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STUDY QUESTION: Which methodological approaches are most appropriate for analyzing IVF data with multiple cycles in the context of
a binary outcome?

SUMMARY ANSWER: Both mixed effect models and generalized estimating equation (GEE) modeling approaches can account for mul-
tiple IVF cycles and may reduce bias over first-cycle only approaches, but CIs were narrowest with cluster-weighted generalized estimating
equation models (CWGEE).

WHAT IS KNOWN ALREADY: There is a lack of consensus among investigators regarding how to best incorporate data from multiple
cycles and whether to present odds or risks in the analysis of IVF data. Failure to account for correlated outcomes within individuals and
informative cluster size may lead to invalid CIs and biased estimates.

STUDY DESIGN, SIZE, DURATION: The Environment and Reproductive Health (EARTH) Study is an ongoing prospective cohort study
of subfertile couples conducted at an academic medical center. This cohort was established in 2004 and follows couples seeking treatment
for infertility throughout the course of their treatment and pregnancy.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Women aged 18–46 years enrolled in the EARTH Study from 2004 to 2017
who initiated at least one IVF cycle were eligible. Cycle initiation was defined as beginning ovulation induction with the intent to progress
through an IVF or ICSI cycle. This analysis included 442 women undergoing 642 cycles who met the study inclusion criteria. We compared
the results and interpretations of log-binomial and logistic models restricting to the first cycle, as well as mixed effects models, unweighted
GEE models, and CWGEE models including all cycles. This analysis was conducted for two distinct exposures: maternal age at cycle initiation,
and maternal preconception urinary concentrations of di(2-ethylhexyl) phthalate (DEHP) metabolites (previously reported to be associated
with a decreased probability of live birth).

MAIN RESULTS AND THE ROLE OF CHANCE: In general, the CIs were widest for mixed effects models and narrowest for CWGEE
models. Further, in models evaluating the sum of urinary concentrations of DEHP metabolites (∑DEHP, available for 91% of women), the
point estimates were surprisingly different between the first-cycle and multiple-cycle models. We observed significant associations between
maternal age and live birth in all models. However, we observed no associations between∑DEHP and live birth.

LIMITATIONS, REASONS FOR CAUTION: This analysis was limited to an example dataset in which the true effect of any exposure is
unknown. While this allows us to observe model performance in the context of real data, future analyses should be conducted within simu-
lated datasets under various assumptions to further evaluate the appropriateness of each approach. In addition, we did not address differen-
tial loss to follow-up in our statistical approaches.

WIDER IMPLICATIONS OF THE FINDINGS: The use of CWGEE models should be more widely considered in the analysis of IVF data
with multiple cycles per woman. The CWGEE approach is computationally simple, addresses non-ignorable (informative) cluster size, and is
robust against mis-specification of the underlying covariance structure. Among the methods compared in this analysis, CWGEE models
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generally yielded the narrowest CIs, possibly indicating the most precise estimates. We also stress the importance of estimating risks rather
than odds in the analysis of IVF data.

STUDY FUNDING/COMPETING INTEREST(S): The project was funded by Grants (R01ES022955, R01ES009718, and
P30ES000002) from the National Institutes of Health. None of the authors has any conflicts of interest to declare.
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Introduction
Infertility, defined as the failure to establish a clinical pregnancy after 12
months of regular, unprotected sexual intercourse, affects up to 15%
of couples trying to conceive (Louis et al., 2013; Thoma, et al., 2013).
Many couples turn to IVF for treatment. In 2015, more than 200,000
IVF cycles were performed in the USA, compared to about 60,000 in
1995 (Society for Assisted Reproductive Technology, American
Society for Reproductive Medicine, 2007; ASRM, 2017). An IVF cycle
begins with ovarian suppression, followed by controlled stimulation,
ovulation induction, oocyte retrieval, fertilization and embryo transfer.
Each cycle can fail at any step prior to or after embryo transfer.
Developing and implementing valid, appropriate statistical approaches

for evaluating predictors of success in studies of IVF remains a significant
challenge in ART research (Messerlian and Gaskins, 2017). However,
the field lacks consensus on which approaches are most appropriate for
yielding unbiased parameter estimates, especially when considering mul-
tiple cycles (Buck Louis et al., 2005; Messerlian and Gaskins, 2017).
Many couples receiving IVF treatment undergo multiple cycles before
achieving a live birth or discontinuing treatment. In a cohort study of
6164 patients undergoing IVF in Massachusetts between 2000 and
2005, 62% had more than one IVF cycle, and the maximum number of
cycles was 10 (Malizia et al., 2009).
In the analysis of IVF data, it is advantageous to consider outcomes

from all cycles in order to draw clinically relevant inferences and to
maximize study power. However, many research publications in this
area restrict analysis to the first cycle, as the inclusion of all subsequent
cycles introduces greater statistical complexity as well as concern for
potential bias. Cycle outcomes are likely to be correlated within each
patient, and failure to account for this correlation may lead to under-
estimation of SEs. In addition, the number of prior cycles that a patient
has undergone is likely to be informative of her probability of success.
Treating all cycles equally would over-weight couples with the most
severe infertility. This may lead to estimates of the per-cycle probabil-
ity of success that are biased downwards, or to overestimated associa-
tions with exposure.
In this investigation, we evaluated several methods to estimate the

association of exposure measures with the probability of live birth.
We considered the utility of reporting risks versus odds, by comparing
first-cycle log-binomial and logistic models. We further evaluated vari-
ous methods to account for non-independent cycle outcomes and
informative cluster size. Specifically, we considered potential sources
of bias and compared the results and interpretations of mixed effects
models, unweighted generalized estimating equation (GEE) models,
and cluster weighted GEEs (CWGEE). We conducted these analyses
within the Environment and Reproductive Health (EARTH) Study.
The primary exposure was maternal age at cycle initiation, which is a

well-established predictor of live birth following IVF (Malizia et al.,
2009; Centers for Disease Control and Prevention et al., 2017). We
also compared these methods for assessing the relationship between
maternal preconception urinary concentrations of di(2-ethylhexyl)
phthalate (DEHP) metabolites and live birth. Phthalates are a group
of plasticizers commonly found in consumer products, and exposure
to these chemicals is widespread (Centers for Disease Control and
Prevention, 2013). Phthalates have previously been reported to be
associated with a decreased probability of live birth in the EARTH
Study (Hauser et al., 2016).

