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ABSTRACT: A major challenge in ART is to select high-quality oocytes and embryos. The metabolism of oocytes and embryos has long
been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. Here, we review recent work
on noninvasive metabolic imaging of cumulus cells, oocytes, and embryos. We focus our discussion on fluorescence lifetime imaging
microscopy (FLIM) of the autofluorescent coenzymes NAD(P)H and flavine adenine dinucleotide (FADþ), which play central roles in many
metabolic pathways. FLIM measurements provide quantitative information on NAD(P)H and FADþ concentrations and engagement
with enzymes, leading to a robust means of characterizing the metabolic state of cells. We argue that FLIM is a promising approach to aid
in oocyte and embryo selection.
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..Introduction
A major goal in ART is to select the single embryo with the highest de-
velopmental potential from within a patient’s embryo cohort (Gardner
and Sakkas, 2003; Kirkegaard et al., 2015; Kovacs and Lieman, 2019;
Zaninovic and Rosenwaks, 2020). Selecting a single high-quality embryo
to transfer reduces the number of potential embryos implanted and, in
turn, decreases the number of embryo transfers a patient must un-
dergo (Gardner and Sakkas, 2003), alleviating the risks associated with
multiple pregnancies (Dudenhausen and Maier, 2010).

Currently, the most common method used to assess oocyte and
embryo quality is to evaluate their morphology at discrete time points
(Schoolcraft et al., 1999; Tesarik and Greco, 1999; Alpha Scientists in
Reproductive Medicine and ESHRE Special Interest Group of
Embryology, 2011). More detailed information can be obtained by
timelapse microscopy (Goodman et al., 2016), which can be analyzed
more objectively with machine learning algorithms (Fernandez et al.,
2020; Leahy et al., 2020; Zaninovic and Rosenwaks, 2020). However,
it is still unclear if timelapse microscopy is beneficial for embryo selec-
tion (Ahlström et al., 2022) and approaches based on morphology or

morphokinetics fail to provide information on embryo physiological or
genomic state (Wong et al., 2014). Preimplantation genetic testing for
aneuploidies (PGT-A) has increasingly been used to evaluate the ploidy
of blastocysts (Forman et al., 2013; Munné, 2018). However, PGT-A
is invasive and its use remains controversial (Cornelisse et al., 2020;
Simopoulou et al., 2021). Thus, improved methods for embryo selec-
tion would be beneficial for improving ART success.

The importance of metabolism
for oocyte and embryo
development

Cumulus–oocyte complex
Granulosa and cumulus cells (CCs) are specialized somatic cells that
enclose the oocytes (Zhou et al., 2016). At early stages of oogenesis,
there is a crosstalk between granulosa and CCs and the surrounded
oocytes (Sutton et al., 2003; Richani et al., 2021) that helps support

GRAPHICAL ABSTRACT

Noninvasive measures of metabolism of cumulus cells, oocytes, and preimplantation embryos using fluorescence lifetime imag-
ing microscopy. ICM: inner cell mass; TE: trophectoderm; FADþ: flavine adenine dinucleotide.
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oocyte growth (Downs et al., 2002; Huang and Wells, 2010; Richani
et al., 2021), maturation (Dumesic et al., 2015), and enable CCs differ-
entiation (Sutton et al., 2003; Gilchrist et al., 2008) (Fig. 1A).
Throughout this article we will focus on CCs, as they are coupled with
the oocyte via gap junctions and paracrine signals (Anderson and
Albertini, 1976). CCs mitochondrial activity, using measures of mito-
chondrial DNA copy number, immunofluorescent probes, or meas-
ures of membrane potential via flow cytometry, have been linked with
oocyte maturation (Anderson et al., 2018; Lan et al., 2020) and the ac-
quisition of developmental competence (Eppig, 1991; Albertini et al.,
2001; Lu et al., 2022). Therefore, measurements of CCs metabolic
state might provide a means to assess oocyte quality (Ogino et al.,
2016; Desquiret-Dumas et al., 2017; Fontana et al., 2020).

