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BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are found widespread in drinking water, foods, food packaging materials
and other consumer products. Several PFAS have been identified as endocrine-disrupting chemicals based on their ability to interfere with
normal reproductive function and hormonal signalling. Experimental models and epidemiologic studies suggest that PFAS exposures target the

ovary and represent major risks for women’s health.

OBJECTIVE AND RATIONALE: This review summarises human population and toxicological studies on the association between PFAS
exposure and ovarian function.
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SEARCH METHODS: A comprehensive review was performed by searching PubMed. Search terms included an extensive list of PFAS and
health terms ranging from general keywords (e.g. ovarian, reproductive, follicle, oocyte) to specific keywords (including menarche, menstrual
cycle, menopause, primary ovarian insufficiency/premature ovarian failure, steroid hormones), based on the authors’ knowledge of the topic
and key terms.

OUTCOMES: Clinical evidence demonstrates the presence of PFAS in follicular fluid and their ability to pass through the blood—follicle
barrier. Although some studies found no evidence associating PFAS exposure with disruption in ovarian function, numerous epidemiologic
studies, mostly with cross-sectional study designs, have identified associations of higher PFAS exposure with later menarche, irregular menstrual
cycles, longer cycle length, earlier age of menopause and reduced levels of oestrogens and androgens. Adverse effects of PFAS on ovarian
folliculogenesis and steroidogenesis have been confirmed in experimental models. Based on laboratory research findings, PFAS could diminish
ovarian reserve and reduce endogenous hormone synthesis through activating peroxisome proliferator-activated receptors, disrupting gap
junction intercellular communication between oocyte and granulosa cells, inducing thyroid hormone deficiency, antagonising ovarian enzyme
activities involved in ovarian steroidogenesis or inhibiting kisspeptin signalling in the hypothalamus.

WIDER IMPLICATIONS: The published literature supports associations between PFAS exposure and adverse reproductive outcomes;
however, the evidence remains insufficient to infer a causal relationship between PFAS exposure and ovarian disorders. Thus, more research is
warranted. PFAS are of significant concern because these chemicals are ubiquitous and persistent in the environment and in humans. Moreover,
susceptible groups, such as foetuses and pregnant women, may be exposed to harmful combinations of chemicals that include PFAS. However,
the role environmental exposures play in reproductive disorders has received little attention by the medical community. To better understand
the potential risk of PFAS on human ovarian function, additional experimental studies using PFAS doses equivalent to the exposure levels found
in the general human population and mixtures of compounds are required. Prospective investigations in human populations are also warranted
to ensure the temporality of PFAS exposure and health endpoints and to minimise the possibility of reverse causality.

Key words: perfluoroalkyl and polyfluoroalkyl substances (PFAS) / endocrine-disrupting chemicals (EDCs) / ovary / folliculogenesis /

steroidogenesis

Introduction

According to the definition adopted by the Endocrine Society Scientific
Statement, an endocrine-disrupting chemical (EDC) is ‘a compound,
either natural or synthetic, which, through environmental or inappro-
priate developmental exposures, alters the hormonal and homeostatic
systems that enable the organism to communicate with and respond
to its environment’ (Diamanti-Kandarakis et al., 2009). A variety of
EDCs are used in industrial and consumer applications, such as sol-
vents and lubricants (e.g. polychlorinated biphenyls), flame retardants
(e.g. polybrominated diethyl ethers), pesticides (e.g. dichlorodiphenyl-
trichloroethane and chlorpyrifos) and plasticisers (e.g. phthalates and
bisphenol-A) (Burger et al., 2007; Caserta et al., 201 ). Among them,
perfluoroalkyl and polyfluoroalkyl substances (PFAS) have received
unprecedented attention recently due to nationwide drinking water
contamination and widespread use that impacts up to |10 million
residents in the USA (Environmental Working Group, 2018).

PFAS comprise a large family of manmade fluorinated chemicals that
are ubiquitous environmental toxicants to which humans are exposed
on adaily basis (Trudel et al., 2008). At least one type of PFAS chemical
was detected in the blood of nearly every person sampled in the US
National Biomonitoring Program (CDC, 2019). Specific members of
this family of chemicals are found in many consumer products, such
as non-stick cookware (Teflon) (Bradley et al, 2007; Sinclair et al.,
2007), food packaging materials (Begley et al., 2005; Trier et al., 201 1;
Schaider et al., 2017), stain- and water-resistant coating for clothing,
furniture and carpets (Scotchgard and GoreTex) (Hill et al., 2017; Lee
et al., 2017) and cosmetics and personal care products (Danish EPA,
2018; Boronow etal., 2019). PFAS are also present in fire-fighting foams
(or aqueous film-forming foam, AFFF) widely used in military bases

for crash and fire training (Butenhoff et al., 2006; Trudel et al., 2008;
Kantiani et al., 2010; Kissa, 201 1).

Because PFAS are remarkably widespread in drinking water and
groundwater in the USA and globally, especially on and near industrial
sites, fire-fighting facilities and military installations, they pose a serious
and immediate threat to the communities where the source of drinking
water has been contaminated with PFAS. Although government and
regulatory bodies have been working towards regulations that limit the
production of perfluorooctanesulfonic acid (PFOS) and perfluorooc-
tanoic acid (PFOA), the two primary PFAS compounds that have been
the most extensively manufactured (USEPA, 2016a, 2016b), the phase-
out and ban of PFOA and PFOS have led to an increased usage of
alternative PFAS chemicals (Ateia et al., 2019). Consequently, there is
an urgent need to raise the awareness of the potential threat of PFAS
to human health.

PFAS have been identified as contaminants of concern for repro-
ductive toxicity (Jensen and Leffers, 2008). Observational studies have
shown that PFAS exposure could delay menarche (Lopez-Espinosa
et al, 2011), disrupt menstrual cycle regularity (Zhou et al., 2017),
cause early menopause (Taylor et al, 2014) and premature ovarian
insufficiency (Zhang et al, 2018) and alter the levels of circulating
sex steroid hormones (Barrett et al., 2015). The ovary is the site
of folliculogenesis and is responsible for the proper maturation of
oocytes. It is also the principle site of sex hormone steroidogenesis.
Experimental studies have shown that PFAS exposure is associated
with the depletion of ovarian reserve (i.e. the number of ovarian
follicles and oocytes) (Bellingham et al., 2009; Dominguez et al., 2016;
Feng et al., 2015, 2017; Chen et al., 2017; Du et al., 2019; Hallberg
et al., 2019; Lopez-Arellano et al., 2019) and inhibition steroidogenic
enzyme activities (Shi et al., 2009; Chaparro-Ortega et al., 2018;
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Wang et al., 2018a). Disruption of this finely controlled network may
have physiologic impacts beyond the reproductive system, affecting the
overall health of girls and women.

Growing evidence has suggested that the ovaries may be a poten-
tial target for PFAS toxicity; however, a comprehensive review of
experimental and human studies for the effects of PFAS on normal
ovarian function has not previously been reported. In this review, we
summarise the sources and pathways of PFAS, describe the processes
of ovarian folliculogenesis and steroidogenesis, review the state of the
science regarding associations between PFAS exposures and ovarian
function in experimental and epidemiological studies, identify gaps in
the current data and outline directions for future research.