Materials andMethods

Study participants
The EARTH Study is an ongoing prospective cohort study conducted in col-
laboration with the Massachusetts General Hospital (MGH) Fertility Center
and the Harvard T.H. Chan School of Public Health. This cohort was estab-
lished in 2004 and follows couples seeking treatment for infertility through-
out the course of their treatment and pregnancy. Data are collected on a
variety of environmental, nutritional and lifestyle exposures. Details of the
EARTH Study have been described previously (Messerlian et al., 2018).
Women who were enrolled in the EARTH cohort from 2004 to 2017 and
initiated at least one IVF cycle were eligible for this study, regardless of cycle
outcome or treatment discontinuation. Cycle initiation was defined as begin-
ning ovulation induction with the intent to progress through an IVF or ICSI
cycle. Women who were oocyte donors, conceived naturally or who only
received IUI were excluded. We also excluded individual cycles in which
patients received gamete donation or used cryo-thawed oocytes. We fur-
ther excluded women (n = 4) with missing information on BMI, as BMI is an
established predictor of IVF success (Rittenberg et al., 2011). Finally, we
excluded all frozen embryo transfer cycles (n = 103), which accounted for
14% of cycles after all other inclusion criteria were applied. Note that in the
latter cases, individual cycles were excluded, but women may have had
other initiated cycles included in the analysis. At the time of recruitment,
trained research staff explained all procedures and answered relevant ques-
tions. The study was approved by the Human Studies Institutional Review
Boards of MGH, the Harvard T.H. Chan School of Public Health, and the
Centers for Disease Control and Prevention (CDC). Participants signed an
informed consent after the study procedures were explained by a research
nurse and all questions were answered.

Clinical data and covariates
Clinical data regarding each IVF cycle were abstracted from each patient’s
medical records by trained research staff. These data included treatment
cycle number, treatment protocol (luteal phase agonist, flare or antagon-
ist), fertilization protocol (IVF or ICSI) and pregnancy outcome. In addition,
each study participant was assigned an infertility diagnosis by their treating
physician, according to the Society for Assisted Reproductive Technology
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(SART) (Centers for Disease Control and Prevention et al., 2013).
Pertinent demographic data and prior pregnancy were obtained via a base-
line questionnaire at study entry. Upon enrollment, a member of the
research study staff measured each patient’s height and weight. BMI was
calculated as weight (kg) per height squared (m2).

Urinary phthalate metabolite concentrations
In a subset of EARTH participants with available measures, we also con-
sidered associations of live birth with the sum of urinary concentrations of
DEHP metabolites, or ∑DEHP, a potentially modifiable exposure. Urine
spot samples were collected at study entry, as well as twice during each
IVF cycle: between Days 3 and 9 of the gonadotrophin phase and on the
day of oocyte retrieval, as described previously (Silva et al., 2007; Hauser
et al., 2016). The DEHP metabolites included mono(2-ethylhexyl) phthalate
(MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-
5-oxohexyl) phthalate (MEOHP) and mono(2-ethyl-5-carboxypentyl)
phthalate (MECPP). Concentrations below the limit of detection (LOD)
were replaced with the LOD divided by 2 (Hornung and Reed, 1990;
Hauser et al., 2016). We adjusted the metabolite concentrations by specific
gravity and calculated cycle-specific metabolite concentrations by taking the
geometric mean of the two samples from each IVF cycle (Hauser et al.,
2016). The molar sum of DEHP metabolites (∑DEHP) was calculated by
dividing each metabolite concentration by its molecular weight and then
summing across metabolites (Hauser et al., 2016).

Statistical analysis
We compared several statistical methods for evaluating the association of
exposures with live birth, both restricting to the first IVF cycle and including
all cycles. The two exposures of interest were quartiles of maternal age at
cycle initiation, available for all women, and ∑DEHP, available for 91% of
women. Each of these exposures was evaluated for each statistical meth-
od. Patient-specific demographics, as well as cycle-specific characteristics,
were examined and reported in the full cohort and in the ∑DEHP sub-
sample.

We considered two approaches for evaluating the association between
exposure and live birth, restricted to the first cycle. First, relative risks
were obtained with a log-binomial model; second, odds ratios (ORs) were
estimated with logistic regression. The log-binomial model provides a
more relevant and intuitive estimate compared to the logistic model for
prospective cohorts with outcomes that are not rare. Specifically, the OR
is not a readily interpretable measure, and will be farther from the null
compared to the risk ratio (RR) when the outcome is common (e.g. live
birth) (Cummings, 2009). Further, the OR is non-collapsible, making it

........................................................................................

Table I Demographic and clinical characteristics
among women in the Environment and Reproductive
Health Study enrolled between 2004 and 2017.