Oocyte metabolism, in particular mitochondria, plays key roles in
supplying energy and metabolic precursors to support oocyte matura-
tion and further embryo development (Hoshino, 2018; Fabozzi et al.,
2021) (Fig. 1B). Oocyte mitochondrial dysfunction has been linked
with decreased quality and implantation potential (Wilding et al., 2001;
Eichenlaub-Ritter et al., 2011; Zhao and Li, 2012) and is known to im-
pact spindle assembly and chromosome segregation during nuclear
maturation, however, the mechanisms by which they do so remain
unclear (Eppig, 1996; Tatone et al., 2011). Hence, the assessment of
oocyte metabolism may help elucidate these mechanisms and provide
a measure of their quality (Tan et al., 2022a).

Preimplantation embryos
As the oocyte matures and is fertilized, further intricate metabolic
shifts occur. The preimplantation embryo subsequently undergoes
metabolic changes through development (Lane and Gardner, 2000;
Chason et al., 2011; Gardner and Harvey, 2015; Harvey, 2019) that
are necessary to produce developmentally competent embryos
(Gardner et al., 2001; Leese, 2012) (Fig. 1C) and are also involved in
cell fate specification (Chi et al., 2020; Zhu and Zernicka-Goetz,
2020). These dynamic variations in metabolic pathways are interwoven
with the viability of the embryo (Van Blerkom et al., 1995; Harvey,
2019; Gardner, 2015), which led to the development of the ‘Quiet
embryo hypothesis’, suggesting that embryos that have a less active
metabolism have higher developmental potential (Leese et al., 2007;
Leese, 2012; Santos Monteiro et al., 2021). However, the validity of
this hypothesis is still uncertain (Gardner et al., 2011; Tejera et al.,
2012).

Additionally, metabolic state varies across embryos between differ-
ent patients and within the cohort of embryos from the same patient
(Venturas et al., 2021, 2022) (Fig. 1D). It is unclear what determines
these variations, but oocyte- or embryo-specific characteristics, such
as stage, ploidy, or time since fertilization, appear to influence their
metabolic profiles (Gardner and Sakkas, 2003; Rosenwaks, 2017;
Sanchez et al., 2017; Shah et al., 2020; Santos Monteiro et al., 2021;
Venturas et al., 2022). To this end, measures of metabolism could aid

Figure 1. Metabolic cooperation and variability in oocyte maturation and embryo development. (A) Depiction of metabolic coopera-
tivity between the oocyte and the enclosing cumulus cells. (B) Variations in metabolism are observed through human oocyte growth and maturation
and (C) throughout preimplantation embryo development. (D) Metabolic variations are also observed between embryos from the same patient and
between patients. (E) Endogenous coenzymes, such as NAD(P)H and flavine adenine dinucleotide (FADþ), are natural biomarkers of metabolism in-
volved in pathways including glycolysis, fermentation, and mitochondrial respiration. Their autofluorescent properties enable noninvasive imaging of
the metabolic state of cells. Created using BioRender.com.
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in selecting the embryo with the highest implantation potential from
within a patient’s cohort.

Assessments of metabolism
Measures of metabolism can be performed via the addition of fluores-
cent dyes to label structures like mitochondria (Gorshinova et al.,
2017; Al-Zubaidi et al., 2019), or measures of mitochondrial DNA
copy number (Fragouli et al., 2015; Kumar et al., 2021). However,
these techniques are invasive and their utility in clinical IVF remains un-
certain (Ogino et al., 2016; Desquiret-Dumas et al., 2017; Kumar
et al., 2021).

Gene expression in CCs is a potentially noninvasive surrogate
marker of oocyte metabolism and quality, but so far has not been pre-
dictive of clinical outcome (Hamel et al., 2010; Fragouli et al., 2014;
Green et al., 2018; Racowsky and Needleman, 2018). More direct,
noninvasive measures of metabolism quantify the uptake and secretion
of metabolites in the media surrounding the embryos or oocytes
(Conaghan et al., 1993; Urbanski et al., 2008), or via measures of em-
bryo oxygen consumption levels (Lopes et al., 2010; Kurosawa et al.,
2016). These methods require highly specialized skills and equipment,
such as near-infrared or mass spectrometry, high-performance liquid
chromatography, or microarrays. Despite the reported associations of
levels of metabolites (Vergouw et al., 2008), proteins (Katz-Jaffe et al.,
2006), and amino acids (Brison et al., 2004) with embryonic develop-
mental potential, these methods have not yet been clinically useful
(Vergouw et al., 2008; Hardarson et al., 2012).

