overall, Lee et al. summarised the
criteria of trophoblast as (i) the demethylation of ELF5 promoter, (ii)
protein expression of GATA3, TFAP2C and KRT7, (jii) negative ex-
pression of HLA-A and HLA-B and (iv) high expression of microRNA
in the chromosome 19 microRNA cluster (C19MC).

In addition to the consensus markers described above, GATA2 and
KRTI19 are persistently expressed markers for TE, CT, ST and EVT
(Table 1) (Shorter et al., 1993; Aghajanova et al., 2012; Assou et dl.,
2012; Yan et al., 2013; Blakeley et al., 2015; Petropoulos et al., 2016;
Liu et al. 2018; Okae et al., 2018; Stirparo et al., 2018). GATA3 and
TFAP2C are also consensus markers and expressed in pre-
implantation trophoblast (Yan et al, 2013; Blakeley et al, 2015;
Nakamura et al., 2016; Petropoulos et al., 2016; Deglincerti et dl.,
2016a; Stirparo et al., 2018). Therefore, these four genes mark tro-
phoblast in the first trimester (gestational Weeks [-12).

On the other hand, KRT7 expression is controversial in human TE.
KRT7 expression was observed in human TE with immunostaining
(Niakan and Eggan, 2013), but single-cell RNA-sequencing (scRNA-
seq) data of pre-implantation embryo revealed TE expresses KRT7 at
the same low level as epiblast and primitive endoderm (Yan et al.,
2013; Blakeley et al., 2015; Petropoulos et al., 2016; Stirparo et dl.,
2018). Peri-implantation in vitro culture of human embryo demon-
strated KRT7 expression in CT just after implantation (Table I)
(Shahbazi et al., 2016; Deglincerti et al., 2016a). scRNA-seq data dur-
ing peri-implantation in vivo have not been published, because speci-
mens for this stage are rare. For these reasons, in this review, we
assume KRT7 is expressed just after implantation.

Negative molecular markers are also useful. HLA-A, HLA-B, THY'|
(CD90) and VIM are non-trophoblast markers (Shorter et al., 1993;
Yan et al, 2013; Blakeley et al., 2015; Petropoulos et al., 2016; Liu
et al, 2018; Okae et al., 2018; Stirparo et al, 2018). In addition to
these positive and negative markers, evaluating trophoblast cell sub-
types in
recommended.

combination  with  specific molecular markers s

Trophectoderm

TE is trophoblast during the pre-implantation stage. Cdx2 is specifically
expressed in mouse TE and is an important cell lineage determinant
between mouse ICM and TE (Niwa et al., 2005). Previous reports
also used this gene as a TE marker in human (Table I) (Deglincerti
et al., 2016b; Shao et al., 2017; Iwasawa et dl., 2019). However, other
reports showed that CDX2 is expressed only partially in human TE

(Chen et al., 2009; Niakan and Eggan, 2013; Petropoulos et al., 2016;
Stirparo et al., 2018), and CDX2 positive cells were contained in first-
trimester placenta as residual TE (Hemberger et dl., 2010; Horii et dl.,
2016; Haider et al., 2018; Soncin et al., 2018). To date, there are no
specific markers of human TE.

Cytotrophoblast

For the assessment of CT, we can use multiple consensus markers of
trophoblast. The identification of CT-specific markers can distinguish
CT from other cell types in vitro or in vivo. CT expresses TP63, VGLLI
and ITGA6 (CD49f) specifically (Table 1) (Damsky et al., 1992; Shih
and Kurman, 2004; Kalhor et al., 2009; Knofler and Pollheimer, 2013;
Okae et al., 2018; Soncin et al., 2018). ITGA6 is a cell surface protein
that constitutes the principal adhesion receptors for laminin. Stem cell
niches have abundant laminin, and ITGA6 plays a role in stemness (cell
proliferation and self-renewal) (Krebsbach and Villa-Diaz, 2017).
Reflecting the proliferative capacity of CT, a subset of CT expresses
Ki67 (MKI67) (Haider et al., 2018; Lee et al., 2018), the positive ratio
of which decreases with passing gestational weeks (Arnholdt et al.,
1991).

Syncytiotrophoblast

Lee’s consensus markers of trophoblast, such as GATA3, TFAP2C
and KRT7, are all expressed in ST (Liu et al., 2018; Okae et al., 2018),
although they also are considered CT and EVT markers (Lee et al,
2016). On the other hand, the representative cell surface marker of
ST is SDCI (CD138) (Jokimaa et al., 1998; Okae et dl., 2018). A com-
bination of these four markers and ST-specific markers (Table I) may
provide a more robust definition of ST in vitro and in vivo. ST cells are
mitotically inactive (Kié7 negative) (Turco et al., 2018) and secrete pla-
cental specific hormones such as hCG (human chorionic gonadotro-
pin), hPL (human placental lactogen) and PSG (pregnancy-specific
glycoprotein) into the maternal systemic circulation. The fusion of CT
to make ST is initiated by the upregulation of ERVW-1 (Syncytin-1)
(Mi et al., 2000; Yu et al., 2002; Frendo et al., 2004).