Maternal age ∑DEHP
n (%) n (%)

Woman-specific
characteristics

(N = 442
women)

(N = 401
women)

Age at study entry (years: Mean ±
SD)

35 ± 4 35 ± 4

BMI at study entry (kg/m2 Mean ±
SD)

24 ± 4 24 ± 4

Smoking

Current smoker 11 (2) 9 (2)

Past smoker 109 (25) 97 (24)

Never smoker 322 (73) 295 (74)

Race

Caucasian 367 (83) 335 (84)

Black/African American 15 (3) 13 (3)

Asian 42 (10) 37 (9)

Other 18 (4) 16 (4)

Primary SART Diagnosis at study entry

Female factor 137 (31) 124 (31)

Male factor 137 (31) 128 (32)

Unexplained 168 (38) 149 (37)

Infertility at study entry

Primary 270 (61) 246 (61)

Secondary 170 (38) 153 (38)

Unsure 2 (1) 2 (1)

Number of IVF cycles

Mean ± SD 1.5 ± 0.7 1.5 ± 0.8

Range 1–5 1–5

Cycle-specific characteristics (N = 642 cycles) (N = 575 cycles)

Treatment Protocol

Luteal phase agonist 417 (65) 379 (66)

Flare 124 (19) 107 (19)

Antagonist 101 (16) 89 (15)

Fertilization protocol (n = 602) (n = 543)

ICSI 336 (56) 309 (57)

Traditional IVF 266 (44) 234 (43)

Cycle outcome

No oocytes retrieved 40 (6.2) 32 (5.6)

Fertilization failure 16 (2.5) 13 (2.3)

Embryos not transferred 24 (3.7) 18 (3.1)

Implantation failurea 229 (35.7) 210 (36.5)

Chemical pregnancyb 40 (6.2) 36 (6.3)

Ectopic pregnancy 6 (0.9) 5 (0.9)

Spontaneous abortion 46 (7.2) 40 (7.0)

Therapeutic abortion 4 (0.6) 4 (0.7)

Continued

........................................................................................

Table I Continued

Maternal age ∑DEHP
n (%) n (%)

Woman-specific
characteristics

(N = 442
women)

(N = 401
women)

Stillbirth 3 (0.5) 3 (0.5)

Live birth 234 (36.5) 214 (37.2)

DEHP, di(2-ethylhexyl) phthalate; SART, Society for Assisted Reproductive
Technology.
aImplantation failure was defined as a negative pregnancy test (bhCG < 6 mIU/ml)
17 days following embryo transfer or insemination.
bChemical pregnancy was defined as implantation with no subsequent clinical
pregnancy.
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challenging to compare estimates between different studies (Richardson
et al., 2017). Given that this is a prospective cohort study in which the
exposure is measured prior to the outcome, it is more appropriate to dir-
ectly estimate the relative risk of live birth. While it may seem strange to
estimate the ‘risk’ of a good outcome, it should simply be thought of as the
probability of having a live birth for a given woman during a single IVF cycle.
However, while the relative risk is more appropriate than the OR, it can
be harder to achieve convergence with the log-binomial model due to esti-
mation under a constrained parameter space (Williamson et al., 2013).

We then considered three approaches which incorporate multiple IVF
cycles per woman. These included a log-binomial mixed effects model, a
GEE log-binomial model, and a CWGEE model. Clustering arises when
multiple cycles per woman are analyzed, such that each woman contri-
butes a cluster and each IVF cycle is a cluster member. Due to underlying
biological differences between individuals, cycle outcomes are likely to be
correlated within a cluster. We considered a log-binomial mixed effects
model including a subject-specific effect to account for this within-woman
correlation. Mixed effects models are useful for making subject-specific
inferences in the context of unbalanced data, and address lack of inde-
pendence by incorporating random effects in addition to fixed effects
(Fitzmaurice et al., 2012; Yelland et al., 2011b). The subject-specific, or
conditional, estimate may be interpreted as the relative risk of live birth,
comparing two women with the same value of a random intercept but
who differ in their age at cycle initiation. In situations in which the log-
binomial model failed to converge, we fit a modified Poisson model includ-
ing a subject-specific random intercept to estimate the association of
maternal age at cycle initiation with the conditional probability of achieving
a live birth. The modified Poisson approach is less prone to convergence
problems and is a viable alternative to the log-binomial mixed effects mod-
el for estimating relative risks (Yelland et al., 2011a; Zou, 2004).

As an alternative, GEE models were fitted with a log link function and
binomial distribution for evaluating age, and a Poisson distribution for
evaluating ∑DEHP. These represent a marginal method: while mixed
effects models estimate subject-specific effects, GEE models estimate
population-averaged effects of exposure. Last of all, we considered a
weighted GEE model to account for cluster size. Cluster size is considered
to be informative, or non-ignorable, when the number of observations in a
cluster is associated with the probability of the outcome. For IVF, the num-
ber of prior cycles that a patient has undergone is associated with her
probability of success in the current cycle (Malizia et al., 2009). For
example, couples with more severe infertility will likely undergo a greater
number of IVF cycles before achieving a live birth, compared to couples
with less severe infertility. When cluster size is informative, using an
unweighted approach in marginal analyses will over-weight couples with
the most severe infertility, leading to biased estimates. A weighted GEE
approach, in which the weight is equal to the inverse of the cluster size, is
not subject to this bias (Williamson et al., 2003; Huang and Leroux, 2011).

For all approaches, we conducted unadjusted and adjusted analyses. In
the adjusted analyses, we included BMI (continuous, kg/m2), maternal
smoking history (ever, never), and SART infertility diagnosis (male, female,
unexplained) as covariates. These covariates were chosen a priori for their
known robust association with live birth following IVF treatment
(Fedorcsák et al., 2004; Malizia et al., 2009; Vaegter et al., 2017). We did
not include other predictors of live birth because the study population was
quite homogenous; characteristics such as race and ethnicity were not
likely to cause significant confounding. In addition, we did not include prior
treatment in the first-cycle models because these were intended to dem-
onstrate how a model that did not include information on prior treatment
or number of cycles would behave (in contrast to the multiple-cycle mod-
els). In the analysis of ∑DEHP, we further adjusted for maternal age at
cycle initiation (continuous) and age squared (continuous). For all models,

we tested for nonlinearity in the association between each of the continu-
ous predictors and live birth by adding a quadratic term and comparing
model fit with a likelihood ratio test. For ordinal covariates, we utilized the
Akaike information criterion to compare models with the ordinal variable
versus those with indicators of levels of the ordinal variable, where pos-
sible. Finally, we assessed trend across quartiles for each model evaluating
age, using the median values of each quartile as a continuous variable in
regression models. Statistical analyses were conducted using SAS software
version 9.4 (SAS Institute Inc., Cary, NC, USA). P-values <0.05 were con-
sidered significant.