Some intracellular molecules with integral roles in cellular physiology
can be specifically probed with optical microscopy (Heikal, 2010;
Cheng and Xie, 2012). Hence, several groups have focused on devel-
oping methods to optically measure intracellular metabolic function us-
ing techniques such as Raman spectroscopy, confocal imaging, and
hyperspectral (McLennan et al., 2020; Tan et al., 2022a) or fluores-
cence lifetime imaging microscopy (FLIM) (Sanchez et al., 2019; Shah
et al., 2020; Venturas et al., 2022; Tan et al., 2022b), with the aim to
develop them for clinical use. These methods are noninvasive, avoiding
the potential interference with biological functions associated with exo-
geneous dyes. A broad array of autofluorescent molecules involved in
metabolic functions can be probed with hyperspectral microscopy
(Sutton-McDowall et al., 2017; Santos Monteiro et al., 2021; Tan
et al., 2022a,b). Hyperspectral microscopy is showing some promise
for its potential clinical application (Sutton-McDowall et al., 2017; Tan
et al., 2022a) and has recently been used to measure the association
between embryo metabolic state and ploidy (Santos Monteiro et al.,
2021).

NADPH, NADH, and flavine adenine dinucleotide (FADþ) are
some of the most abundant, autofluorescent metabolites. These mole-
cules have received particular attention because of their strong associ-
ation with mitochondrial function (Heikal, 2010). These molecules are
endogenous electron carriers involved in many metabolic pathways, in-
cluding glycolysis, fermentation, and mitochondrial respiration (Chance
and Williams, 1955) (Fig. 1E). Hence, these coenzymes have a diag-
nostic potential as noninvasive biomarkers of the cellular metabolic
state and mitochondrial anomalies (Klaidman et al., 1995; McLennan
et al., 2020; Tan et al., 2022b). Measurements of their fluorescence in-
tensities are correlated with their concentrations (Heikal, 2010) and

have been used to assess mitochondrial function (Klaidman et al.,
1995; Dumollard et al., 2009; Santos Monteiro et al., 2021).

Fluorescence lifetime imaging
microscopy
Besides fluorescence intensity, the advanced microscopic technique of
FLIM enables additional measurements of the molecule’s fluorescence
lifetime (Heikal, 2010; Becker, 2012): the time it takes for a fluores-
cent molecule to return to ground state after excitation (Jablonski,
1933) (Fig. 2A). The fluorescence lifetime of a molecule is independent
of its concentration, but depends on its molecular conformation, which
can be altered by its environment (Suhling et al., 2004; Ghukasyan and
Heikal, 2014). Both NAD(P)H and FADþ have short and long lifetime
components, depending on whether or how these molecules are en-
gaged with an enzyme (Lakowicz, 2006). Changes in metabolic states
can be measured by the change of their fluorescence lifetimes (Skala
et al., 2007). Taken together, FLIM provides a quantitative characteri-
zation of cellular metabolic states in terms of eight metabolic parame-
ters, including intensities, fluorescence lifetimes, and enzyme
engagement of NAD(P)H and FADþ (Becker, 2012; Ma et al., 2019;
Sanchez et al., 2019) (Fig. 2B).

