

# Exploring the causes of semen quality changes post-bariatric surgery: a focus on endocrine-disrupting chemicals

Danielly P. Magalhaes  <sup>1</sup>, Shruthi Mahalingaiah  <sup>2</sup>, and Melissa J. Perry  <sup>1,\*</sup>

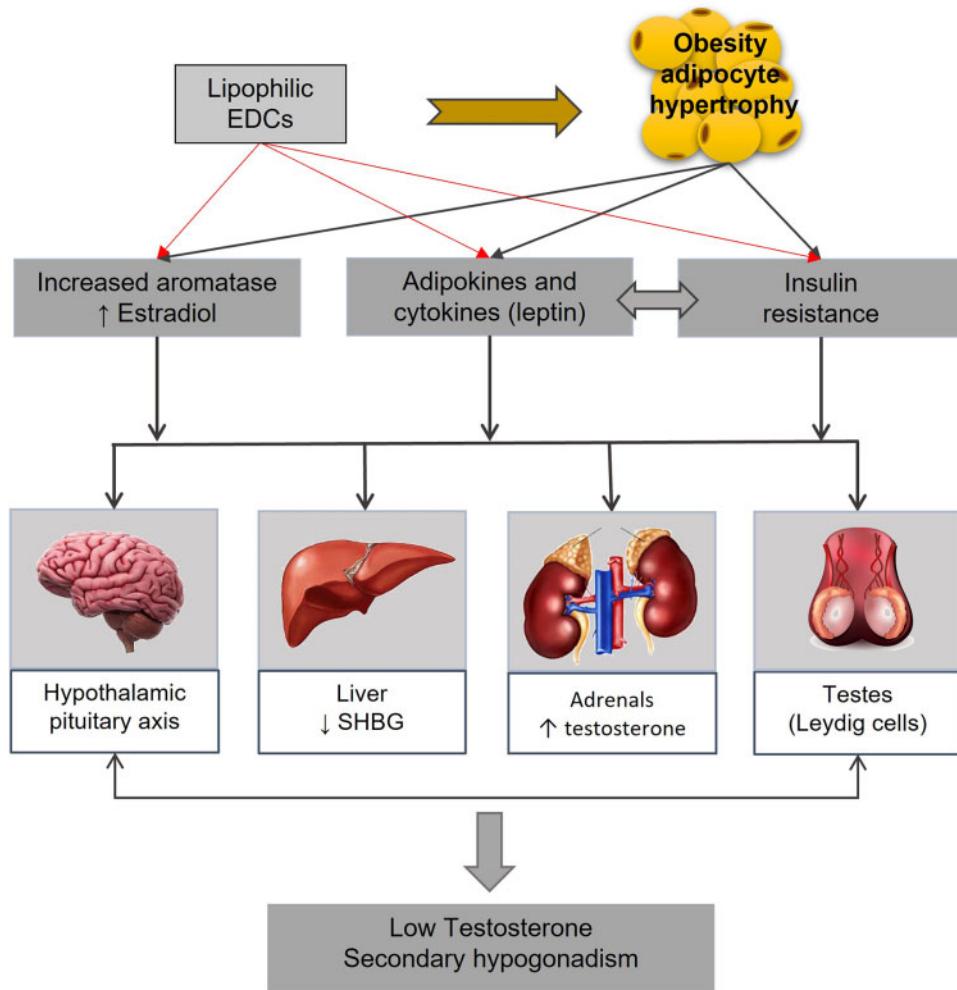
<sup>1</sup>Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA <sup>2</sup>Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA

\*Correspondence address. Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue, NW Suite 400, Washington, DC 20052, USA. Tel: 202-994-2461; E-mail: mperry@gwu.edu  <https://orcid.org/0000-0002-5905-8149>

Submitted on August 09, 2021; resubmitted on January 24, 2022; editorial decision on February 13, 2022

Downloaded from https://academic.oup.com/humrep/article/37/5/902/6556292 by guest on 10 May 2022

**ABSTRACT:** Rapid weight loss promoted by bariatric surgery (BS) can release accumulated lipophilic endocrine-disrupting chemicals (EDCs), making these chemicals systemically available. Men typically have a higher EDC body burden and lose more weight post-BS than women, which may put male BS patients at high risk for testicular toxicity. In this review, we analyze the impacts of BS on semen parameters with a particular focus on the potential effects of EDCs. After BS, serum EDC concentrations progressively increase; and there is evidence that semen parameters deteriorate after BS. Although elevated serum EDC concentrations are associated with inferior sperm parameters, links between semen parameters and EDCs post-BS have not been studied. Understanding these potential associations requires adequately powered studies, particularly within prospective longitudinal cohorts with long-term follow-up for sperm parameters, nutritional status, sex-hormones levels and serum EDC concentrations. Studying BS patients prospectively provides the important opportunity to evaluate dose-response effects of EDC serum concentrations on sperm quality and function. Research is also needed to identify critical chemical exposure periods post-BS to inform reproductive decisions, including consideration of sperm preservation before surgery.