Methods

A thorough search was carried out for relevant articles in order
to ensure a comprehensive review on PFAS exposure and ovar-
ian function. We searched PubMed (https://www.ncbi.nlm.nih.gov/
pubmed) through August 2019. The search terms used included PFAS
search terms (perfluoroalkyl, polyfluoroalkyl, perfluorinated, fluoro-
carbons, perfluorobutanoic acid, perfluoropentanoic acid, perfluoro-
hexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, perflu-
orononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid,
perfluorododecanoic acid, perfluorobutane sulfonic acid, perfluoro-
hexane sulfonic acid, perfluoroheptane sulfonic acid, perfluorooctane
sulfonic acid, perfluorooctane sulfonamide, PFBA, PFPeA, PFHXxA,
PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoA, PFBS, PFHxS, PFHpS,
PFOS, and PFOSA) and outcome search terms (ovary, follicle, oocyte,
menarche, menstrual cycle, menopause, primary ovarian insufficiency,
premature ovarian failure, steroid hormones, polycystic ovarian syn-
drome and ovarian cancer). In addition, we manually reviewed the
reference lists of identified articles.

Basic Principles of PFAS

The term PFAS refers to perfluoroalkyl and polyfluoroalkyl substances,
alarge group of manmade chemicals with the distinguishing structure of
a chain of carbon atoms (forming an ‘alkyl’) that has at least one fluorine
atom bound to a carbon. Details of PFAS terminology, classification
and origins can be found elsewhere (Buck et al., 201 I; Interstate
Technology Regulatory Council, 2017). Note that use of non-specific
acronyms, such as perfluorinated compound (PFC), should be avoided
in the scientific publications as it has hampered clear communications
in researchers, practitioners, policymakers and the public.
Perfluoroalkyl substances are fully fluorinated molecules in which
every hydrogen atom bonded to a carbon in the alkane backbone
(carbon chain) is replaced by a fluorine atom, except for the carbon at
one end of the chain that has a charged functional group attached. The
carbon—fluorine bond is extremely strong and renders these chemicals
highly resistant to complete degradation. The basic chemical structure
of perfluoroalkyl substances can be written as C,Fyny| — R, where
‘CnFany 1’ defines the length of the perfluoroalkyl chain tail with n > 2,
and ‘R’ represents the attached functional group head (as shown in
Fig. I). PFOA and PFOS (so-called C8 compounds) have been the most

a. Basic structure C,Foni1R

b. PFCAs C,F2,+1COOH

c. PFSAs C,F2,+1S03H

d. PFOS F3C-CF,~-CF,-CF,~-CF,-CF,~- CF,- CF,-SO;H
e. PFOA F3C-CF,-CF,-CF,-CF,-CF,- CF,- COOH

f. PFHxS F3;C-CF,-CF,-CF,-CF,-CF,-S03;H

g. PFNA F3C-CF,-CF,-CF,-CF,-CF,- CF,- CF,- COOH

Figure | The chemical structures of perfluoroalkyl sub-
stances. a. The basic chemical structure of perfluoroalkyl substances,
where ‘CpFony |’ represents the length of the perfluoroalkyl chain and
‘R’ defines the functional group. c. The general chemical structures of
perfluoroalkyl carboxylic acids (PFCAs) with the functional group of —
COOH. d. The general chemical structures of perfluoroalkane sulfonic
acids (PFSAs) with the functional group of —SO3H. d—g. The chemical
structures of commonly detected perfluoroalkyl substances, including
perfluorooctane sulfonic acid (PFOS), perfluorooctane carboxylic acid
(PFOA), perfluohexane sulfonic acid (PFHxS) and perfluorononanoic
acid (PFNA).

extensively produced and studied PFAS homologues. Perfluoroalkyl
acids (PFAAs) are some of the most basic PFAS molecules and are
essentially non-degradable. PFAAs contain three major groups on
the basis of the functional group at the end of the carbon chain:
perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids
(PFSAs) and perfluoroalkyl phosphonates (PFPAs) or perfluoroalkyl
phosphinates (PFPiAs).

Polyfluoroalkyl substances differ from perfluoroalkyl substances by
the degree of fluorine substitution in the alkane backbone: at least one
carbon must not be bound to a fluorine atom and at least two carbons
must be fully fluorinated. The fluorotelomer substances are a subset
of polyfluoroalkyl substances because they are oligomers with low
molecular weight produced by a telomerisation reaction. Some impor-
tant examples of fluorotelomer substances are fluorotelomer alco-
hol (FTOH) and perfluorooctane sulfonamidoethanol (FOSE). Since
polyfluoroalkyl substances have a carbon that is lacking fluorine sub-
stitution, this weaker bond increases potential for degradation (Buck
et al., 2011). For example, FTOH and FOSE can be transformed
biologically or abiotically to PFOA and PFOS.

In addition to the descriptions above, PFAS can also exist as poly-
mers. These PFAS polymers are large molecules formed by joining
many identical small PFAS monomers. Current information indicates
that the non-polymer PFAS constitute the greatest risk for environ-
mental contamination and toxicity, although some PFAS polymers can
be degradable to basic PFAS.

Previous studies have evaluated daily exposure in populations around
the world (Fromme et al., 2007; Tittlemier et al., 2007; Ericson et al.,
2008; Trudel et al., 2008; Ostertag et al., 2009; Haug et al., 2010;
Zhang et al., 2010; Renzi et al., 2013; Heo et al., 2014). Although it

0202 Joquisidag 0 uo 1s9Nb AQ GOY8Y8S/PZ./S/9Z/a10Ie/pdNWNY/Wod dno-olwapese)/:sdjy Woj POPEOJUMOQ


https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed

PFAS and the ovary

727

Table I Sources and pathways of human exposure to PFAS.

Sources

Dietary sources

Fish and shellfish

Drinking water

Food-packaging materials

Non-stick cookware

Others (including dairy products, eggs, beverages and vegetables)
Non-dietary sources

Indoor air

Indoor dust

Soil and sediment

Impregnation spray (for furniture and carpet)

Cosmetics

Other consumer products (including skin waxes, leather samples andoutdoor textiles)

Pathways

Environment/Ingestion
Ingestion
Ingestion
Ingestion

Ingestion

Inhalation
Inhalation/ingestion
Environment
Inhalation/dermal absorption
Dermal absorption

Dermal absorption

is difficult to compare concentrations among populations because of
differences in participant characteristics (e.g. age, sex and geographical
locations), the ranges of PFAS serum concentrations are remarkably
similar worldwide. Exposure to PFAS in the general population is at
lower levels compared to those affected by occupational exposure
or local contaminations (ATSDR, 2018). Multiple sources of potential
exposure to PFAS have been previously identified in the general pop-
ulation. These sources include diet (Tittlemier et al., 2007; Trudel et
al., 2008; Vestergren and Cousins, 2009; Haug et al., 201 1a; Domingo
and Nadal, 2017), drinking water (Post et al., 2009; Thompson et
al, 2011; Hu et al, 2016; Domingo and Nadal, 2019), air and dust
(Piekarz et al., 2007; Haug et al., 201 Ib; Goosey and Harrad, 2012;
Fromme et al., 2015; Karaskova et al., 2016) and consumer products
(Begley et al., 2005; Bradley et al., 2007; Sinclair et al., 2007; Trier
et al.,, 201 I; Hill et al., 2017; Lee et al., 2017; Schaider et al., 2017;
Boronow et al., 2019). The widespread production of PFAS, their use in
common commercial and household products, their improper disposal
and their resistance to degradation have led to daily human exposures
via oral ingestion, inhalation and dermal contact. Different sources and
pathways of human exposure are summarised in Table .