FLIM, like all light microscopy techniques, requires exposing the
sample to illumination, raising the concern of potential damage.
Indeed, it is well known that excessive light exposure in conventional
microscopy (Masters and So, 2008) or laser pulses during biopsy
(Bradley et al., 2017) can harm biological material. However, using low
levels of illumination can eliminate such adverse effects (Nakahara
et al., 2010; Scott et al., 2013) and it has been shown that FLIM illumi-
nation exposure during single or timelapse FLIM imaging does not dis-
rupt the viability of mouse embryos or increase the levels of reactive
oxygen species (Sanchez et al., 2018; Seidler et al., 2020). Despite
these findings, safety in mouse embryos does not necessarily generalize
to human embryos. Additionally, FLIM timelapse illumination does not
appear to produce changes in FLIM parameters during human blasto-
cyst expansion (Venturas et al., 2022), or impact maturation rates of
human oocytes when compared to control (Pietroforte et al., 2022).
However, in order to use this technique in a clinical setting, additional
studies are needed to demonstrate its safety in human oocytes or pre-
implantation embryos. Laser intensity, time of exposure, and frequency
of imaging should all be carefully studied.

Potential applications of FLIM
in ART
FLIM has previously been applied in other fields, and its utilization in
clinical ART is showing great promise (Sanchez et al., 2018; Ma et al.,
2019; Venturas et al., 2021, 2022; Yang et al., 2021) (Fig. 2C).

Noninvasive FLIM assessments of cumulus
cell metabolic state
Recent studies have evaluated the potential application of noninvasive
measurements of CCs metabolism as a surrogate for oocyte quality

802 Venturas et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/38/5/799/7104033 by guest on 08 M
ay 2023



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..(Richani et al., 2021; Venturas et al., 2021; Tan et al., 2022b).
Measuring the metabolic state of CCs using noninvasive methods
offers several advantages. First, CCs are frequently removed or
trimmed and discarded when performing ART treatments, therefore
measuring their metabolic state is completely noninvasive. Additionally,
the greater variance observed between oocytes from the same patient
than between patients (Venturas et al., 2021) implies that quantitative
measures of CCs metabolism could be used to assess oocyte quality
from within a patient’s cohort. These metabolic changes might be as-
sociated with oocyte-specific characteristics, such as their maturity. In
this regard, metabolic profiles of CCs characterized by FLIM have
been associated with oocyte maturation status (Anderson et al., 2018;
Venturas et al., 2021). CCs showed distinct FLIM parameters depend-
ing on whether they enclosed immature oocytes or mature metaphase
II (MII) oocytes (Venturas et al., 2021). Additionally, patient-specific
factors, like maternal age, and hormone levels have been shown to
also influence CCs and oocyte metabolic state (Venturas et al., 2021;
Lu et al., 2022). These observations suggest that patient clinical charac-
teristics should be factored in when developing prediction algorithms
for oocyte viability. However, because CCs undergo a process of ex-
pansion and detach from the oocyte during maturation (Nikoloff,
2021), measurements of their metabolism are a less direct assessment

of oocyte physiology. Whether CCs metabolic profile is associated
with oocyte viability has yet to be determined.

Noninvasive FLIM assessments of oocyte
metabolic state
Oocyte metabolic state has long been linked with their physiological
state and quality (Dumollard et al., 2007; Sanchez et al., 2018; Scott
et al., 2018; Richani et al., 2021). However, robust and quantitative
techniques to measure oocyte metabolic state noninvasively have yet
to be established. Recent studies using FLIM to measure oocyte me-
tabolism in mice demonstrated that FLIM can be used to identify
oocytes with metabolic impairments (Sanchez et al., 2018) and
showed the impact of age on oocytes metabolic state (Sanchez et al.,
2018). Maternal age, among other factors, negatively impacts oocyte
quality, in particular because of increased rates of aneuploidy
(Eichenlaub-Ritter et al., 2011; Cimadomo et al., 2018). However, the
precise relation between oocyte metabolism and correct chromosome
segregation has not been established. Therefore, noninvasive measure-
ments of metabolism could provide a means to study this relation
(Sanchez et al., 2017, 2018; Scott et al., 2018; Yang et al., 2021).
Preliminary work has found distinct FLIM parameters in oocytes that
mature and those that do not (Pietroforte et al., 2022). FLIM could