Extravillous trophoblast

EVT also expresses the consensus markers GATA3, TFAP2C and
KRT7 (Lee et al.,, 2016; Liu et al.,, 2018; Okae et al., 2018), and HLA-
G is widely accepted as a specific cell surface marker of mature EVT
(Table I) (Heap et dl., 1988; Tarrade et al, 2001; Shih and Kurman,
2004; Mao et al.,, 2007; Kalhor et al., 2009; Benirschke et al., 2012c;
Knofler and Pollheimer, 2013; Liu et al., 2018; Okae et al, 2018).
Although CT and ST express neither Class | (HLA-A, HLA-B, HLA-C,
HLA-E, HLA-F and HLA-G) nor Class Il (HLA-DR, HLA-DQ and
HLA-DP) HLA on their surfaces, EVT expresses HLA-C and HLA-E
Class | molecules (Loke, 1989). HLA-C and HLA-G binds maternal
killer immunoglobulin-like receptors and leukocyte immunoglobulin-like
receptors, respectively (Sharkey et al, 2008; Parham and Moffett,
2013; Vento-Tormo et al., 2018), therefore, these HLA ligands facili-
tate immune tolerance (Hunt et al., 2005). ITGAS is a cell surface pro-
tein that constitutes the principal adhesion receptors for fibronectin,
which is one of the main constituents of the extracellular matrix near
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the cell column (Humphries et al., 2006). EVT deposits high doses of
fibronectin, and the expression of ITGAS facilitates cell-matrix binding
(Earl et al., 1990; Damsky et al., 1992). In addition, EVT invades the
decidual layer when it expresses ITGAI, and ITGAI is essential for
the invasion (Damsky et al., 1992; 1994). CD 146 (also known as mela-
noma cell adhesion molecule, MCAM) is another representative cell
surface marker of EVT (Table I) (Shih, 1999; Pujades et al., 2002;
Wang and Yan, 2013; Lee et al., 2018; Turco et al, 2018), but it is
also expressed by neural crest cells, ganglion cells and activated T lym-
phocytes (Shih, 1999; Pujades et al., 2002; Wang and Yan, 2013). EVT
is classified as two types based on its location and immunohistochemi-
cal profiles: implantation site EVT and chorionic laeve EVT. The major
function of implantation site EVT is to establish the maternal—foetal cir-
culation by remodelling the maternal spiral arteries during early preg-
nancy, while the function of chorionic laeve EVT is unknown (Shih
et al., 2018). MUCH4 is expressed in implantation site EVT, but not
chorionic laeve EVT (Table I) (Mao et al., 2007). The significance of
discriminating implantation site EVT and chorionic laeve EVT is the
gestational (GTDs).
Immunohistochemistry has revealed that the origin of several GTDs

classification  of trophoblastic ~ diseases
differs with the EVT type. For example, exaggerated placental site and
placental site trophoblastic tumour arise from implantation site EVT,
and placental site nodule and epithelioid trophoblastic tumour arise
from chorionic laeve EVT (Heller, 2018; Shih et al., 2018; Kaur and
Sebire, 2019). It should be noted that MUC4 cannot identify GTD

subtypes.

Stroma cell

Stroma cells, which are derived from extra-embryonic mesenchyme,
are located in the placental villous core (Fig. 4A) (Kaufmann et al.,
1977). They provide mechanical support to the villous structures and
control intervillous blood flow (Demir et al., 1997). Stroma cells ex-
press HLA-A, HLA-B, THY| (CD90) and VIM, in contrast to tropho-
blasts, which do not express these molecular markers. The high
expression of HLA-A and HLA-B in stroma cells indicates that these
cells are derived from ICM, not TE. Furthermore, stroma cells do not
express the trophoblast markers GATA2, GATA3, TFAP2C, KRT7 or
KRTI19 (Liu et al, 2018; Okae et al., 2018).Despite the above knowl-
edge, the development of stroma cells over gestation is unclear at this
time.

Hofbauer cell

Hofbauer cells are macrophages in the stroma of chorionic villi (Seval
et al., 2007; Schliefsteiner et al., 2017; Reyes and Golos, 2018), which
often localise close to FECs and CT (Fig. 4A) (Cervar et al., 1999;
Khan et al., 2000; Seval et al., 2007; Loegl et al., 2016; Reyes and
Golos, 2018). These macrophages are derived from foetal mesenchy-
mal cells, not trophoblast. Hofbauer cells are characterised by general
macrophage markers, such as CDI4, FCGRIA (CDé4), CDé8,
CD163 and LYVEI (Seval et al., 2007; Schliefsteiner et al., 2017; Reyes
and Golos, 2018; Vento-Tormo et al., 2018).