To help inform our analyses and to better understand the correlation
structure among multiple cycles, we conducted two supporting evalua-
tions. First, we assessed the association between cycle number and prob-
ability of live birth, in order to verify our assumption of informative cluster
size and to consider the utility of the CWGEE approach. Second, we evalu-
ated the working correlation matrix estimated by the unadjusted,
unweighted GEE model under both the unstructured and the compound
symmetry covariance structures. Consideration of the correlation struc-
ture is an important component of statistical analysis and can help elucidate
underlying relationships within the data.

Results
Our analysis included 442 women who were enrolled in the EARTH
study between November 2004 and June 2017 and who initiated at
least one IVF cycle. At study entry, the participants were on average
35 years old (SD = 4), with a mean BMI of 24 kg/m2 (SD = 4)
(Table I). Thirty-three percent of study participants initiated multiple
cycles (range: 1–5 cycles) and there was a total of 642 cycles for the
442 women. Overall, 37% of all cycles resulted in a live birth. Women
in the first, second, third, and fourth quartile of age were 21–32,
33–35, 36–38 and 39–43 years of age, respectively. Among the 401
women with ∑DEHP measures (n = 575 cycles), the median urinary
concentration of the per-cycle specific gravity-adjusted ∑DEHP was
0.13 μg/l (interquartile range (IQR): 0.07, 0.26), and the maximum
value was 5.23 μg/l. The ∑DEHP concentration ranges of each quar-
tile were: 0.010–0.065 μg/l, 0.066–0.123 μg/l, 0.124–0.282 μg/l, and
0.285–5.229 μg/l, respectively. There were no appreciable differences
between the characteristics of women with and without∑DEHP mea-
surements (Table I).

Associations of age with live birth: models
restricted to the first cycle
We observed significant associations between maternal age and live
birth in all models. On average in the first IVF cycle, the probability of
live birth was 55% lower among women in the oldest age group, com-
pared to those in the youngest age group (RR = 0.45, 95% CI: 0.32,
0.64) (Table II). This estimate was slightly attenuated after adjusting for
BMI, smoking status and infertility diagnosis (adjusted RR (aRR) = 0.49,
95% CI: 0.35, 0.70). For each quartile of age, the OR was farther from
the null compared to the RR estimated by the log-binomial model, as
expected based on their different interpretation. For example, the
odds of live birth were 70% lower among the oldest women compared
to the youngest, adjusting for BMI, smoking status, and infertility diag-
nosis (aOR = 0.30, 95% CI: 0.17, 0.53).
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Association of age with live birth: models
including multiple cycles per woman
The probability of live birth for an individual in the oldest age category
was 54% lower compared to an individual in the youngest age cat-
egory, as estimated by the unadjusted mixed effects model (RR =
0.46, 95% CI: 0.31, 0.67) (Table II). After adjusting for BMI, smoking
status and infertility diagnosis, the relative risk was 0.51 (95% CI: 0.35,
0.75). Results obtained from the GEE models were similar to those
estimated by the mixed effects models. The unadjusted, unweighted
GEE model yielded an average probability of live birth that was 53%
lower among the oldest group of women compared to the youngest
(RR = 0.47, 95% CI: 0.34, 0.64) (Table II). Similarly, the CWGEE
yielded an unadjusted marginal relative risk of 0.48 (95% CI: 0.35,
0.65). After adjusting for BMI, smoking status, and infertility diagnosis,
the relative risks were slightly attenuated for both the GEE and
CWGEE models.
In general, the CIs were widest for the mixed effects models and

narrowest for the GEE and CWGEE models. The 95% CIs tended to
be narrower for the CWGEE compared to the GEE models. For
example, the CI widths for comparing the oldest and youngest age
groups, obtained with the fully adjusted mixed effects, GEE, and
CWGEE models, were 0.44, 0.42 and 0.33, respectively (Table II).
Finally, increased quartiles of maternal age were associated with a
downward trend in the probability of live birth. This trend was signifi-
cant (P < 0.005) across all models (data not shown).

Association of∑DEHP with live birth
Among our overall cohort (n = 442 women), 401 women undergoing
575 cycles had complete information on urinary concentrations of
DEHP metabolites. We did not observe any association of urinary
∑DEHP metabolite concentrations with the probability of live birth in
this cohort (Table III), either in models restricted to the first cycle or
accounting for multiple cycles. However, the estimates were surpris-
ingly different between the first-cycle and multiple-cycle models. For
example, the adjusted RR comparing women with the highest and low-
est quartiles of ∑DEHP for each model incorporating multiple cycles
was <1 (0.87, 0.87 and 0.95 for mixed effect, GEE and CWGEE,
respectively), while that for the log-binomial model restricted to the
first cycle was 1.24. While neither setting yielded statistically significant
associations, restricting to the first cycle could lead investigators to
interpret their findings quite differently.

Evaluating correlation structure among live
birth outcomes in multiple IVF cycles
After adjusting for maternal age at cycle initiation, BMI, smoking status
and infertility diagnosis, each additional IVF cycle was associated with a
32% decrease in the probability of achieving a live birth (aRR = 0.68,
95% CI: 0.55, 0.84), suggesting that cluster size is informative (data not
shown). The working correlation matrix estimated by the unadjusted,
unweighted GEE model, specifying an unstructured covariance, yielded

.................................................... ........................................................................................

.............................................................................................................................................................................................

Table II Unadjusted and adjusted associations between maternal age at cycle initiation (years, in quartiles) and live birth
(n = 442 women, 642 cycles).