The highest exposures to PFAS are often from dietary intake, partic-
ularly to PFOS and PFOA (Tittlemier et al., 2007; Trudel et al., 2008;
Vestergren and Cousins, 2009; Haug et al., 20| | a; Domingo and Nadal,
2017). Fish and shellfish generally exhibit the highest PFAS concentra-
tions and detection rates among all types of foodstuffs (Domingo and
Nadal, 2017; Jian et al., 2017). Other potential dietary sources of PFAS
include dairy products, eggs, beverages and vegetables (Haug et al.,
2010; Zhangetal., 2010; Noorlanderetal., 201 |; Domingo et al., 2012;
Enksson etal.,, 2013; Herzke et al., 2013; Felizeter et al., 2014; Heo et

, 2014; Gebbink et al. , 2012; Chen et dl.,
20I8). However, these foodstuffs have generally low concentrations

, 2015; Vestergren et al.

and low detection frequencies compared to fish and shellfish (Jian et al.,
2017). In addition, food can become contaminated with PFAS through
transfer from food packaging and/or processing (Schaider et al., 2017)
because PFAS are used as in grease- and water-repellent coatings for
food-contact materials and non-stick cookware (Begley et al., 2005).

Drinking water is also a common source of PFAS in humans
(Domingo and Nadal, 2019). A number of studies have detected PFAS
in drinking water samples collected from various countries (Takagi et al.,
2008; Jin et al., 2009; Mak et al., 2009; Quinete et al., 2009; Quifiones
and Snyder, 2009; Wilhelm et al., 2010; Thompson et al., 201 1;
Boone et al., 2019). Recently, Boone et al. measured concentrations
in source (untreated) and treated drinking water sampled from 24
states across the USA (Boone et al., 2019): Seventeen PFAS analytes
were detected in all samples, and summed concentrations ranged from
<I1—=1102 ng/L, with one drinking water treatment plant (DWTP)
exceeding the health advisory of 70 ng/L for PFOA and PFOS set by
the United States Environmental Protection Agency (U.S. EPA).

Some PFAS polymers such as FTOHs were frequently used for
impregnation treatment of furniture and floor coverings and as inter-
mediates in manufacturing various household products (e.g. paints,
carpet and cleaning agents). These neutral PFAS, mainly FTOHs, FOSA
and FOSEs, are volatile compounds that are easily released into indoor
environments (air and dust) due to their low water solubility and high
, 2010; Haug et al., 201 Ib; Yao et al.,
2018). Perfluoroalkyls have also been detected in indoor air and dust
(Kubwabo et al., 2005; Barber et al., 2007; Strynar and Lindstrom,
2008). In the study of 67 houses in Canada, carpeted homes had
higher concentrations of PFOA, PFOS and PFHXxS in dust, possibly
, 2005).
The use of aqueous firefighting foams at military installations and the

vapour pressure (Langer et dl.

due to the use of stain-repellent coatings (Kubwabo et al.

production of fluorochemicals at industrial facilities have resulted in
, 2015;
Anderson et al., 2016). Many consumer products, such as ski waxes,

widespread contamination in soil and sediment (Xiao et al.

leather samples, outdoor textiles and cosmetics products including hair
spray and eyeliner, also contain PFAS (Kotthoff et al., 2015; Danish EPA,
2018).

Previous literature has estimated the relative contributions of differ-
ent exposures routes of PFOA and PFOS in adults (Trudel et al., 2008;
Vestergren and Cousins, 2009; Haug et al., 201 | a; Lorber and Egeghy,
2011; Gebbink et al., 2015). Oral ingestion from diet and drinking
water has been proposed as the largest source of exposure to PFOA
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and PFOS (around 90%) compared with inhalation or dermal contact
(Vestergren and Cousins, 2009; Haug et al., 201 | a; Lorber and Egeghy,
2011; Gebbink et al., 2015). For PFOA, Trudel et al. reported ingestion
of food from PFOA-containing packaging materials (56%), inhalation of
indoor air and dust (14%) and hand-to-mouth transfer of house dust
(1'1%), as significant pathways (Trudel et al., 2008). Other pathways
proposed to be less important included ingestion of food prepared
with PTFE-coated cookware, dermal contact from clothes and other
consumer products (Trudel et al., 2008).

Transport and clearance of PFAS in the
human body

Whereas most persistent organic pollutants, such as polychlorinated
biphenyls (PCBs) and brominated flame retardants (BFRs), are
lipophilic, the substitution of carbon—hydrogen bonds for the strongest
carbon—fluorine counterparts coupled with a charged functional
group confers unique dual hydrophobic and lipophobic surfactant
characteristics to PFAS molecules (Banks and Tatlow, 1994; Kissa,
2011). Most of the available data on transport and clearance of PFAS
is based on studies with PFAAs (primarily PFOA and PFOS). In contrast
to other persistent organic pollutants, PFAAs are not stored in adipose
tissue but undergo extensive enterohepatic circulation. The presence
of PFAAs has been confirmed primarily in liver and serum (Pérez et al.,
2013; Falk et al., 2015).

The hydrophobic nature of fluorine-containing compounds can also
lead to increased affinity for proteins (Jones et al., 2003). Once con-
sumed, PFAAs tend to partition to the tissue of highest protein
density, with ~90 to 99% of these compounds in the blood bound
to serum albumin (Ylinen and Auriola, 1990; Han et al., 2003). Due
to the ability of albumin to pass the blood follicle barrier (Hess et al.,
1998; Schweigert et al., 2006), it is suggested that PFAAs can easily
be transported into growing follicles. PFAAs have been detected in
human follicular fluid and could alter oocyte maturation and follicle
development in vivo (Petro et al., 2014; Heffernan et al., 2018).

The primary route of elimination of PFAAs is through the kidney
in the urine (Han et al., 2008). Other important clearance pathways
include menstruation (Harada et al., 2005; Taylor et al., 2014; Park
et al, 2019; Ding et al., 2020), pregnancy (Monroy et al., 2008) and
lactation (Bjermo et al., 2013). Sex hormones have been identified as
a major factor in determining the renal clearance of PFAAs. One study
examined the role of sex hormones and transport proteins on renal
clearance and observed that, in ovariectomised female rats, oestradiol
could facilitate the transport of PFAAs across the membranes of
kidney tubules into the glomerular filtrate, resulting in lower serum
concentrations (Kudo et al., 2002).

Serum concentrations of PFOA, PFOS, PFHxS and PFNA appear to
be higher in males than in females across all age groups (Calafat et al.,
2007). It has been found that ~30% of the PFOS elimination half-life
difference between females and males is attributable to menstruation
(Wong et al, 2014a). The differences by sex narrows with aging,
suggesting that PFAS may reaccumulate after cessation of menstrual
bleeding in postmenopausal women (Wonget al., 20 | 4b; Dhingra et al.,
2017; Ruark et al., 2017). Decreased serum concentrations have also
been shown in premenopausal versus postmenopausal women and,
analogously, in men undergoing venesections for medical treatment
(Lorber et al., 2015).