Hofbauer cells secrete the pro-angiogenic molecules VEGF and
FGF2 (Loegl et al, 2016). They also secrete EGF, which promotes

trophoblast proliferation (Maruo et al, 1995; Leach et al., 2004,
Barber et al., 2005; Johnstone et al., 2005; Vento-Tormo et al., 2018).
In addition, they express sprouty proteins that regulate branching mor-
phogenesis (Anteby et al., 2005). Therefore, Hofbauer cells can play a
role in vascular conditioning, the proliferation of CT and the branching
morphogenesis of placental villi during development by paracrine sig-
nals and cell-to-cell crosstalk in the placental villi. (Cervar et al., 1999;
Khan et al., 2000; Seval et al., 2007; Vento-Tormo et al., 2018). Like
stromal cells, the development of Hofbauer cells over gestation is
unclear at this time.

Foetal endothelial cell

FECs are of mesenchymal origin and lie between circulating foetal
blood and the placental stroma (Fig. 4A). In short, they are vascular
endothelial cells in the chorionic villi and are characterised by general
endothelial markers such as PECAMI| (CD31) and CD34 (Mutema
and Stanek, 1999; Vento-Tormo et al, 2018). However, FECs are
characterised by no specific marker and can only be distinguished from
other cells based on their location in the chorionic villi.

Summary

The majority of molecular markers regarding placental development
are intracellular markers, and few cell surface markers have been iden-
tified (Table I). Cell surface markers are valuable for trophoblast isola-
tion from placenta and the evaluation of cell lines, because they allow
live trophoblasts to be detected with antibodies. Cell surface antibod-
ies also provide qualitative and defined endpoints, and they can be
used to elucidate the timing and order of molecular changes.
Combinations of cell surface markers can be used to identify the tro-
phoblast state, and thus provide a quality standard for trophoblast
experiments.

Models for human trophoblast
research

Common in vitro models of human trophoblast include primary cul-
tures, placental villous explants, choriocarcinoma cell lines and immor-
talised cell lines derived from placenta. Additionally, BMP-treated
human embryonic and induced pluripotent stem cells (ESCs and iPSCs,
respectively) have been established, and recent studies have reported
the long-term culture system of human CT, both monolayer and
spheroid. The characterisation of human trophoblast cell lines is sum-
marised in Table II.

Conventional human trophoblast cell lines

As conventional human trophoblast cell lines, primary trophoblast cell
culture, placental villous explant, trophoblast tumour-derived cell lines
(choriocarcinoma cell lines) and immortalised trophoblast cell lines have
all been used in placental research because of their expected similarities
with in vivo trophoblast (Table I). The first two models are culture sys-
tems and cannot be expanded for a long time. Choriocarcinoma cell
lines, such as BeWo, JEG-3 and JAR, have been around for five decades
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. (I Diffuse placenta, seen in horses and pigs, has a large surface area at-

tached to the uterine wall. (2) Cotyledonary placenta, seen in goats and cows, is characterised by many ‘polka dot’ like cotyledons. (3) Zonary pla-
centa, seen in dogs and cats, is characterised by an equatorial placenta band surrounding the chorionic sac. (4) Discoid placenta, seen in humans,

monkeys, mice, rats and rabbits, is characterised by a single (discoid) or d

ouble (bidiscoid) disc. (B) Histological classification. Dashed lines indicate

the decidual membrane, which peels off during delivery. (1) Epitheliochorial placenta, seen in horses and pigs, is the most superficial type, lacking sig-

nificant invasion to the maternal tissues. In epitheliochorial placenta, there
epithelial cells, trophoblasts, foetal stroma cells and foetal endothelia. (2) |

are six layers: maternal endothelia, endometrial stroma cells, endometrial
n syndesmochorial placenta, seen in goats and cows, among the six layers

in epitheliochorial placenta, endometrial epithelial cells are absent. (3) In endotheliochorial placenta, seen in dogs and cats, endometrial epithelial cells
and endometrial stroma cells are lost between the maternal and foetal sides. (4) Haemochorial placenta, seen in humans, monkeys, mice, rats and
rabbits, is the most invasive type. There are no maternal endothelia, endometrial stroma cells or endometrial epithelial cells. Therefore, the maternal

erythrocytes are in direct contact with foetal tissues.

(Pattillo and Gey, 1968; Pattillo et al, 1968ab, 1971a,b; Kohler and
Bridson, 1971), but they have various chromosomal aberrations (Poaty
et al., 2012). Owing to widespread transfection methods, immortalised
cells, such as HTR-8/SVneo, Swan 7| and TCL-|, have also been
established (Graham et al., 1993; Lewis et al., 1996; Straszewski-Chavez
et al., 2009). Choriocarcinoma and immortalised cell lines overcome
the problem of long-term passage, but their genome-wide DNA meth-
ylation patterns are clearly different from primary trophoblast
(Novakovic et al, 2011). The poor differentiation potency and tran-
scriptome discrepancy are important limitations for human placental re-
search (Bilban et al., 2010; Apps et dl., 201 1; Ji et al., 2013).