**Key words:** organochlorines / persistent organic pollutants / lipophilic compounds / weight-loss surgeries / male fertility / sperm aneuploidy / sex hormones / obesogen / metabolic disease / nutritional deficiencies

## Introduction

In 2016, 39% of adults worldwide were overweight and 13% were obese (WHO, 2017). In parallel, bariatric surgery (BS) is increasingly performed to avert the impacts of obesity on health. Clinicians worldwide performed 833 687 BS procedures in 2019, most frequently in the USA (335 124 surgeries) and Italy (88 192 surgeries; Ramos *et al.*, 2019). BS is recommended for  $\text{BMI} \geq 40$  or  $\text{BMI} \geq 35 \text{ kg/m}^2$  with comorbidities aggravated by obesity (Brolin, 1996). The most common BS procedures are sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). Although the benefits include promoting the remission of type II diabetes and hypertension, whether BS confers benefits for male reproductive health remains unclear. While it is recognized that many factors can affect spermatogenesis post-BS, in this review, we explore the hypothesis that endocrine-disrupting chemicals (EDCs) play a role in affecting semen quality.

Obesity can disrupt metabolic pathways in adipose tissue (AT) that affect spermatogenesis (Fig. 1). Mechanistically, an increase in fat mass is followed by an increase in aromatase production, converting androgens into estrogens (Zumoff *et al.*, 2003; Fui *et al.*, 2014). Additionally, elevated insulin caused by insulin resistance reduces hepatic sex hormone-binding globulin (SHBG) secretion, altering the testosterone/estradiol (T:E<sub>2</sub>) ratio. These imbalances disrupt testosterone and estrogen levels, impairing the negative feedback loop of the hypothalamic–pituitary–gonadal (HPG) axis, resulting in reduced Sertoli cell activity and leading to persistent secondary hypogonadism (Kahn and Brannigan, 2017). As a consequence, individuals with obesity class 3 ( $\text{BMI} \geq 40 \text{ kg/m}^2$ ) are more likely to have a low sperm concentration (Ramaraju *et al.*, 2018).

BS-induced weight loss promotes improvements in insulin resistance and in aromatase, leptin and adiponectin secretion, resulting in the normalization of sex hormone levels. Consequently, obesity-associated



**Figure 1. Pathophysiological mechanisms of low testosterone and secondary hypogonadism in obese men caused by fat mass and aggravated by endocrine-disrupting chemicals (EDCs).** EDCs aggravate the effect of obesity by promoting insulin resistance and increasing aromatase, adipokines and cytokine production. Endocrine disruption of adipose tissue increases estradiol, leptin and insulin, triggering a cascade reaction that impairs the liver, adrenals and testes, and compromises hypothalamic–pituitary axis feedback regulation, resulting in low testosterone production. SHBG, sex hormone-binding globulin.

secondary hypogonadism may resolve (Lee *et al.*, 2019). However, reported effects on sperm health are contradictory and scarce, with some studies reporting reduced semen quality following BS, even after sex hormone levels have normalized (Lazaros *et al.*, 2012; Calderón *et al.*, 2014; Carette *et al.*, 2019).

Besides hormonal normalization, many factors are postulated to explain the changes in semen parameters post-BS, such as testicular temperature, metabolic changes and nutritional deficiencies. However, the potential links with bioaccumulated EDCs that are released by AT during weight loss have not yet been investigated. EDCs are exogenous chemicals that influence fertility by interfering with normal endocrine function. They can act through many different mechanisms (La Merrill *et al.*, 2020) and exposure occurs primarily through ingestion, particularly intake of fatty foods (La Merrill *et al.*, 2013).