Figure 2. Noninvasive assessments of intracellular metabolic state from fluorescence lifetime imaging of NAD(P)H and FAD1.
(A) Fluorescence lifetime imaging (FLIM) of cumulus cells, oocytes, and embryos. FLIM can be used to noninvasively measure metabolic state of cu-
mulus cells, oocytes, and embryos. (B) Fluorescence decay curves from FLIM. Fitting the fluorescence decay curves to a double exponential function
provides information on the fluorescence intensity, lifetime, and enzyme engagement of NAD(P)H and flavine adenine dinucleotide (FADþ), with a
total of eight metabolic parameters. (C) Evaluation of cellular morphological features and patient clinical characteristics could potentially be used in
synergy with quantitative measurement of the metabolic state of cumulus cells, oocytes, or embryos in order to help select the best embryo from
within a patient’s cohort. Ns: nanoseconds; au: arbitrary units. Created using BioRender.com.
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.
help improve the understanding of the interconnection between nu-
clear and cytoplasmic maturation of the oocytes or perhaps help pre-
dict which eggs will mature (Tan et al., 2022a). Additionally, media and
conditions of culture can also affect metabolic pathways and nutrient
utilization pathways (Gardner et al., 2011; Kleijkers et al., 2015). FLIM
measurements of the intracellular metabolic state provide a means to
study the metabolic relation of the oocyte with its environment, how
this is related to the acquisition of developmental competence (Tan
et al., 2022a) and potentially aid in improving culture conditions
(Bertoldo et al., 2020; Pollard et al., 2021). Measuring the metabolic
profile of single oocytes from a patient’s cohort could help in selecting
the oocyte with the highest implantation potential.

Noninvasive FLIM assessments of embryo
metabolic state
It has long been known that embryo metabolism, in particular glucose
uptake, is associated with embryo viability (Renard et al., 1980; Van
Blerkom et al., 1995; Gardner et al., 2001; Leese et al., 2007; Gardner,
2015); however, it is technically challenging to noninvasively measure
embryo metabolism with the sensitivity and robustness that would be
required for ART clinical applications. FLIM of NAD(P)H and FADþ is
promising in this regard, as recent work shows that it is capable of mea-
suring intricate metabolic shifts throughout preimplantation development
in mouse (Ma et al., 2019; Sanchez et al., 2019) and human blastocysts
throughout blastocyst expansion and hatching (Shah et al., 2022;
Venturas et al., 2022). It was found that embryo metabolic profiles not
only change throughout development but also vary between blastocysts
from the same patient and between patients. These profiles are associ-
ated with the day of development but are not associated with embryo
morphological grades (Venturas et al., 2022), which can suggest that
both of these assessments may provide synergistic information, aiding
separately in embryo selection (Tejera et al., 2012). Additionally, blasto-
cyst metabolism was also associated with the ploidy status in human
embryos (Shah et al., 2022). Whether assessment of blastocyst metabo-
lism via FLIM is associated with embryo implantation should be further
explored.

Mechanistic studies and
interpretation of FLIM
measurements
One of the challenges of using FLIM measurements to help select
oocytes and embryos based on their metabolic state is to understand
what physiological information is encoded by FLIM measurements and
to what extent they are predictive of their developmental compe-
tence. The majority of FLIM studies so far are correlative, demonstrat-
ing the sensitivity of FLIM parameters to metabolic perturbations or
changes in cell physiology (Sanchez et al., 2018, 2019; Ma et al., 2019;
Venturas et al., 2021, 2022; Shah et al., 2022), but how to relate FLIM
measurements to activities of specific metabolic pathways remains
largely unknown. Knowing the relation between FLIM parameters and
specific metabolic activities will better inform the interpretation of the
correlations between FLIM measurements and patient characteristics
that have been observed in clinical data (Venturas et al., 2021). The

goal is to quantitatively interpret FLIM measurements of NAD(P)H
and FADþ in terms of activities of specific metabolic pathways, such
as respiration, glycolysis, and fermentation in oocytes, CCs, and em-
bryos, and to understand mechanistically how metabolic defects im-
pact developmental competence in these systems. This would provide
more relevant information on how to use these noninvasive FLIM
measurements to select oocytes and embryos in ART.