Pluripotent stem cell-derived trophoblasts

Human ESCs and iPSCs differentiate into trophoblast lineage in a
species-dependent manner (Xu et al., 2002; Sudheer et al., 2012; Amita

et al, 2013; Li et al, 2013; Yang et al, 2015; Horii et dl., 2016; Lee
et al,, 2016; Yabe et al., 2016; Horii et al., 2019). The conventional way
to induce trophoblast lineage is to expose these pluripotent stem cells
(PSCs) to bone morphogenetic protein-4 (BMP4) (Xu et al., 2002), and
the induced trophoblasts were recently shown to express the distinctive
placental signature (Roberts et al., 2018). Several efficient differentiation
protocols for trophoblast have been published: (i) BAP treatment
(BMP4 plus the activin A signalling inhibitor A83-01 and the FGF2 signal-
ling inhibitor PD173074) (Amita et al., 2013; Yang et al, 2015; Yabe
et al., 2016), and (i) BMP4 plus a Wnt/beta-catenin inhibitor (Horii
et al., 2019). The PSCs can thus terminally differentiate into hCGRP™®
ST-like cells and HLA-GP°S®™¢ EVT-like cells. However, whether they dif-
ferentiate into trophoblast remains controversial. First, BMP-treated
PSCs do not agree with the criteria of first-trimester trophoblast, that is,
they express HLA-A and HLA-B and have a low expression of CI9MC
microRNA  (Lee et al, 2016). In addition, these models are
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contradictory in developmental biology, as conventional human PSCs
correspond to the post-implantation stage, which is different from
mouse ESCs (Nakamura et al, 2016), and the lineage segregation be-
tween ICM and TE takes place at the blastocyst stage (De Paepe et dl.,
2013; Petropoulos et al., 2016; Rossant and Tam, 2018; Leng et al.,
2019). To solve these problems, a new type of stem cell has been
established; expanded potential stem cells retain the ability to differenti-
ate into any embryonic lineage as well as trophoblasts (Gao et dl.,
2019), although this model has not been fully evaluated.

Trophoblast stem cells and trophoblast
organoids

New culture systems for human trophoblast stem cells (monolayer,
2D) and trophoblast organoids (spheroid, 3D) allow for long-term
expanding trophoblast, thus providing the next generation of human
trophoblast cell lines and human placental embryology (Table II)
(Haider et al., 2018; Okae et al., 2018; Turco et al., 2018). Since both
trophoblast stem cells and organoids meet the first-trimester tropho-
blast criteria, these culture systems are considered improvements to
previous trophoblast cell lines (Haider et al., 2018; Okae et al., 2018;
Turco et al.,, 2018). Trophoblast stem cells derived from human blas-
tocyst and first-trimester placenta behave as long-term expanding CT
and can differentiate into ST and EVT with high purity (Okae et dl.,
2018). ST specification from human trophoblast stem cells is induced
by forskolin (cAMP activator), whereas EVT specification is induced by
Neuregulin-1, ALK4/ALK5/ALKé inhibitor and Matrigel (Okae et dl.,
2018). Trophoblast organoids derived from first-trimester placenta be-
have as long-term expanding 3D villous trophoblasts, consisting of CT
and ST (Haider et al., 2018; Turco et al., 2018). In these organoids, ST
are surrounded with CT without stroma cells (Haider et al., 2018;
Turco et al., 2018). This reversed polarity is characteristic of ordinary
organoid culture systems (Sato et al, 2009, 201I; Bartfeld and
Clevers, 2015; Bartfeld et al., 2015). Trophoblast organoids can differ-
entiate into HLA-GP*™® EVT cells under Okae’s EVT differentiation
medium (Turco et al, 2018) or regulation of Whnt signalling (Haider
et al, 2018). Although the proliferative capacity of CT decreases
prominently after 10 weeks of gestation (Mayhew, 2014), trophoblast
stem cells and trophoblast organoids from second trimester or term
placenta are strongly needed to model placenta-mediated pregnancy
complications, because complications do not appear until these later
stages.

Placental classification by
animal taxonomical approaches

Species with placenta-like structures

Animals can be grouped as oviparous species, which lay eggs, and
viviparous species, which have placentas and include most mam-
mals. One major characteristic of oviparity is the constant volume
of the egg during development. To excrete nitrogen, the egg pro-
duces uric acid, which maintains the constant egg volume (Baggott,
2009). In contrast, viviparous species produce urine, which is

excreted through the placenta. The placenta itself is classified into
yolk-sac placenta and chorio-allantoic placenta. Yolk-sac placenta
is developed from the yolk sac, in which the allantoic membrane
does not adhere to the chorion, and material exchange occurs be-
tween the mother and the foetus through a part of the yolk sac.
Fish, reptiles and most marsupials have yolk-sac placenta (Freyer
and Renfree, 2009). Chorio-allantoic placenta includes the human
placenta. Here, the allantoic membrane and serosa coalesce to
form the chorio-allantoic membrane, develop blood vessels in the
mesodermal part of the chorio-allantoic membrane and adhere
closely to the maternal endometrium. Placentalia (Eutheria) have
chorio-allantoic placenta as too does the marsupial bandicoot. The
subclade Euarchontoglires in  Placentalia consists of Glires and
Euarchonta; Glires includes Rodentia, and Euarchonta includes
Primates.