PFAAs are considered metabolically inert and remain in the human
body for many years. Estimation of human elimination half-lives
(or population halving time) for PFOA, PFOS, PFHxS and PFNA
have been reported in previous studies (Olsen et al., 2007, 2012;
Spliethoff et al., 2008; Bartell et al., 2010; Brede et al., 2010; Glynn
et al., 2012; Yeung et al., 2013a, 2013b; Zhang et al., 2013; Wong
et al., 2014a; Worley et al., 2017; Eriksson et al, 2017; Li et dl.,
2018; Ding et al., 2020). Comparing the estimated half-lives of PFAS
among populations is difficult as they differ by sampling time intervals,
duration of exposure, sex and age of study subjects. Despite these
challenges, most of the aforementioned studies have reported that
the half-life in humans of PFOA is around 2-3 years and that of
PFOS is ~4-5 years.

Mechanistic Evidence for
Ovarian Toxicity of PFAS

Effects of PFAS on folliculogenesis

The ovary is the female gonad and an important endocrine organ. The
ovaries consist of a surface epithelium surrounding the ovary, a dense
underlying connective tissue (tunica albuginea), an outer cortex and
an inner medulla. The cortex appears dense and granular due to the
presence of ovarian follicles, corpora lutea and stroma. The medulla
is highly vascular with abundant blood vessels, lymphatic vessels and
nerves. The main functions of the ovary include production, maturation
and release of the female gamete (oocyte), and synthesis of female
sex steroid and peptide hormones that regulate reproductive and
non-reproductive function. Environmental exposures can exhaust the
oocyte pool and cause depletion of follicular cells, leading to earlier
age at menopause, premature ovarian failure and infertility (Vabre
et al., 2017). The processes of oogenesis and follicle development,
and the effects of PFAS exposure on folliculogenesis, are summarised
in Fig. 2.

Effects of PFAS on oogenesis

PFAS exposure has been shown to disrupt the earliest stage of fol-
liculogenesis by altering oocyte development (Dominguez et al., 2016;
Hallbergetal.,2019; Lopez-Arellano et al., 20 19). The potential mecha-
nisms include activation of peroxisome proliferator-activated receptor
(PPAR) signalling pathways, disruption of intercellular communication
between oocytes and granulosa cells and induction of oxidative stress.
PPARs are family of nuclear hormone receptors that have been
identified as key players in the mode of action for PFAS-induced
reproductive toxicity (Desvergne and Wahli, 1999). All three known
PPAR family members, a,, /8 and y, are expressed in the ovary (Dauca
et al., 2014). The PPAR-a and PPAR-B/8 isoforms are expressed
primarily in thecal and stromal cells in the ovary, while the PPAR-y
isoform is detected strongly in granulosa cells and the corpus lutea
(Komaretal., 2001). The ability of PFAS to interact with nuclear PPARs
has been put forward as an explanation for metabolic disturbances
associated with PFAS exposure, mainly through PPAR-a. In addition,
PPAR-y has been found to inhibit the expression of genes involved in
the meiosis of oocytes (e.g. endothelin-1 and nitric oxide synthase)
(Komar, 2005), implicating a role in female gamete development.
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PFAS lead to follicle atresia and a decrease in the number of corpora lutea.
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Figure 2 PFAS disrupt folliculogenesis. The upper part of the figure is about follicle development and the text box shows the effects of PFAS
on the number of follicles at that stage of development. The part below displays the process of oogenesis and text boxes outline the major effects of
PFAS at that stage of oocyte development and maturation. GJIC = gap junction intercellular communication; PPAR = peroxisome proliferator activated

receptor.

A recent study reported that administration of 10 pg/mL PFNA on
bovine oocytes in vitro for 22 h has a negative effect on oocyte devel-
opmental competence during their maturation (Hallberg et al., 2019).
This decrease in oocyte survival was attributed to PPAR-a(Hallberg et
al., 2019), leading to the disturbance of lipid metabolism and increased
lipid accumulation in the ovaries (Bjork and Wallace, 2009; Wang et al.,
2012). Lending further support, another study showed that excessive
lipids in the ooplasm correlated with impaired oocyte developmen-
tal competence and low oocyte survival rates (Prates et al., 2014).
Because PFAS can bind and activate PPARs and play an important
role in PPAR signalling during ovarian follicle maturation and ovulation,
it is plausible that persistent activation of ovarian PPARs through
PFAS exposure could disrupt the ovarian cell function and oocyte
maturation.

In addition to the impact on PPAR signalling, PFAS exposure could
alter cell—cell communication within a follicle. Because the interior of an
ovarian follicle is avascular, cell-cell communication among granulosa
cells and between granulosa cells and the oocyte is critically dependent
on bidirectional transfer of low molecular weight nutrients, signalling
molecules and waste products via gap junction intercellular commu-
nication (Clark et al., 2018). When treated with an aqueous solution

with 0, 12.5, 25 and 59 pM PFOS in vitro for a 44-h maturation period,
the number of live oocytes and the percentage of matured oocytes
decreased in porcine ovaries (Dominguez et al., 2016). Similarly, foetal
murine oocytes exposed to 28.2 and |12.8 yM PFOA in vitro for
7 days exhibited increased apoptosis and necrosis (Lopez-Arellano
et al, 2019). These effects are attributed due to inhibition of gap
junction intercellular communication between oocytes and granulosa
cells (Dominguez et al., 2016; Lopez-Arellano et al., 2019).

PFAS may also induce oxidative stress with increased generation of
reactive oxygen species (ROS) production, increased DNA damage
and decreased total antioxidant capacity (Wielsge et al., 2015). Preg-
nant mice administered |0 mg PFOA/kg/day from gestational days | -7
or |13 exhibited inhibited superoxide dismutase and catalase activity,
increased generation of ROS and increased expression of p53 and Bax
proteins (important in apoptotic cell death) in the maternal ovaries
(Fengetal., 2015; Chen et al., 2017; Xie et al., 2017). Similarly, another
study reported significantly increased ROS production in rats exposed
to PFOA, which interfered with the activities of complexes |, Il and
[Il'in the mitochondrial respiratory chain and led to oocyte apoptosis
(Mashayekhi et al., 2015; Lépez-Arellano et al., 2019).
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Effects of PFAS on follicle development

Studies in laboratory rodents indicate that PFAS alters the forma-
tion and/or function of ovarian follicular cells at several stages of
development. Adult female mice exposed to 0.1 mg PFOS/kg/day by
gavage for 4 months had a decreased number of preovulatory follicles
and increased number of atretic follicles (Feng et al., 2015; Chen et
al., 2017). Moreover, the PFOS-exposed mice had depressed serum
levels of oestradiol and progesterone. Notably, PFOS reduced the
mRNA expression of steroidogenic acute regulatory protein (Star),
which codes for the StAR protein that transports cholesterol from
the outer to the inner mitochondrial membrane, a critical step in
steroid hormone biosynthesis: this effect on Star was proposed as the
cause of deficits in follicle maturation and ovulation (Feng et al., 2015).
Similar findings were reported for pregnant mice exposed to 2.5, 5
and 10 mg PFOA/kg/day from gestational days |1-7 or I-13, with
decreased number of corpora lutea accompanied by decreased mRNA
expression of Star in the maternal ovaries (Feng et al., 2015; Chen
etal., 2017).