Biophysical models provide useful tools to interpret FLIM measure-
ments by mapping FLIM parameters into biologically meaningful quanti-
ties. Biophysical models have enabled mechanistic interpretations of
FLIM of NADH in MII mouse oocytes. MII oocytes remain in a quasi-
metabolic steady state with constant FLIM parameters for many hours,
making quantitative metabolic perturbations easier to interpret, hence
providing an ideal system to relate FLIM parameters to specific meta-
bolic activities. A coarse-grained biophysical model of NADH redox
reactions has enabled the prediction of metabolic fluxes, i.e. the turn-
over rate of metabolites, within single oocytes from FLIM measure-
ments of NADH (Yang et al., 2021). Specifically, this model enables
the prediction of mitochondrial oxygen consumption rate (OCR) for
single oocytes from noninvasive FLIM imaging of NADH. Previously, it
has been proposed that OCR correlates with oocyte viability (Scott
et al., 2008; Tejera et al., 2011), but it is unclear what cellular pro-
cesses control OCR. Prediction of OCR from FLIM measurements has
demonstrated that the OCR of oocytes is insensitive to perturbations
in cellular energy demand and nutrient supply, despite significant sensi-
tivity of NADH FLIM parameters (intensity, fluorescence lifetimes, en-
zyme engagement) to these perturbations. In contrast, an oocyte’s
OCR is sensitive to direct mitochondrial perturbations. These results
show that OCRs of oocytes are determined by intrinsic properties of
mitochondria, rather than by cellular energy demand or nutrient supply
(Yang et al., 2021). This apparent OCR homeostasis also implies the
existence of an unknown mechanism of metabolic regulation that
maintains the global metabolic flux at the expense of redistribution of
specific metabolic fluxes. Combining NADH redox modeling with de-
tailed biophysical models of mitochondrial metabolism will help identify
the rewiring of metabolic fluxes in the oocytes, providing biological
insights into how metabolic perturbations impact oocyte viability.

Recent work has revealed subcellular metabolic heterogeneity, in-
cluding spatial variations in the mitochondrial membrane near the mei-
otic spindle in mouse oocytes (Al-Zubaidi et al., 2019). Such subcellular
metabolic heterogeneity may be associated with oocyte viability. For
example, abnormal distributions of mitochondria correlate with a de-
crease in oocyte developmental competence (Yu et al., 2010; Liu et al.,
2016), highlighting the potential utility of probing subcellular metabolic
heterogeneity to predict oocyte viability. In addition to single-cell aver-
aged OCR, NADH redox modeling also enables prediction of OCR at
different locations within the same cell by taking advantage of the sub-
cellular resolution of FLIM measurements. A subcellular OCR gradient
exists within a single oocyte, where mitochondria closer to the oocyte
periphery display a higher OCR than those at the center of the oocyte
(Yang et al., 2021) (Fig. 3A). This metabolic gradient is caused by en-
hanced proton leak in peripherally located mitochondria, suggesting the
existence of distinct subpopulations of mitochondria within a single oo-
cyte. However, it is unclear how these metabolic variations arise and
how they impact the viability and developmental competence of the
oocyte. Do mitochondria of different intrinsic activities move into differ-
ent locations of the oocyte during maturation or are mitochondria
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..responding to heterogeneous local signals? Since cumulus–oocyte cross-
talk is crucial in oocyte maturation, it is natural to ask how CCs impact
these metabolic heterogeneities and regulate oocyte viability. Previous
work has shown that oocytes matured with or without CCs in vitro dis-
play different developmental competence (Zhang et al., 2012).
Combining biophysical modeling of metabolic crosstalk and high-
resolution imaging of cumulus–oocyte complexes by FLIM during oo-
cyte maturation provides a method to address these questions.