Structural classification of the placenta

Chorio-allantoic placenta is grossly classified as the following four types
(Fig. 5A). (i) Diffuse placenta: the placenta is scattered throughout the
surface of the chorion (horses and pigs). (i) Cotyledonary placenta:
the placenta has multiple small placentae isolated on the amniotic
membrane in a mottled pattern (cows and sheep) (Furukawa et dl,
2014). (i) Zonary placenta: the placenta is shaped like a band around
the centre of the amniotic membrane (dogs and cats). (iv) Discoidal
placenta: the placenta forms a discoid region in the uterus (humans,
macaques, mice and brown bears).

The placenta is responsible for nutrient and gas exchange between
the mother and foetus at the surface where the chorion and allantoic
membrane are facing. Although the structure on the foetal side typi-
cally has an epithelial cell layer (trophoblast cell layer), connective tis-
sue and capillary vessels, the structure on the maternal side varies
across species. Therefore, the placenta is also classified histologically
into the four types below (Fig. 5B) (Wagner et al, 2014). (i)
Epitheliochorial placenta: the maternal side is composed of capillaries,
connective tissue and an endometrial epithelium, and the endome-
trium is in contact with the maternal—foetus boundary (horses and
pigs). (i) Syndesmochorial placenta: there is no epithelium on the ma-
ternal side, and the connective tissue is in contact with the maternal—
foetus boundary (cows and sheep). (i) Endotheliochorial placenta:
there is no connective tissue on the maternal side, and the endothelial
cells of the capillary are in contact with the maternal—foetus boundary
(dogs and cats). (iv) Haemochorial placenta: there are no capillary ves-
sels on the maternal side, thus, maternal blood is in direct contact
with the foetus (humans, macaques and mice).

Notably, epitheliochorial placenta has three layers (capillaries, con-
nective tissue and an endometrial epithelium), and haemochorial pla-
centa has no cell layer between the maternal blood and trophoblast.
These histological differences suggest that maternal damage during de-
livery is relatively large in the haemochorial placenta (Abrams and
Rutherford, 2011). In contrast, the extent of maternal damage has not
been established for epitheliochorial and syndesmochorial placenta be-
cause they have endometrial epithelium or endometrial stroma cells
next to the decidua membrane.
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Table 11l Characterisation of human, macaque (subfamily of old world monkey) and mouse placenta.

Human
Gestation time (days) 280
Gross morphology Monodiscoid

Historical morphology Villous haemochorial
Layers between maternal and foetal blood 2

Site of attachment of TE to uterus Embryonic, polar

Implantation type Interstitial
Endometrial reaction Massive
Trophoblast invasion Deeper
Interstitial trophoblast Ordinary
Primitive syncytium +

Ectoplacental cone -

Villous/labyrinth function
Hormone production

Pre-implantation TE marker (consistent)

Pre-implantation TE marker (different) KLF5|, EOMES],

ETS2], ELF5]

TE, trophectoderm.

Differences in placentation
between humans and other
species

Research on placental development with
other species

Our understanding of trophoblast has been refined with long-time re-
search using different animal models, but mainly mouse and rat.
Studies with mouse trophoblast stem cells (Tanaka et al., 1998), which
were established 20 years ago, model mouse trophoblast development
in vivo with remarkable accuracy (Perez-Garcia et al., 2018). An analy-
sis of mutant mouse trophoblast stem cells and conditional knockouts
suggests that early miscarriage (embryonic Days 9.5-14.5) is usually as-
sociated with severe placental malformations (Perez-Garcia et al.,
2018). Although mouse and human placentation are not exactly the
same, mouse trophoblast stem cells provide a useful platform for pla-
cental research, because experiments in vivo are easy and the gesta-
tional period is short.

Other popular animal model is macaques (a subfamily of old world
monkey) and marmoset (a subfamily of new world monkey). In gen-
eral, these monkeys have served as valuable models for human dis-
eases and treatments due to their close similarities to humans in terms
of genetic and physiological features (Chan, 2013). Monkeys have also
been studied for many years in placental research (Myers, 1972;
Hearn et al., 1988; Enders, 1995, 2000; Carter and Pijnenborg, 201 I;
Carter et al., 2015). Past studies were mainly based on morphological
approaches, although scRNA-seq approaches have begun recently
(Nakamura et al., 2016). In addition, the in vitro culture of macaque
embryos has been established (Ma et al, 2019; Niu et al, 2019).