In female rats exposed as neonates to 0.| and | mg PFOA/kg/day
or 0.1 and 10 mg PFOS/kg/day, there was a significant reduction
in the number of ovarian primordial follicles, growing follicles and
corpora lutea (Du et al., 2019). The ovarian effects of the prior study
were accompanied by down-regulated mRNA expression of KiSS-
| metastasis-suppressor (Kiss/) and KISS| receptor (Kiss/r) and a
decrease in kisspeptin fibre intensities in the hypothalamus. Because
kisspeptin signalling has a critical role in regulation of the ovarian cycle
as well as initiation of puberty (Gaytan et al, 2009; Hu et al., 2017),
the PFOA and PFOS perturbation of follicular development may have
resulted from disruption of kisspeptin signalling in the hypothalamus
(Bellingham et al., 2009; Du et al., 2019).

Pregnant mice administered oral doses of 200 and 500 mg/kg/ day of
perfluorobutane sulfonate (PFBS) on Days |-20 of gestation gave birth
to female offspring that exhibited numerous symptoms of disrupted
ovarian function: depressed ovarian size and weight, depressed size
and weight, decreased number of ovarian follicles (all stages), delayed
vaginal opening, delayed onset of oestrus, prolonged diestrus and
reduced serum levels of oestradiol (Feng et al., 2017). In addition,
the PFBS exposure disrupted thyroid hormone synthesis consistent
with hypothyroxinemia, as indicated by depressed serum levels of the
thyroid hormones triiodothyronine (T3) and thyroxine (T4) in the
dams on gestation day 20 as well as in the female offspring (Feng et al.,
2017). Mounting evidence from animal (Lau et al., 2003; Thibodeaux et
al., 2003; Chang et al., 2008) and human studies (Dallaire et al., 2009;
Wang et al., 2014) suggests that levels of thyroid hormones decrease
with increased PFAS concentrations. Thyroid hormones play a critical
role in ovarian follicular development and maturation as well as in
the maintenance of other physiological functions (Wakim et al., 1994;
Fedail et al., 2014). It is possible that thyroid hormone insufficiency
could affect follicle development via an influence on the production of
follicular fluid inhibin, oestrogens and other cytokines (Dijkstra et al.,
1996; Tamura et al., 1998).

Effects of PFAS on ovarian steroidogenesis

Another primary function of the ovary is ovarian steroidogenesis,
i.e. the production and secretion of sex steroid hormones. Ovarian
steroidogenesis relies on a strict coordination of both theca cells and

granulosa cells and the addition of hypothalamus and anterior pituitary
gland (as shown in Fig. 3) (Hillier et al., 1994).

Thecal cells produce androgens (androstenedione, A4; and testos-
terone, T) via the enzyme aromatases. As the precursor to steroido-
genesis, cholesterol can be transported to the theca cell cytoplasm
via the StAR protein. P450 cholesterol side-chain cleavage enzyme
(CYPIIAL) then catalyses the conversion of cholesterol to preg-
nenolone. Pregnenolone is then converted to a precursor androgen,
dehydroepiandrosterone (DHEA), which involves the enzyme |7a-
hydroxylase-17, 20-desmolase (CYPI7Al) or progesterone, via 3f-
hydroxysteroid dehydrogenase (38-HSD). Progesterone and DHEA
are then converted to an androgen, A4, via CYPI7Al or 3B-HSD,
respectively. The final androgenic steroid produced in the theca cell
is T using the enzyme |78-hydroxysteroid dehydrogenase (17p-HSD).

A4 and T are androgen end-products of theca cell steroidogenesis
and migrate across the basal lamina of the follicle to granulosa cells.
In preovulatory follicles, granulosa cells proliferate and undergo differ-
entiation to produce increasingly large amounts of |7p-estradiol (E2).
Theca cells contain LH receptors (LHRs), and upon receptor binding,
LH stimulates the transcription of theca-derived genes that encode
the enzymes required for the conversion of cholesterol to androgens.
Granulosa cells contain FSH receptors (FSHRs), and in response to FSH
binding, the transcription of granulosa-derived genes that encode the
enzymes necessary for the conversion of androgens to oestrogens is
stimulated.

Endocrine disruption may occur at the molecular and cellular
level by interference with steroid hormone biosynthesis in ovaries
(Fig. 3). PFAS can modulate the endocrine system by up- or down-
regulation of expression of proteins responsible for cholesterol
transport and ovarian steroidogenesis. Oral exposure to PFDoA at
3 mg/kg/day from postnatal day 24 for 28 days significantly down-
regulated the mRNA expression of ovarian luteinising hormone/-
choriogonadotropin receptor (Lhcgr), Star, Cypllal and Hsd!7b3 in
prepubertal female rats, which led to a decrease in E2 production
(Shi et al., 2009). Chronic exposure of adult female rats to PFOS
(0.1 mg/kg/day) suppresses biosynthesis of E2 possibly through
reduced mRNA expression of Star mediated by reduced histone
acetylation (Feng et al., 2015). Given that PFAS exposure does not
change the substrate (cholesterol) supply in the ovaries (Rebholz et al.,
2016), a decrease in Star mMRNA levels might account for a reduction
in transport of cholesterol as a necessary precursor for ovarian
steroidogenesis.

Another possible mechanism of action of PFAS as endocrine dis-
ruptors is through activation of PPARs. Exposure of isolated porcine
ovarian cells in vitro to 1.2 .M PFOS or PFOA for 24 h inhibited LH-
stimulated and FSH-simulated secretion of progesterone, oestradiol
and androstenedione in granulosa cells (Chaparro-Ortega et al., 2018).
PPAR-y can inhibit the expression of aromatase, the enzyme for the
conversion of androgens to oestrogens, by disrupting the interaction
of nuclear factor-kappa B (NF-kB) (Fan et al., 2005). Rak-Mardyla and
Karpeta showed that the activation of PPAR-y caused lower expression
and decreased enzymatic activity of CYPI7 and |7p-HSD in porcine
ovarian follicles (Rak-Mardyta and Karpeta, 2014) and thus decreased
levels of progesterone and A4.