First Cycle Models Multiple Cycle Models

Logistic Log Binomial Mixed Effects GEE CWGEE
OR RR RR RR RR
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Model 1: Unadjusted

Q1 1.00 1.00 1.00 1.00 1.00

(ref) (ref) (ref) (ref) (ref)

Q2 0.68 0.83 0.89 0.91 0.87

(0.40, 1.14) (0.65, 1.07) (0.64, 1.24) (0.71, 1.16) (0.70, 1.08)

Q3 0.48 0.68 0.65 0.66 0.68

(0.28, 0.82) (0.51, 0.91) (0.45, 0.93) (0.50, 0.87) (0.52, 0.89)

Q4 0.26 0.45 0.46 0.47 0.48

(0.15, 0.45) (0.32, 0.64) (0.31, 0.67) (0.34, 0.64) (0.35, 0.65)

Model 2: Adjusted for BMI, smoking status and infertility diagnosis

Q1 1.00 1.00 1.00 1.00 1.00

(ref) (ref) (ref) (ref) (ref)

Q2 0.72 0.84 0.90 0.91 0.89

(0.42, 1.21) (0.66, 1.07) (0.65, 1.26) (0.73, 1.14) (0.73, 1.08)

Q3 0.52 0.71 0.67 0.66 0.71

(0.30, 0.90) (0.53, 0.95) (0.47, 0.96) (0.50, 0.88) (0.55, 0.92)

Q4 0.30 0.49 0.51 0.51 0.53

(0.17, 0.53) (0.35, 0.70) (0.35, 0.75) (0.37, 0.69) (0.39, 0.72)

GEE, generalized estimating equation; CWGEE, cluster-weighted generalized estimating equation; OR, odds ratio; RR, risk ratio.
Age Quartiles: Q1, 21–32; Q2, 33–35; Q3, 36–38; Q4, 39–43 years.
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negative correlations between the outcomes of early cycles and posi-
tive correlations between the outcomes of later cycles. This could
occur if the couples who go on to fourth and fifth cycles have such
severe infertility that they never achieve a live birth. In contrast, the
compound symmetry covariance structure assumes that all cycles
within an individual are equally correlated with one another. It is fre-
quently utilized in studies of IVF, as it requires estimation of only two

covariance parameters. However, given the results above, the com-
pound symmetry structure does not seem appropriate. Indeed, the
GEE models did not converge when we applied the compound sym-
metry covariance structure. Furthermore, a mixed effects model with
a random intercept and no additional covariance structure is equiva-
lent to specifying the compound symmetry covariance and may not be
appropriate.

.................................................... ........................................................................................

.............................................................................................................................................................................................

Table III Unadjusted and adjusted associations between∑DEHP (quartiles) and live birth (n = 401 women, 575 cycles).

First Cycle Models Multiple Cycle Models

Logistic Log Binomial Mixed Effects GEE CWGEE
OR RR RR RR RR
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Model 1: Unadjusted

Q1 1.00 1.00 1.00 1.00 1.00

(ref) (ref) (ref) (ref) (ref)

Q2 1.42 1.22 1.12 1.11 1.07

(0.83, 2.43) (0.90, 1.65) (0.78, 1.63) (0.84, 1.47) (0.82, 1.39)

Q3 1.14 1.08 0.96 0.99 0.99

(0.67, 1.94) (0.79, 1.48) (0.66, 1.40) (0.73, 1.34) (0.76, 1.31)

Q4 1.29 1.16 0.82 0.90 0.92

(0.72, 2.33) (0.83, 1.63) (0.55, 1.24) (0.66, 1.24) (0.68, 1.24)

Model 2: Adjusted for age, age2, BMI, smoking status and infertility diagnosis

Q1 1.00 1.00 1.00 1.00 1.00

(ref) (ref) (ref) (ref) (ref)

Q2 1.34 1.10 1.07 1.08 1.03

(0.76, 2.36) (0.83, 1.46) (0.74, 1.55) (0.82, 1.40) (0.80, 1.32)

Q3 1.17 1.09 0.98 0.98 1.01

(0.67, 2.05) (0.81, 1.47) (0.67, 1.43) (0.75, 1.29) (0.78, 1.30)

Q4 1.36 1.24 0.87 0.87 0.95

(0.73, 2.56) (0.90, 1.71) (0.58, 1.32) (0.63, 1.20) (0.72, 1.26)

∑DEHP Quartiles: Q1, 0.010–0.065 μg/l; Q2, 0.066–0.123 μg/l; Q3, 0.124–0.282 μg/l; Q4, 0.285–5.229 μg/l.

.............................................................................................................................................................................................

Table IV Model characteristics.

Model Properties SAS procedurea Interpretation

Logistic Regression • Requires independent observations PROC GENMOD

Log-Binomial Regression • Requires independent observations PROC GENMOD

Mixed Effects Models • Accounts for correlated observations
• Can yield unbiased estimates with unbalanced cluster

sizes given adjustment for covariates predicting imbalance

PROC GLIMMIX Conditional

Generalized Estimating Equation Models • Accounts for correlated observations
• Does not require distributional assumptions
• Assumes imbalance in data follows MCAR structure

PROC GENMOD Marginal

Cluster-Weighted Generalized
Estimating Equation Models

• Accounts for correlated observations
• Does not require distributional assumptions
• Accounts for non-ignorable cluster size