Maternal—foetal transport

Macaque Mouse
155 20
Bidiscoid Monodiscoid

Villous haemochorial Labyrinth haemochorial

2 3

Embryonic, polar Abembryonic, mural

Superficial Superficial
Moderate Little
Superficial Superficial
Rare Rare
+ —
- +

Maternal—foetal transport
Hormone production

CDX21, GATA21, GATA31, TFAP2CT

KLF57, EOMES],
ETS2], ELF5]

Maternal—foetal transport

KLF57, EOMEST,
ETS21, ELF5]

Great apes (gorillas, chimpanzees, bonobo and orangutans) are closely
related to humans and have very similar placenta structures (Carter
and Pijnenborg, 201 I; Pijnenborg et al., 201 |). However, many govern-
ments ban or severely restrict research on great apes, because great
apes are cognitively similar to humans (Knight, 2008).

As useful as these models are, placenta formation between humans
and other animal species differs in many ways. Below we summarise
some of these differences.

Gross and histological differences of
placenta

As described above, humans, other primates and mice all have discoi-
dal placenta, but the shapes are different. Humans, great apes and
mice have a single placental disc, but macaques and marmosets have
bidiscoidal placenta (Table Ill) (Myers, 1972). Some researchers have
observed that a secondary attachment generates bidiscoidal placenta
(Carter et dl., 2015), but the true cause is a matter of debate. In terms
of histomorphology, primates and mice have the same haemochorial
placenta among the four types of histological classification in Fig. 5B.
Implantation begins at the blastocyst stage in human (Day 7) (O’Rahilly
and Miiller, 1987) and mouse (Day 4) (Theiler, 1972), but at the em-
bryonic period in cow (Day 20) (King et al., 1980; Wathes and
Wooding, 1980) and horse (Day 35) (Bowen and Burghardt, 2000;
Allen and Stewart, 2001). Since mouse placenta shares more similari-
ties to human placenta compared with other species in early placental
development except those whose experimental use is greatly re-
stricted, like great apes, toxicity studies with mouse have been used to
evaluate teratogenicity and developmental toxicity (Pijnenborg et al.,
1981).
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Nevertheless, mouse and human placenta have significant structural
differences. The haemochorial placenta is classified into villous type
(humans, apes and old world monkeys) and labyrinth type (mice, rats
and new world monkeys) (Fig. 5, Table Ill). Human villous haemocho-
rial placenta has two layers of trophoblasts that separate maternal
blood from foetal blood (Fig. 5A, Table Ill). The bichorial trophoblast
layers consist of a single syncytial layer and a single cytotrophoblastic
layer (Rossant and Cross, 2001; Soncin et al., 2015). The cytotropho-
blastic layer becomes discontinuous and covers 20% of chorionic villi
in term placenta, whereas the syncytial layer does not change
(Benirschke et al., 2012a). On the other hand, mouse labyrinth hae-
mochorial placenta has three layers of trophoblasts between the ma-
ternal and foetal blood (Table Ill) (Enders and Blankenship, 1999). The
mouse placenta is called labyrinth because of its maze-like appearance
in cross-section (Fig. 5B). The trichorial trophoblast layers consist of
two syncytial layers and a single mononuclear layer of unknown func-
tion. The labyrinth zone of mouse placenta does not have a prolifera-
tive cytotrophoblastic layer (Simmons, 2013). These species
differences may be related to the much shorter duration of mouse
pregnancies than human. From the perspective of drug and nutrient
diffusion, the ability for molecules to cross the placenta is strongly
influenced by the number or the thickness of cell layers between the
maternal and foetal blood (Mihaly and Morgan, 1983; Schroder, 1995;
Pere, 2003; Furukawa et al., 2014). It is important to consider the di-
versity of the histological structures for drug metabolism and placental
transfer, although active and facilitated transport also have effects.

Another difference between mouse and human is the supplied
blood volume. In the villous haemochorial placenta (human), maternal
spiral arteries open directly into the intervillous spaces. The chorionic
villi protrude into the intervillous space and are bathed directly in ma-
ternal blood (Furukawa et al., 2014). Interestingly, maternal blood flow
regularly spouts into the intervillous space, as if washing the foetal villi
(Dancis and Schneider, 1986; Burton et al., 2009). In contrast, mater-
nal blood is exposed to a large amount of foetal blood indirectly
through the trophoblast layers in labyrinth haemochorial placenta
(mouse).