PFAS are also known to have weak oestrogenic activity and, as with
other weak oestrogens, exposure to a combination of E2, and these
compounds produced anti-estrogenic effects (Liu et al., 2007). Studies
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Figure 3 PFAS alter ovarian steroidogenesis. Ovarian steroidogenesis requires the cooperative interactions of the theca and granulosa cells
within the follicles. This figure is a simplified overview of the two-cell ovarian steroidogenesis model, with black text boxes indicating PFAS targets
from the experimental literature. ARC = arcuate nucleus; AVPV = anteroventral periventricular nucleus; cAMP = cyclic adenosine monophosphate;
CYPI 1Al = cholesterol side chain cleavage enzyme; CYPI7Al = |7a-hydroxylase-17, 20-desmolase; CYPI9AI| = cytochrome P450 aromatase;
ERa = oestrogen receptor a; FSH=follicle-stimulating hormone; FSHR = follicle-stimulating hormone receptor; GnRH = gonadotropin-releasing
hormone; GnRHR = gonadotropin-releasing hormone receptor; 38-HSD = 3B-hydroxysteroid dehydrogenase; |7p-HSD = |78-hydroxysteroid dehy-
drogenase; LH = luteinising hormone; LHR = luteinising hormone receptor; PKA = protein kinase A; StAR = steroid acute regulatory protein.

have reported contradictory results using in vitro screening systems to
assay for hormone activity by ER- or AR-mediated transactivation in
the human breast adenocarcinoma cell lines MCF-7 and MVLN (Maras
et al, 2006; Wang et al, 2012; Kjeldsen and Bonefeld-Jargensen,
2013; Behr et al, 2018), human adrenal carcinoma cell H295R
(Du et al., 2013a; 2013b; Wang et al., 2015; Behr et al., 2018) and
human placental choriocarcinoma cell JEG-3 (Gorrochategui et al.,
2014), as well as in in vivo testing (Biegel et al., 1995; Du et al., 2013a;
Yao et al., 2014). It remains unclear whether PFAS affect oestrogen
or androgen receptor signalling at concentrations relevant to human
exposure.

Nonetheless, because gonadotropin (GnRH) neurons in the
hypothalamus do not express ER, they are regulated by E2 and T
primarily from kisspeptin neurons in the arcuate nucleus (ARC) and
anteroventral periventricular nucleus (AVPV) which send projections to
GnRH neurons (Roa et al., 2009). E2 and T down-regulate Kiss | mRNA
in the ARC and up-regulate its expression in the AVPV. Therefore,
kisspeptin neurons in the ARC may participate in the negative feedback
regulation of GnRH secretion, whereas kisspeptin neurons in the AVPV
contribute to generating the preovulatory GnRH surge in the female.
In vivo evidence demonstrated that exposure of adult female mice
to PFOS at 10 mg/kg/day for 2 weeks led to diestrus prolongation
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and ovulation reduction through suppression of AVPV-kisspeptin
neurons, but not via ARC-kisspeptin neurons in the forebrain (Wang
et al, 2018a). PFAS may impair ovulation and reproductive capacity
through suppression of the activation of ER-mediated AVPV-kisspeptin
expression.

Epidemiologic Evidence Linking
PFAS Exposure and Ovarian
Outcomes

Ovarian folliculogenesis and steroidogenesis are essential processes for
normal reproductive health. Increasing evidence suggests that PFAS
could adversely affect numerous aspects of these processes. Specif-
ically, exposures to PFOA and PFOS have been shown to impact
ovarian steroidogenesis (Table Il), delay onset of menarche (Table lII),
disrupt menstrual cycle regularity (Table IV), accelerate ovarian aging
(Table V) and may affect other chronic conditions such as polycystic
ovarian syndrome (PCOS) and ovarian cancer (Table VI). Other PFAS
homologues may also have an impact on ovarian function (Table VII).

Sex hormones

Exposure to PFAS has been shown to disrupt ovarian steroidogenesis
and steroidogenic-controlled processes. Although the literature on
other PFAS homologues is scant, epidemiologic evidence suggests that
exposure to PFOS is associated with steroidogenic defects. Specifi-
cally in the C8 Health Project, PFOS exposure had a significant and
negative relationship with serum E2 levels among women aged 42—
65 years without a history of hormone contraceptive use (Knox et al.,
2011). The parent Energy Balance and Breast Cancer Aspects (EBBA-I)
study sampled serum from healthy, naturally cycling women aged 25—
35 years and found that, among nulliparous women but not parous
women, PFOS exposure was negatively associated with serum E2
and progesterone (P) levels (Barrett et al., 2015). Similarly, Zhang et
al. suggested that PFOS exposure may lead to decreased serum E2
and prolactin (PRL) levels and increased FSH levels among premature
ovarian insufficiency (POI) patients (Zhang et al., 2018). McCoy et al.
also found a negative correlation between PFOS concentrations and
E2 levels among women undergoing in vitro fertilization (McCoy et al.,
2017). Moreover, Heffernan et al. observed a significant and negative
association between PFOS exposure and free androgen index (FAI)
among healthy women without PCOS (Heffernan et al., 2018).

In contrast, no associations with hormone levels have been reported
for PFOA exposure (Knox et al., 201 |; Barrett et al., 2015; McCoy et
al., 2017; Heffernan et al., 2018; Zhang et al., 2018). PFOS and PFOA
were also not related to serum T levels among women |2-80 years
of age from the NHANES 2011-2012 (Lewis et al., 2015). In utero
exposure to PFOA and PFOS had no impact on serum levels of total
T, sex hormone-binding globulin (SHBG), FAI, DHEA, FSH, LH, E2 or
anti-Millerian hormone (AMH) in female adult offspring (Kristensen
etal, 2013).

Other PFAS homologues may also have the potential to disturb
homeostasis of the endocrine system, although the evidence remains
inconclusive. Heffernan et al. found a positive association between
PFNA exposure and A4 in both PCOS cases and controls, and a
positive association between PFHxS exposure and total T in healthy

women (Heffernan et al., 2018). Zhang et al. indicated that PFHxS
exposure may increase FSH levels and decrease E2 levels in POI
patients (Zhang et al., 2018). No significant associations were observed
in cross-sectional studies conducted among naturally cycling women in
the EBBA-I study (Barrett et al., 2015), general women in NHANES
(Lewis et al., 2015) or women receiving in vitro fertilisation (IVF)
(McCoy et al., 2017).

Compared to adults, adolescents may be more susceptible to
PFAS toxicity. Serum concentrations of PFOA, PFUnDA and PFOS
were inversely associated with serum levels of SHBG, FSH and T,
respectively, in adolescents aged 12—17 years but not in young adults
(Tsai et al., 2015). Similarly, girls aged 69 years who enrolled in the
C8 Health Project also had lower serum T levels with higher exposure
to PFOS (Lopez-Espinosa et al., 2016). Although no association was
observed for PFOA and PFOS exposures with E2 or T in Chinese
adolescent girls, serum T levels decreased by 1.2% (95% Cl: —2.2%,
—0.1%) with an |-ng/mL increase in serum PFDoA concentrations
(Zhou et dl., 2016).

Onset age of menarche

Delayed menarche is a common condition defined as the absence
of physical signs of puberty by an age >2-2.5 standard deviations
above the population mean age of menarche (typically 13 years in
girls) (Palmert and Dunkel, 2012). Emerging evidence suggests that
later menarche may be linked to negative physiological outcomes and
cardiovascular disease in adulthood (Zhu and Chan, 2017). Previous
studies examining the associations between exposure to PFAS and
timing of menarche have yielded inconsistent results with some of the
studies finding no association (Christensen et al., 201 | ; Lopez-Espinosa
etal., 201 |; Kristensen et al., 2013). The latter study, a cross-sectional
study of 2931| girls 8-18 years of age from the C8 Health Project
reported that PFOA and PFOS serum concentrations were associated
with later age at menarche, specifically 130 and |38 days of delay when
comparing the highest quartile of concentrations versus the lowest
quartile, respectively (Lopez-Espinosa et al., 201 1).