Developing embryos display complex spatiotemporal metabolic dy-
namics. Understanding these variations may help guide embryo selec-
tion based on metabolic profiles. Recent work has highlighted the
importance of spatiotemporal control of mitochondrial metabolism in
oogenesis (Rodr�ıguez-Nuevo et al., 2022) and early embryo develop-
ment (Nagaraj et al., 2017). As discussed above, FLIM metabolic pro-
files of human blastocysts are associated with their developmental
stage, but not with their morphological assessment (Venturas et al.,
2022). Understanding these correlations will require relating FLIM meas-
urements to metabolic activities of the embryo. Earlier work has shown
that embryo metabolism transitions from a respiration dominant mode
to a hybrid mode of respiration and fermentation at the blastocyst
stage, which provides a starting point to interpret variations in FLIM
parameters. Mouse embryos provide a model system to study meta-
bolic variations. FLIM of NAD(P)H and FADþ has revealed intricate
spatiotemporal dynamics throughout mouse preimplantation embryo
development (Fig. 3B) (Sanchez et al., 2019). Notably, a striking

metabolic heterogeneity between the inner cell mass and trophecto-
derm has been observed in both mouse (Fig. 3B) and human blasto-
cysts (Venturas et al., 2022), suggesting a potential connection between
metabolic variation and cell fate specification (Kumar et al., 2018; Chi
et al., 2020). Single-cell and spatial transcriptomics have helped elucidate
cell lineage specification in early embryos (Peng et al., 2020;
Meistermann et al., 2021). Combining FLIM with transcriptomics and
metabolic perturbations should help elucidate the causes and conse-
quences of these metabolic variations, their role in cell fate specification
(Peng et al., 2020; Zhu and Zernicka-Goetz, 2020), and guide embryo
selection in ART. It is well known that different cells within an embryo
can exhibit different ploidies (Popovic et al., 2019; Capalbo et al.,
2021). Since FLIM can provide information on the metabolic state of in-
dividual cells within an embryo, it would be interesting to use this tech-
nique to determine if this genetic mosaicism leads to metabolic
heterogeneity.

Conclusion
It remains an open challenge to select oocytes and embryos with the
highest developmental competence in ART. Extensive studies
(Gardner et al., 2011; Thompson et al., 2016) have revealed associa-
tions between metabolic state and embryo developmental compe-
tence. Since FLIM of NAD(P)H and FADþ can be used to

Figure 3. FLIM of NAD(P)H reveals spatiotemporal metabolic variations in mouse oocytes and developing embryos. (A)
Fluorescence lifetime imaging (FLIM) of NADH reveals a spatial gradient of the average NADH fluorescence lifetime in mouse metaphase II (MII)
oocytes (left). An NADH redox model (middle) is used to interpret FLIM measurements and predicted a subcellular gradient of flux through the mi-
tochondrial electron transport chain (ETC), or equivalently oxygen consumption rate (right). (B) FLIM of NAD(P)H reveals spatiotemporal metabolic
variations in terms of the average NAD(P)H fluorescence lifetime during mouse preimplantation embryo development. Inner cell mass (ICM) and tro-
phectoderm (TE) display different metabolic states.
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quantitatively characterize the metabolic states of CCs, oocytes, and
embryos in a label-free and noninvasive manner (Ma et al., 2019;
Sanchez et al., 2019; Venturas et al., 2022), it is a promising tool for
selecting oocytes and embryos. Furthermore, recent studies on CCs,
oocytes, and embryos have demonstrated that FLIM can sensitively de-
tect metabolic variations not only across samples between different
patients but also within samples from the same patient (Venturas
et al., 2021, 2022). In addition, metabolic variations in oocytes and
embryos have been associated with oocyte maturity, ploidy status
(Shah et al., 2022), and embryo developmental stages but not with
embryo morphology (Venturas et al., 2022). These results suggest that
metabolic characterizations can be combined with patient clinical char-
acterization and morphological evaluations to provide a synergistic ap-
proach for the selection of oocytes and embryos. Initial work in
mouse indicates minimal photodamage from FLIM measurements
(Sanchez et al., 2018), but further safety studies on human oocytes
and embryos will be necessary. Biophysical models aid the interpreta-
tion of FLIM measurements and will provide a mechanistic basis for
oocyte and embryo selection (Yang et al., 2021). Establishing the po-
tential predictive power that FLIM can have will ultimately require fu-
ture studies determining the extent of association between FLIM
measurements and ART outcome.
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