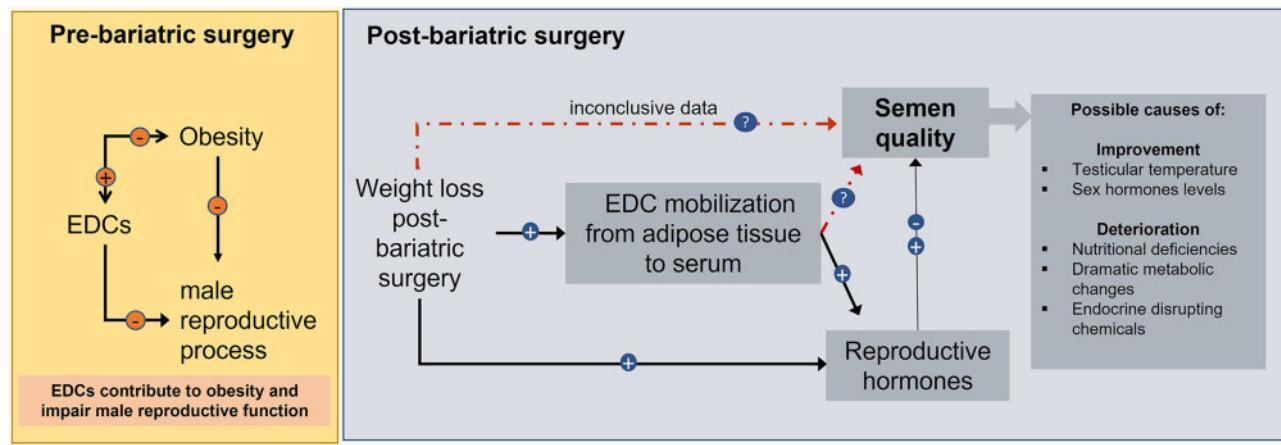
Obese individuals have a higher concentration of lipophilic EDCs in AT per gram of fat than lean individuals, although the concentration in

blood is lower (Kim *et al.*, 2011). Inside the AT, they act as obesogens by promoting adipogenesis and lipid accumulation, exacerbating obesity effects on fertility (Fig. 1). Additionally, EDCs act directly or indirectly on multiple AT metabolic signaling pathways related to male reproductive system functionality (Fig. 1). Epidemiological and animals studies have shown that EDCs (e.g. polychlorinated biphenyl, PCB;  $\beta$ -hexachlorocyclohexane,  $\beta$ -HCH; trans-chlordane; trans-nonachlor; dichlorodiphenyl dichloroethylene,  $p,p'$ -DDE; dichlorodiphenyltrichloroethane,  $p,p'$ -DDT; hexachlorocyclohexane, HCB, 2,3,7,8; and tetrachloro-dibenzodioxin, TCDD) cause oxidative stress and activate the synthesis of proinflammatory cytokines, chemokines and other molecules associated with an increased risk of chronic diseases among obese individuals (Arsenescu *et al.*, 2008; Ruzzin *et al.*, 2010; Lee *et al.*, 2014; Evangelou *et al.*, 2016; Mustieles *et al.*, 2017; Güll, 2018; Han *et al.*, 2020). Proinflammatory compounds and metabolic diseases are linked to impaired sex hormone levels and disrupted

spermatogenesis (Williams, 2012). EDCs also increase estradiol, leptin and insulin secretion, triggering a cascade reaction that impacts the liver, adrenals and testes, as illustrated in Fig. 1 (Gore et al., 2015; Heindel et al., 2017; Heindel and Blumberg, 2019; Sharma et al., 2020). In summary, general EDC exposures contribute to abnormal sex hormone levels, erectile dysfunction and spermatogenesis disorders, leading to poor semen quality, function and sperm genetic aberrations, and all of which can culminate in subfertility and infertility (Reis and Dias, 2012; Oliveira et al., 2017; Slopien et al., 2019).

Although the storage of EDCs in AT confers some protection against their toxic effects to testis and spermatozoa, for patients undergoing BS, the EDC release is rapid, with sudden onset, resulting in a progressive increase in serum levels. Serum organochlorine concentration rose 388.2% in 1-year post-BS (Hue et al., 2006). Such dramatic and rapid weight loss makes EDCs available to most organs. During weight loss, rodents pretreated with EDCs, such as DDT (Ohmiya and Nakai, 1977), HCB (Jandacek et al., 2005) and TCDD (Joffin et al., 2018), showed a time-dependent increased distribution from AT to several lean organs, including gonads. Few studies have evaluated circulating EDC levels up to 1 year after BS and very few cohort studies have evaluated semen parameters post-surgery. No study has correlated circulating EDCs with semen parameters after BS. Given the increasing use of BS to promote weight loss, there is a crucial need to understand how EDCs released post-BS affect male reproductive functioning.