In addition, concern exists regarding in utero exposure to PFAS due
to high vulnerability in this early-life stage. A Danish birth cohort
established in 1988—1989 followed up 267 female offspring when they
were ~20 years of age in 2008-2009. The study found that women
with in utero exposure to higher concentrations of PFOA reached
menarche 5.3 (95% Cl: 1.3, 9.3) months later compared with the
reference group of lower PFOA concentrations, while no associations
were observed for PFOS (Kristensen et al., 2013). In contrast, a study
of 218 girls reporting early menarche (before age | I.5 years) and 230
controls (at or after age |1.5 years) born between 1991 and 1992
in the UK showed no association of earlier age at menarche with
exposure to PFOSA, EtFOSAA, MeFOSAA, PFOS, PFHxS, PFOA or
PFNA (Christensen et al., 201 ).

Menstrual cycle characteristics

Disturbances of menstrual cycle manifest in a wide range of pre-
sentations. The key characteristics include menstrual cycle regularity,
cycle length and the amount of flow, but each of these may exhibit
considerable variability. Epidemiologic data on the possible effects of
PFAS on menstrual cycle regularity originate primarily from cross-
sectional studies (Lyngse et al., 2014; Zhou et al., 2017). Lyngse et al.
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reported a statistically significant association between PFOA exposure
and longer cycles (cycle length >32 days) with an odds ratio (OR) of 1.8
(95% Cl: 1.0-3.3) when comparing the highest tertile of exposure with
the lowest, in 1623 fertile women enrolled in the Inuit-endocrine (INU-
ENDO) cohort from three countries (Greenland, Poland and Ukraine),
whereas no significant results were detected for PFOS (Lyngso et al.,
2014). Moreover, a cross-sectional analysis of 950 Chinese women
revealed that increased exposures to PFOA, PFOS, PFNA and PFHxS
were associated with higher odds of irregular and longer menstrual
cycle but lower odds of menorrhagia (Zhou et al., 2017). Interestingly,
women with higher concentrations of PFOA, PFNA and PFHxS were
more likely to experience hypomenorrhea (Zhou et al., 2017).

The relationship of PFOA and PFOS with menstrual irregularity was
detected in a subset of 1240 pregnant women randomly selected
from the Danish National Birth Cohort (DNBC); women had higher
exposure to PFOA and PFOS tended to report having irregular periods
(Fei et al., 2009). Lum et al. used data from 501 couples from Michigan
and Texas, who upon their discontinuing contraception for purposes of
becoming pregnant enrolled in a prospective cohort, the Longitudinal
Investigation of Fertility and the Environment (LIFE) Study (Lum et al.,
2017). Menstrual cycles were 3% longer among women in the second
versus the lowest tertile of PFDA serum concentrations, but 2%
shorter for women in the highest versus the lowest tertile of PFOA
concentrations, while no associations were observed with PFOS (Lum
etal., 2017). When examining the effects of prenatal exposure, a recent
prospective study found no associations between maternal exposure
to PFOA and PFOS and menstrual cycle length or number of ovarian
follicles in their offspring (Kristensen et al., 2013).

Ovarian aging

POl represents a gynaecological disorder characterised by the absence
of normal ovarian function due to depletion of the follicle pool before
age 40 years with the presence of oligo/amenorrhea for at least
4 months in combination with elevated FSH levels. It should be noted
that POl is the transitional stage from normal ovarian function to
complete loss of ovarian function. A case—control study of 240 Chi-
nese women found that high exposures to PFOA, PFOS and PFHxS
were associated with increased risks of POI; however, no associations
were observed for PFNA, PFDA, PFUnDA, PFDoA, PFHpA and PFBS
(Zhang et al., 2018).

Beyond the problem of infertility in POI patients, diminished ovar-
ian reserve and extended steroid hormone deficiency during ovar-
ian aging have far-reaching health implications. Earlier age at natural
menopause has been associated with an increased risk of overall
mortality (Jacobsen et al, 2003; Mondul et al., 2005; Ossewaarde
etal., 2005), cardiovascular disease (Hu et al., 1999; Atsma et al., 2006)
and cardiovascular death (van der Schouw et al., 1996; de Kleijn et al.,
2002; Mondul et al., 2005), low bone mineral density (Parazzini et al.,
1996) and osteoporosis (Kritz-Silverstein and Barrett-Connor, 1993)
and other chronic conditions (Shuster et al, 2010). Quality of life
may be significantly decreased while risks of sexual dysfunction and
neurological disease may be increased later in life (McEwen and Alves,
1999; Van Der Stege et al., 2008; Rocca et al., 2009).

A study of the National Health and Nutrition Examination Survey
(NHANES) participants found that higher PFAS concentrations were
associated with earlier menopause: the hazard ratio (HR) of natural

menopause was 1.42 (95% Cl: 1.08, 1.87) comparing PFHxS serum
concentrations in tertile 2 versus tertile |, and .70 (95% Cl: 1.36,2.12)
in tertile 3 versus tertile |; positive dose—response relationships were
also detected for PFOA, PFOS, PFNA and PFHxS with hysterectomy
(Taylor et al., 2014). Additionally, a cross-sectional study of the C8
Health Project participants found that the odds of having already
experienced natural menopause increased with increasing exposure
quintiles of PFOA and PFOS, particularly in women aged 42—65 years
(Knox et al., 201 1).

These epidemiologic studies of PFAS and age at menopause were
cross-sectional analyses in which the outcome was ascertained through
an interview at the same time as a blood sample was collected
to determine serum PFAS concentrations. It raises the question of
reverse causation, in that measured PFAS concentrations increased
with years since menopause, possibly due to the cessation of PFAS
excretion via menstruation (Taylor et al., 2014). Using a retrospective
cohort of women recruited during 2005-2006, Dhingra et al. found
no significant association between PFOA exposure (using either
estimated year-specific serum concentrations during 1951 and 2011,
or measured serum concentrations) and natural menopause incidence
(Dhingra et al., 2016).

Other conditions

PCOS is a common endocrine disorder among women of reproductive
age, leading to several health complications including menstrual dys-
function, infertility, hirsutism, acne, obesity, metabolic syndrome and an
increased risk of Type 2 diabetes and cardiovascular disease (Norman
et al., 2007). A study of 180 infertile PCOS cases and 180 healthy
controls showed a significant and positive dose—response relationship
between PFDoA serum concentrations and risks of PCOS-related
infertility; however, no significant associations were observed for
PFBS, PFHpA, PFHxS, PFOA, PFOS, PFNA, PFDA or PFUnDA (Wang
et al., 2019a). In regard to cancer, only a few studies have evaluated
associations between PFAS exposure and increased risks of ovarian
cancer (Barry et al., 2013; Vieira et al., 2013). Neither of these studies
observed a significant association but the number of cases in each study
was small. Thus, the evidence is insufficient to assess risk of ovarian
carcinogenicity.