In addition, several articles have reported that placental drug trans-
fer is determined largely by placental blood flow (Mihaly and Morgan,
1983; Schroder, 1995; Furukawa et al., 2014). Circulation between the
mother and foetus also affects the transfer ratio of nutrients ([concen-
tration in foetus]/[concentration in maternal plasma]) (Tarui et dl.,
2018). In placental circulation, the flow rate and the flow direction af-
fect the transfer ratio (Faber et al., 1992; Faber, 1995; Perazzolo et al.,
2017). Mouse placenta has countercurrent blood flow (opposite direc-
tions) through the maternal and foetal vessels (Faber et al, 1992;
Adamson et al., 2002). On the other hand, human chorionic villi are
exposed to the maternal pool of blood in the intervillous space (Costa
et al., 1992; Acharya et al., 2016; Plitman Mayo, 2018), resulting in a
lower transfer ratio than the countercurrent system (Faber et dl.,
1992). Although monkeys and humans share more similar placental
development compared with mice, it is difficult to conduct large-scale
toxicity tests with monkeys. At the same time, when using mouse
models, the structural differences between species must be
considered.

Morphology during implantation

The first morphological difference between primates (human and mon-
key) and rodents (mouse and rat) is the direction of implantation. The
polar TE overlying ICM is the site of primate implantation (Herzog,
1909), whereas rodent implantation is initiated in the opposing mural
TE (Table lll) (Wimsatt, 1975). Despite the difference in the direction
of implantation, the main component of the placenta originates from
polar TE in both groups. The distinct behaviour of polar and mural TE
has been proposed to result from differential signal transduction from
the epiblast (Gardner and Johnson, 1972; Gardner et al., 1973;
Papaioannou, 1982).

The blastocysts of macaque and mouse remain in the uterine cavity;
in other words, the blastocysts embed partially within the uterine cav-
ity. This type of implantation is called superficial implantation. On the
other hand, the implantation type of human is interstitial (Table III)
(Chapman et al., 2013). That is, the human blastocyst embeds entirely
within the endometrial connective tissue and there is a massive endo-
metrial reaction. Thereafter, EVT invades through the decidua to the
inner one-third of the myometrium (interstitial invasion) (Ferretti et al.,
2007).

The primitive syncytium forms lacunae filled with maternal blood
(Hertig et al., 1956; Enders, 1989). The lacunae coalesce with each
other gradually and become one large intervillous space. The primitive
syncytium is observed only in primates and guinea pig (Enders and
Schlafke, 1969; Schlafke and Enders, 1975; James et al., 2012; Soares
et al., 2018). In contrast, the ectoplacental cone is a specific structure
in mice and rats (Table Ill). The ectoplacental cone is a cellular mass
formed by intensive proliferation of polar TE (Amoroso, 1952; Snell
and Stevens, 1966; Barlow and Sherman, 1972; Gardner et al., 1973;
Enders and Blankenship, 1999). It is located in the maternal endome-
trium and contains progenitors for a number of trophoblast subtypes
(Simmons et al., 2007; El-Hashash et al., 2010; Mould et al., 2012).

Predominantly expressed genes of TE

A comprehensive analysis of the expressed genes in mouse, monkey
and human embryos is valuable for understanding trophoblast specifi-
cation. These three animals share certain similarities in that their
trophoblasts express GATA2, GATA3 and TFAP2C (Nakamura et al.,
2016). The main signalling pathway that governs TE specification in the
mouse is HIPPO signalling (Nishioka et al., 2008, 2009), but in human
this is unknown at this time. In addition, unlike in the mouse, the
expressions of EOMES, ETS2 and ELF5, three transcription factors for
TE specification, were undetectable in the human pre-implantation em-
bryo (Table Ill) (Petropoulos et al., 2016; Kubaczka et al., 2017;
Roberts et al., 2018). In particular, EOMES is not expressed in any hu-
man trophoblast subtype. In contrast, Dab2, a primitive endoderm
marker in mouse (Morrisey et al, 2000; Yang et al., 2002; Moore
et al, 2013), is expressed in human TE (Blakeley et al, 2015;
Petropoulos et al., 2016; Stirparo et al., 2018). Thus, some master reg-
ulators in mouse trophoblast lineage are not expressed in human TE,
and the expression timing of other regulators differs in the two ani-
mals. Consequently, it is unclear whether the mechanisms of tropho-
blast differentiation and maintenance are similar among mouse,
monkey and human. In mice, about 70 knockout lines have been
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shown to cause lethality with placenta and placental dysmorphologies
(Perez-Garcia et al., 2018), but these genes have not been examined
in humans. Knockout experiments in human trophoblast cell lines
would therefore be useful. Gene expression has been investigated in
cymolgous monkey in vivo, showing different kinetic gene expression
before and after implantation (Nakamura et al., 2016).