PROC GENMOD Marginal

MCAR, Missing completely at random.
aSAS statistical procedure (PROC) for generalized linear models (GENMOD) or generalized linear mixed models (GLIMMIX).
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Discussion
In this cohort of subfertile couples undergoing ART, we examined sev-
eral approaches to analyzing IVF data with multiple cycles and a non-
rare, binary outcome. Specifically, we considered log-binomial and
logistic regression models restricting to the first cycle, as well as mixed
effects models, GEE models and CWGEE models when all cycles were
included (summarized in Table IV). While several models performed
adequately and yielded overall similar results, CWGEE models gener-
ally yielded the narrowest CIs. This was unexpected, as the CWGEE
model includes fractional cycles summing to one per woman, rather
than each woman contributing the total number of her cycles to the
sample size. The cluster-weighted approach is a computationally sim-
ple way of addressing non-ignorable (informative) cluster size. In sensi-
tivity analyses, consistent with previous studies, we observed that the
number of IVF cycles a woman has undergone is a significant predictor
of live birth (Malizia et al., 2009). Specifically, each additional IVF cycle
is associated with a reduced probability of live birth. Thus, investiga-
tors should treat cluster size as informative in the IVF setting. Further,
GEE models are generally robust against mis-specification of the
underlying covariance structure (Fitzmaurice et al., 2012). Finally, the
population-averaged interpretation of the CWGEE parameter esti-
mate is clinically relevant. Specifically, the RR compares the probability
of live birth among cycles of women in the fourth quartile of age to
cycles of women in the first quartile of age. In contrast, mixed effects
models estimate subject-specific associations, which can be somewhat
less intuitive and more complicated to interpret. The subject-specific,
or conditional, RR compares the probability of live birth within a
woman, between two cycles that differ in quartile of age. This inter-
pretation becomes more complex when covariate values are constant
within a cluster. While differences in interpretation between the mar-
ginal (population-averaged) and conditional (subject-specific) models
are nuanced, they should be considered when developing analysis
plans and inferences. Specifically, investigators should compare the
relevance of population versus individual level inferences in the context
of the study aims.
One limitation of the CWGEE is that it may perform poorly for cov-

ariates with within-cluster variation (Huang and Leroux, 2011). Moving
forward, more sophisticated statistical techniques such as the type-3
Doubly Weighted GEE (DWGEE3) estimator should be explored to
handle cluster-varying exposures (Huang and Leroux, 2011). Further,
G-Methods should be explored for handling time-varying confounding
in scenarios where covariates vary by cycle and are affected by past
exposure (Robins, 1986). An exploration of these techniques was
beyond the scope of the present investigation.
In this investigation, the probability of live birth was around 50%

lower among the oldest group of women compared to the youngest.
However, contrary to our hypothesis, we observed no associations
between∑DEHP and live birth. Given previous findings (Hauser et al.,
2016), our results may be attributed to the evolving composition of
this cohort. The previous investigation included EARTH Study partici-
pants who were recruited between November 2004 and April 2012,
totaling 256 women and 375 IVF cycles. We analyzed data from 401
women undergoing 575 cycles, between November 2004 and June
2017. We are encouraged to find that these additional years (April
2012–June 2017) correspond to declining urinary concentrations of
DEHP metabolites. Specifically, the median urinary concentration of

the per-cycle specific gravity-adjusted ∑DEHP was 0.19 μg/l (IQR:
0.10, 0.42) for 2004–2012, 0.07 μg/l (IQR: 0.05, 0.11) for 2012–2017,
and 0.13 μg/l (IQR: 0.07, 0.26) for 2004–2017 overall. These changes
reflect declining exposure to DEHP in this cohort and have likely atte-
nuated the association between urinary ∑DEHP metabolites and live
birth.
To the best of our knowledge, only one study has compared mul-

tiple methods for analyzing IVF data with multiple cycles (Missmer
et al., 2011): however, there were several limitations to this investiga-
tion. First, the authors exclusively estimated ORs for live birth. In IVF
settings, the OR may not approximate the RR, as the probability of a
live birth in the first cycle is around 25–30% (Cummings, 2009; Malizia
et al., 2009; Pearson et al., 2009). Notably, the estimated OR will be
farther from the null than the corresponding RR, even though the
strength of the association is the same. This discrepancy may lead
investigators to conclude that the association between an exposure
and outcome is stronger than it actually is. Second, the authors
acknowledged that GEE models perform poorly with non-ignorable
cluster size but did not address this further. We have gone beyond this
and demonstrated the CWGEE approach, which accounts for inform-
ative cluster size. Finally, the authors restricted their analysis to cycles
with an embryo transfer. We caution against this restriction, as it may
lead to bias when the exposure of interest is associated with IVF failure
points that occur prior to embryo transfer (Messerlian and Gaskins,
2017).
Among studies of live birth conducted within the EARTH cohort, it

is standard practice to include multiple IVF cycles per woman in statis-
tical analysis. ORs are often estimated with logistic mixed effects mod-
els including a random intercept. The least squares means of the fixed
effects are then computed and the predicted marginal probabilities are
presented for the average value of all covariates (Searle et al., 1980;
Hauser et al., 2016; Mínguez-Alarcón et al., 2016; Gaskins et al.,
2018). To demonstrate this, we have computed the probability of live
birth for each quartile of age with the least-squares means approach
for the mixed effects models (Supplementary Table SI, SAS Code in
Supplementary Data). It is also possible to estimate the means at spe-
cific levels of each covariate. Presenting marginal probabilities along-
side relative risks can improve the interpretability of study results.
However, we suggest the inclusion of the CWGEE approach to esti-
mate relative risks for binary outcomes.
In addition to methods employed within the EARTH Study, a variety

of statistical approaches have been considered in the literature that
address the complex structure of IVF data. Among studies that include
multiple cycles per woman, discrete survival analysis has been
employed to consider the association of an exposure with the number
of cycles until live birth or with the cumulative rate of live birth (Malizia
et al., 2009). Time-to-event methods have also been expanded to
consider multiple points of failure within an individual (Maity et al.,
2014). In addition to survival analysis, the embryo-uterus (EU)
approach models the probability of live birth as a function of embryo
viability and maternal characteristics (Speirs et al., 1983). This method
has been demonstrated and expanded to account for multiple cycles,
although it is not widely used (Baeten et al., 1993; Zhou and
Weinberg, 1998; Dukic and Hogan, 2002; Missmer et al., 2011).
The present analysis had two potential limitations. First, we did not

address differential loss to follow-up in our statistical approaches. In
particular, couples who discontinue treatment after a failed cycle may
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have different exposure characteristics than couples who undergo a
subsequent cycle. For example, advanced maternal age and poor prog-
nosis has been associated with an increased rate of treatment discon-
tinuation (Dodge et al., 2017). Alternatively, many couples discontinue
treatment because they have conceived spontaneously (Domar et al.,
2018). Unfortunately, it is not always possible to distinguish couples
who discontinue treatment from those who exit the study or are sim-
ply between cycles. Within these constraints, inverse probability
weighting has been explored to handle differential patterns in treat-
ment discontinuation (Robins et al., 2000; Modest et al., 2018).
Second, this analysis was limited to an example dataset, in which the
true effect of any exposure is unknown. While this allows us to
observe model performance in the context of real data, future analyses
should be conducted in simulation studies under a range of plausible
assumptions to further evaluate the appropriateness of each approach.
Simulation studies enable investigators to determine whether CIs have
achieved the nominal level of coverage, to evaluate the bias of an esti-
mator, and to better understand the relative precision of different
approaches.