Discussion

Summary of findings

Findings from in vitro and in vivo studies suggest that PFAS exposure
can target the ovary to adversely affect its two essential functional
processes, i.e. folliculogenesis and steroidogenesis. PFAS exposure may
alter follicle and oocyte development and diminish ovarian reserve
(Bellingham et al., 2009; Feng et al., 2015, 2017; Dominguez et al., 201 6;
Chenetal., 2017; Duetal., 2019; Hallberg et al., 2019; Lépez-Arellano
et al., 2019). Potential mechanisms include PPAR activation, disrup-
tion of gap junction intercellular communication, oxidative stress and
thyroid hormone disruption. Limited experimental evidence published
to date also suggests PFAS can be a disruptor of ovarian steroido-
genesis with independent actions on both theca and granulosa cells
(Chaparro-Ortega et al., 2018; Shi et al., 2009; Wang et al., 2018a).
In addition to PPAR signalling pathways, endocrine disruption may also
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be facilitated by acting directly on gene coding for enzymes responsi-
ble for cholesterol transport and ovarian steroidogenesis, and a loss
of kisspeptin signalling in the hypothalamus that can impact ovarian
function.

In general, experimental studies were limited by the use of doses
that exceed the range of estimated human exposure. For example, it is
calculated that North American and European consumers had a daily
uptake dose of PFOA in the range of 3-220 ng/kg bw and PFOS of
| to 130 ng/kg bw (Trudel et al., 2008). The lowest concentrations of
PFOS and PFOA used in studies of animal models investigating follicle
development was 0. mg/kg bw/day (=10° ng/kg bw/day) (Feng
etal, 2015; Chen et al., 2017).

In epidemiologic studies, the associations between PFAS exposure
and ovarian function across different populations and difference ranges
of exposure levels were inconsistent. Despite that, most epidemiologic
studies have found that exposure to PFOA, PFOS or other PFAS
homologues is associated with later menarche (Lopez-Espinosa et al.,
201 1; Kristensen et al., 2013), irregular and longer menstrual cycle (Fei
et al., 2009; Lyngse et al., 2014; Chen et al., 2017; Lum et al., 2017;
Zhou et al., 2017), increased risks of POl (Zhang et al., 2018) and
earlier onset of menopause (Knox et al., 201 |; Taylor et al., 2014).

Methodologic problems, however, limit the causal interpretation of
these findings. The observed associations between PFAS exposure and
delayed menarche could be explained by reverse causation rather than
a toxic effect of these substances, in that the physiological changes
during reproductive growth and maturation in girls may have a con-
siderable influence on serum PFAS concentrations (Wu et al., 2015).
It is also possible that the observed associations of PFAS and early
onset of menopause in cross-sectional studies might be due to reverse
causation related to the presence or volume of menstrual bleeding.
Furthermore, information on the timing of menarche, menstrual cycle
length and age at menopause were based on self-reports, and recalled
data may have been imprecise particularly for users of hormonal
contraceptives (Must et al., 2002; Small et al., 2007). Relationships
between PFAS exposure and menstrual cycle length among contracep-
tive users may have been blurred by actions of exogenous hormones
(Lum et al., 2017).

Evidence from epidemiologic studies also suggests associations of
PFAS exposure with lower E2 levels and higher FSH levels in female
adults (Knox et al., 201 I; Barrett et al., 2015; McCoy et al., 2017;
Heffernan et al., 2018; Zhang et al., 2018). This is consistent with
the role of PFAS in accelerating ovarian aging. Compared to adults,
girls may be more vulnerable because exposures to PFAS may lead
to decreased serum levels of SHBG, FSH and total T (Tsai et al.,
2015; Lopez-Espinosa et al., 2016; Zhou et al., 2016). However, the
associations have not been confirmed by longitudinal cohort stud-
ies. Results from cross-sectional studies are also probably subject to
reverse causation because sex steroid hormones could affect rates of
renal clearance (Kudo et al., 2002). Higher ovarian hormone levels
also tend to have a more proliferative endometrial lining (Clancy,
2009) and, by extension, heavier menstrual bleeding, which could
contribute to greater clearance of PFAS in menstrual blood. There-
fore, we cannot rule out the possibility that fluctuations in hormone
levels might impact PFAS serum concentrations in women. Given the
inconsistency in previous findings and lack of longitudinal evidence, no
causal inferences can be drawn at this time based on this body of
literature.

Future directions

An important conclusion we derived from this review is the limited
quality of the evidence base for PFAS effects on ovarian function. This
is of significant concern for public health because PFAS exposure is
ubiquitous, and PFAS exert biological effects at low doses, causing
disruption of ovarian function. PFAS exposure can have lasting effects
on reproductive and non-reproductive health, including disruption of
fertility, reproductive lifespan and regulation of skeletal, cardiovascular
and brain functions. Several research questions and improvements for
future studies are proposed.

Expansion of the dose ranges

Because most laboratory studies have utilised doses that exceed the
range of estimated human exposure, future research should expand
the dose ranges to span known human exposure levels. Similarly,
uncertainties in the epidemiologic evidence could be reduced by care-
fully planned, enriched sampling of a wide range of PFAS exposures
including highly exposed communities from locally contaminated areas.
For example, the C8 Health Project with a large cohort of Mid-Ohio
Valley residents and workers exposed to PFOA from a chemical plant
provided extensive and high-quality research findings on PFOA and
to a lesser extent, PFOS. There is scant information on the health
effects of occupational or high exposure to other PFAS such as PFHxS
and PFNA.

Need for prospective cohort designs

There are very few longitudinal studies to support causal relationships
between PFAS exposure and ovarian function. Prospective studies
are required to fully characterise the impact of PFAS exposure on
ovarian function and to minimise potential reverse causation. Such
studies should include long-term follow-up of participants, repeated
measurements and prospective assessment of ovarian function.

Measurement of emerging PFAS homologues

The phase out of PFOA and PFOS has led to an increasing usage
of alternative compounds (Ateia et al., 2019). For example, GenX
chemicals are used to make high-performance fluoropolymers and
non-stick coatings without the use of PFOA, and PFBS is a replace-
ment chemical for PFOS (USEPA, 2018). However, there is inad-
equate evidence of general toxicity as well as ovarian toxicity of
such alternative compounds. Future studies should fill these gaps with
regard to sources and pathway of exposure and toxic effects of
emerging PFAS on reproductive outcomes and their related chronic
conditions.

Analysis of EDC mixtures

Previous studies have linked phthalates, PCBs, polybrominated
diphenyl esters (PBDEs), and other EDCs to impaired ovarian function
(Grindler et al., 2015; Craig and Ziv-Gal, 2018; Harley et al., 2019).
It is increasingly recognised that environmental endocrine disruption
is most often not due to the effect of a single compound, but rather
due to co-exposure to mixtures of chemicals at low concentrations
(Alyea and Watson, 2009; Braun et al., 2016; Wang et al., 2018b;
2019b). Thus, future research should examine the effects of exposure
to a mixture of persistent and non-persistent EDCs on ovarian
health.
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Conclusion

The possibility of an association between PFAS exposure and abnormal
ovarian function has important implications for research and public
health. The ovary is a primary regulator of reproductive and endocrine
function as well as general health in the female. Because millions of peo-
ple worldwide are exposed to PFAS-contaminated drinking water, the
public health consequences of a causal relationship could be serious.
Methodological problems limit the causal interpretation of associations
between PFAS exposure and menstrual disorders in epidemiological
studies. Overall, there is insufficient evidence to determine a causal
relationship between PFAS exposure and ovarian function. Experimen-
tal studies with doses relevant to human exposure and epidemiologic
research with prospective study designs should be future research
priorities.
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