Cell types of trophoblast

Spongiotrophoblasts in mouse are the putative mouse counterpart of
human CT in CT cell columns. Both mouse trophoblast giant cells
(TGGs) and glycogen cells (glycogen trophoblasts), which are derived
from spongiotrophoblasts, are analogous to human EVT (Georgiades
et al, 2002; Cross, 2005; El-Hashash et al., 2010; Soncin et al., 2015)
(Fig. 1B). TGCs have their name because of their ‘giant’ nuclei, which
is caused by DNA synthesis without nuclear division. Human EVT do
not have giant nuclei (Soncin et al., 2015). Although mouse TGCs and
human EVT commonly function as an anchor for the placenta to the
uterus, some functional features of these cells are different. TGCs are
the main endocrine cells producing hormones in mouse placenta,
whereas in humans those cells are ST, and human EVT secrete a small
amount of hormones (e.g. human placental lactogen) (Tarrade et dl.,
2001). Another difference between human and mouse trophoblast is
the invasive capacity. Both TGCs and glycogen cells have little invasive
capacity (Simmons et al., 2007). Human EVT, on the other hand, con-
tributes largely to vascular remodelling of the spiral arteries, which
then dilate (Soncin et al., 2015). It has been reported that all tropho-
blast cell types among monkeys, apes and humans are similar morpho-
logically and functionally (Myers, 1972; Enders, 1995, 2000; Carter
et al, 2015).

Peri-implantation stage research with
experimental animals

Ethics, including the use of experimental animals, will continue to limit
placental research and prevent the use of in vivo human specimens
from reaching the implantation phase. Therefore, placental research
using other animals, such as macaques, for insights of early trophoblast
development is required. Recently, the specification of primordial germ
cells was identified by immunostaining and in situ hybridisation using
macaque embryos during the peri-implantation stage (Sasaki et al.,
2016). Other studies revealed the development trajectories of epiblast,
primitive endoderm, TE and primordial germ cells (Ma et al., 2019;
Niu et al., 2019). In total, our understanding of early human placental
development will depend on a combination of (i) human cells in vitro,
(i) non-human primates in vivo and in vitro and (i) mice in vivo and
in vitro.

Future perspectives

In the past several years, new models of in vitro trophoblast, such as
trophoblast stem cells and trophoblast organoids, have been devel-
oped. Trophoblast organoids still lack blood vessels, stroma cells and
Hofbauer cells compared to in vivo chorionic villi, but in the future,

innovative bioengineering systems will be used to create chorionic villi-
like models or blood-placental barrier-like models (Takebe and Wells,
2019). In addition, crosstalk between the endometrium and tropho-
blasts will be elucidated using endometrial organoids (Boretto et al.,
2017; Turco et al., 2017; Ezashi et al., 2019).

Owing to the advent of high throughput technology, scRNA-seq is
enabling single-cell transcriptome analysis at high resolution (VWagner
et al., 2018), including placental development. Quantifying the tran-
scriptome of individual cells can lead to the discovery new cell types,
reveal cellular heterogeneity (Islam et al., 2014) of the developmental
trajectory (Cheng et dl., 2019), identify gene regulatory mechanisms
and dissect cell—cell interactions. In the past several years, scRNA-seq
has been performed with trophoblasts at the pre-implantation stage
(Yan et al., 2013; Blakeley et al., 2015; Petropoulos et al., 2016) and
peri-implantation stage with in vitro culture systems to study the human
embryo (Zhou et al., 2019; Xiang et al., 2020) and post-implantation
stage (Liu et dl., 2018; Vento-Tormo et al., 2018). These data identi-
fied new maternalfetal interactions and epigenetic programmes. In
this way, scRNA-seq can be a powerful tool for the study of early em-
bryogenesis and reproductive medicine.

Other new methods for placental research, such as single-cell prote-
omics (Su et al.,, 2017; Lundberg and Borner, 2019; Marx, 2019) and
single-cell epigenetics (Clark et al, 2016; Kelsey et al, 2017; Zhou
et al, 2019), are also progressing. Differences in gene expression
among individual cells can be controlled by epigenetic diversity. Single-
cell epigenome methods provide high resolution profiling of DNA
modifications, such as transcription factor binding, histone modifica-
tions and DNA accessibility (Kelsey et al., 2017). These new techni-
ques can reveal trophoblast cell-fate decisions, identity and function in
normal placental development (Kelsey et al, 2017). Additionally,
single-cell western blotting can identify cell-to-cell variations in protein-
mediated cell functions (Hughes et al., 2014).

Conclusion

Cell biological research of the human placenta began five decades ago
with the use of choriocarcinoma and immortalised cell lines (King
et al., 2000; Shiverick et al., 2001). However, these cell lines have tran-
scriptome discrepancy and poor differentiation potency compared to
in vivo CT (Bilban et al., 2010), thus demanding other cells lines. To
evaluate cell lines, new criteria for first-trimester trophoblast were
made (Lee et al., 2016). In addition, more molecular markers, epige-
netic features and morphological appearance of trophoblast subtypes
are also required when selecting new cell lines (Gamage et al.,
2018a,b). In parallel, it is important to recognise species differences in
various features, such as placental structure, early embryonic shape,
implantation type, trophoblast type and gene expression. This review
deals with basic knowledge of various aspects of placental develop-
ment. Compared to other organs, the placenta exhibits great biodiver-
sity among species, but also common features across species.
Although there are ethical and technical constraints, continued efforts
to elucidate human placental development in normal and abnormal
pregnancies are encouraged.
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