Conclusions
There are two primary methodological challenges when incorporating
multiple cycles in the analysis of IVF data. First, failure to account for
correlated outcomes within individuals may lead to invalid CIs.
Second, failure to account for informative cluster size may lead to
biased estimates. Implementing appropriate statistical methods in
studies of IVF is important for three reasons. First, couples presenting
for treatment should be counseled with unbiased estimates of the
probability of live birth, either in any given cycle or over the course of
treatment. Second, there is a growing body of research aimed at
advancing IVF techniques and success rates, and the use of appropriate
methodology can facilitate the improvement of clinical outcomes in
infertility care. Third, IVF provides a unique opportunity to study the
underlying causes and modifiable risk factors of infertility. It is critical to
ask appropriate questions and employ best practices in order to make
inferences that could further our understanding of these processes.
However, there is disagreement among investigators on whether to
present odds or risks, and how to best incorporate data from multiple
cycles (Messerlian and Gaskins, 2017). We have evaluated several
methods to address these concerns and prefer the CWGEE model.
Further, we stress the importance of estimating risks rather than odds.
In general, analysis decisions should be made a priori, and should be
guided by the underlying structure of one’s data and target of
inference.

Supplementary data
Supplementary data are available at Human Reproduction online.

Acknowledgements
The authors gratefully acknowledge all members of the EARTH study
team, specifically the Harvard T.H. Chan School of Public Health
research staff Jennifer Ford, Myra Keller and Ramace Dadd, physicians
and staff at Massachusetts General Hospital fertility center. A special
thank you to all of the study participants.

Authors’ roles
All authors of this article have made substantial contributions to the
development of this work, from its conception and design, through
data acquisition and analysis, interpretation of results, and drafting and
revision for intellectual content. Each author has approved the final
version to be published.

Funding
Grants (R01ES022955, R01ES009718 and P30ES000002) from the
National Institutes of Health.

Conflict of interest
None of the authors has any conflicts of interest to declare.

References
ASRM. SART Data Release: 2015 Preliminary and 2014 Final. 2017, ASRM
Press Release and Bulletin Volume 19, Number 15.

Baeten S, Bouckaert A, Loumaye E, Thomas K. A regression model for the
rate of success of in vitro fertilization. Stat Med 1993;12:1543–1553.

Buck Louis GM, Schisterman EF, Dukic VM, Schieve LA. Research hurdles
complicating the analysis of infertility treatment and child health. Hum
Reprod 2005;20:12–18.

Centers for Disease Control and Prevention. Fourth National Report on
Human Exposure to Environmental Chemicals, Updated Tables,
February 2015. 2013.

Centers for Disease Control and Prevention, American Society for
Reproductive Medicine, Society for Assisted Reproductive Technology.
2013 Assisted Reproductive Technology Fertility Clinic Success Rates
Report. 2013. US Dept of Health and Human Services.

Centers for Disease Control and Prevention, American Society for
Reproductive Medicine, Society for Assisted Reproductive Technology.
2015 Assisted Reproductive Technology Fertility Clinic Success Rates
Report. 2017. US Dept of Health and Human Services, Atlanta.

Cummings P. The relative merits of risk ratios and odds ratios. Arch Pediatr
Adolesc Med 2009;163:438–445.

Dodge LE, Sakkas D, Hacker MR, Feuerstein R, Domar AD. The impact of
younger age on treatment discontinuation in insured IVF patients. J Assist
Reprod Genet 2017;34:209–215.

Domar AD, Rooney K, Hacker MR, Sakkas D, Dodge LE. Burden of care is
the primary reason why insured women terminate in vitro fertilization
treatment. Fertil Steril 2018;109:1121–1126.

Dukic V, Hogan JW. A hierarchical Bayesian approach to modeling embryo
implantation following in vitro fertilization. Biostatistics 2002;3:361–377.

Fedorcsák P, Dale PO, Storeng R, Ertzeid G, Bjercke S, Oldereid N,
Omland AK, Åbyholm T, Tanbo T. Impact of overweight and under-
weight on assisted reproduction treatment. Hum Reprod 2004;19:2523–
2528.

Fitzmaurice GM, Laird NM, Ware JH. Applied Longitudinal Analysis.
Hoboken, NJ: John Wiley & Sons, 2012.

Gaskins AJ, Hart JE, Mínguez-Alarcón L, Chavarro JE, Laden F, Coull BA,
Ford JB, Souter I, Hauser R. Residential proximity to major roadways
and traffic in relation to outcomes of in vitro fertilization. Environ Int
2018;115:239–246.

Hauser R, Gaskins AJ, Souter I, Smith KW, Dodge LE, Ehrlich S, Meeker
JD, Calafat AM, Williams PL, Team ES. Urinary phthalate metabolite
concentrations and reproductive outcomes among women undergoing

556 Yland et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article-abstract/34/3/549/5255722 by guest on 06 M
arch 2019



in vitro fertilization: results from the EARTH study. Environ Health
Perspect 2016;124:831.

Hornung RW, Reed LD. Estimation of average concentration in the pres-
ence of nondetectable values. Appl Occup Environ Hyg 1990;5:46–51.

Huang Y, Leroux B. Informative cluster sizes for subcluster-level covariates and
weighted generalized estimating equations. Biometrics 2011;67:843–851.

Louis JF, Thoma ME, Sørensen DN, McLain AC, King RB, Sundaram R,
Keiding N, Buck Louis GM. The prevalence of couple infertility in the
United States from a male perspective: evidence from a nationally repre-
sentative sample. Andrology 2013;1:741–748.

Maity A, Williams PL, Ryan L, Missmer SA, Coull BA, Hauser R. Analysis of
in vitro fertilization data with multiple outcomes using discrete time-to-
event analysis. Stat Med 2014;33:1738–1749.

Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after
in vitro fertilization. N Engl J Med 2009;360:236–243.

Messerlian C, Gaskins AJ. Epidemiologic approaches for studying assisted
reproductive technologies: design, methods, analysis, and interpretation.
Curr Epidemiol Rep 2017;4:124–132.

Messerlian C, Williams PL, Ford JB, Chavarro JE, Mínguez-Alarcón L, Dadd
R, Braun JM, Gaskins AJ, Meeker JD, James-Todd T. The Environment
and Reproductive Health (EARTH) Study: a prospective preconception
cohort. Hum Reprod Open 2018;2018:hoy001.

Missmer SA, Pearson KR, Ryan LM, Meeker JD, Cramer DW, Hauser R.
Analysis of multiple-cycle data from couples undergoing in vitro fertiliza-
tion: methodologic issues and statistical approaches. Epidemiology 2011;
22:497–504.

Modest AM, Wise LA, Fox MP, Weuve J, Penzias AS, Hacker MR. IVF suc-
cess corrected for drop-out: use of inverse probability weighting. Hum
Reprod 2018;33:2295–2301.

Mínguez-Alarcón L, Chiu Y-H, Messerlian C, Williams PL, Sabatini ME,
Toth TL, Ford JB, Calafat AM, Hauser R. Urinary paraben concentrations
and in vitro fertilization outcomes among women from a fertility clinic.
Fertil Steril 2016;105:714–721.

Pearson KR, Hauser R, Cramer DW, Missmer SA. Point of failure as a pre-
dictor of in vitro fertilization treatment discontinuation. Fertil Steril 2009;
91:1483–1485.

Richardson TS, Robins JM, Wang L. On modeling and estimation for the
relative risk and risk difference. J Am Stat Assoc 2017;112:1121–1130.

Rittenberg V, Seshadri S, Sunkara SK, Sobaleva S, Oteng-Ntim E, El-
Toukhy T. Effect of body mass index on IVF treatment outcome: an
updated systematic review and meta-analysis. Reprod Biomed Online
2011;23:421–439.

Robins J. A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy
worker survivor effect.Math Model 1986;7:1393–1512.

Robins JM, Hernan MA, Brumback B. Marginal structural models and causal
inference in epidemiology. Epidemiology 2000;11:550–560.

Searle SR, Speed FM, Milliken GA. Population marginal means in the linear
model: an alternative to least squares means. Am Stat 1980;34:216–221.

Silva MJ, Samandar E, Preau JL Jr, Reidy JA, Needham LL, Calafat AM.
Quantification of 22 phthalate metabolites in human urine. J Chromatogr
B Analyt Technol Biomed Life Sci 2007;860:106–112.

Society for Assisted Reproductive Technology, American Society for
Reproductive Medicine. Assisted reproductive technology in the United
States: 2001 results generated from the American Society for
Reproductive Medicine/Society for Assisted Reproductive Technology
registry. Fertil Steril 2007;87:1253–1266.

Speirs AL, Lopata A, Gronow MJ, Kellow GN, Johnston WIH. Analysis of
the benefits and risks of multiple embryo transfer. Fertil Steril 1983;39:
468–471.

Thoma ME, McLain AC, Louis JF, King RB, Trumble AC, Sundaram R,
Louis GMB. Prevalence of infertility in the United States as estimated by
the current duration approach and a traditional constructed approach.
Fertil Steril 2013;99:1324–1331.e1321.

Vaegter KK, Lakic TG, Olovsson M, Berglund L, Brodin T, Holte J. Which
factors are most predictive for live birth after in vitro fertilization and
intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100
prospectively recorded variables in 8,400 IVF/ICSI single-embryo trans-
fers. Fertil Steril 2017;107:641–648.e642.

Williamson JM, Datta S, Satten GA. Marginal analyses of clustered data
when cluster size is informative. Biometrics 2003;59:36–42.

Williamson T, Eliasziw M, Fick GH. Log-binomial models: exploring failed
convergence. Emerg Themes Epidemiol 2013;10:14.

Yelland LN, Salter AB, Ryan P. Performance of the modified Poisson
regression approach for estimating relative risks from clustered pro-
spective data. Am J Epidemiol 2011a;174:984–992.

Yelland LN, Salter AB, Ryan P, Makrides M. Analysis of binary outcomes
from randomised trials including multiple births: when should clustering
be taken into account? Paediatr Perinat Epidemiol 2011b;25:283–297.

Zhou H, Weinberg CR. Evaluating effects of exposures on embryo viability
and uterine receptivity in in vitro fertilization. Stat Med 1998;17:1601–
1612.

Zou G. A modified poisson regression approach to prospective studies
with binary data. Am J Epidemiol 2004;159:702–706.

557Analysis of multi-cycle IVF data

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article-abstract/34/3/549/5255722 by guest on 06 M
arch 2019


	Methodological approaches to analyzing IVF data with multiple cycles
	Introduction
	Materials and Methods
	Study participants
	Clinical data and covariates
	Urinary phthalate metabolite concentrations
	Statistical analysis

	Results
	Associations of age with live birth: models restricted to the first cycle
	Association of age with live birth: models including multiple cycles per woman
	Association of ∑DEHP with live birth
	Evaluating correlation structure among live birth outcomes in multiple IVF cycles

	Discussion
	Conclusions
	Supplementary data
	Acknowledgements
	Authors’ roles
	Funding
	Conflict of interest
	References