In this conceptual review, we consider what is known about male reproductive health post-BS, the metabolic changes post-BS that are related to spermatogenesis, the progressive increase of EDCs caused by BS-induced weight loss and EDCs' reproductive effects on animals and humans. This evidence is used to theorize about the effect of BS on male reproductive health and the potential impact of EDCs, among other factors, on male fertility post-surgery and the potential to manage adverse effects. In the section below, we discuss: studies investigating semen parameters post-BS; the possible causes of sperm deterioration or improvement; the chemical mobilization of EDCs from fat during weight loss and risks to male fertility post-surgery (Fig. 2); and current knowledge gaps. We then provide recommendations for future research. This review included case reports and longitudinal cohort studies identified through PubMed, Scopus and Web of Science databases published through 16 September 2021 (Fig. 3). Included studies followed previous World Health Organization (WHO) guidelines (WHO, 1999, 2010) for semen examination and previous WHO lower reference limits (WHO, 2010) were used to define oligozoospermia as a sperm concentration below 15 million/ml and asthenozoospermia as a percentage of progressively motile spermatozoa below 32%.


## Semen parameters post-BS

Although BS could present one way to manage obesity-linked male infertility, the effects of BS on semen parameters remain unclear. We identified nine prospective cohort studies and three case reports describing the impact of BS on semen parameters (Table 1). From these, two cohort studies reported no differences ( $n=14$ ), three reported improvements among men with abnormal sperm parameters ( $n=104$ ), one reported improvement among men with normal semen

parameters ( $n=15$ ) and three cohort studies ( $n=84$ ) and all three case reports ( $n=11$ ) observed semen quality deterioration. Existing cohort studies are limited by small sample size and vary by postoperative follow-up time and study design. We performed a power calculation for the largest existing cohort, with alpha at 0.05; we found that 25 participants are the minimum needed to achieve 80% power to detect a 1.69-fold difference in sperm concentration and a 1.24-fold difference in sperm motility between pre- and post-BS semen analyses. Only three studies had a sample size higher than 25 participants (El Bardisi et al., 2016; Carette et al., 2019; Velotti et al., 2021). Thus, results must be interpreted with caution.

Of the three largest studies, two cohort studies reported an improvement in sperm parameters post-BS, but only among patients presenting abnormal sperm parameters at baseline (El Bardisi et al., 2016). One study evaluating 46 men (28.9% azoospermic, 41.3% oligozoospermic and 30.4% normal at baseline) observed that at 1-year post-BS, the sperm parameters did not differ from baseline for the whole cohort (El Bardisi et al., 2016). However, stratification by sperm concentration revealed a significant increase in sperm concentration among men classified at baseline as azoospermic (although this difference was extremely small, range: 0–0.3 million/ml, and in 6 of 13 men) and oligozoospermic (sperm concentration increased but remained <15 million/ml in 11 of 19 men, and were  $\geq 15$  million/ml in 6 of 19 men) and no changes in men with normal semen parameters at baseline. Velotti et al. (2021) only recruited men with idiopathic infertility ( $n=35$ ) attending infertility clinics and observed significant improvements in semen volume, sperm concentration, motility and morphology at 6 months post-surgery. These findings corroborate those of a smaller study ( $n=23$ ) in which 73.9% ( $n=17$ ) of participants had abnormal semen parameters before RYGB, with an increase in semen volume and viability noted at 6 months post-BS (Samavat et al., 2018). Indeed, three patients had completely normalized sperm parameters (Samavat et al., 2018). In contrast, one small study ( $n=15$ ) observed a significant improvement in the percentage of normal sperm morphology at 6 months post-BS, and on semen volume and sperm motility at 12 months post-surgery among men with normal semen parameters (Fariello et al., 2021).

The other largest study ( $n=46$ , 20 undergoing RYGB and 26 undergoing SG) reported a general deterioration in sperm count 1-year post-surgery, despite improvements in total testosterone and SHBG levels (Carette et al., 2019). Most patients had normal sperm parameters at baseline but eight patients (17.4%) were oligozoospermic. Total sperm count (TSC) decreased by 6 months and was significantly lower ( $>35\%$ ) at 12 months for both the RYGB (35%) and SG (40%) groups. Six men with normal baseline TSC became oligozoospermic by the first 12 months post-BS, while five of eight men with oligozoospermia had normalized sperm concentration post-BS, with no significant changes in semen volume, motility or vitality. These findings corroborate the study of Wood et al. (2020;  $n=18$ ), which observed a worsening of sperm concentration and total ejaculated sperm count after BS. Two patients became azoospermic at 6 months post-BS. Another smaller ( $n=20$ ) but longer study (24-month post-BS) including men with at least one abnormal sperm parameter (Calderón et al., 2019) observed a significant decrease in semen volume and 60% of patients presented low sperm concentration ( $<15$  million/ml) post-BS, compared to 36% at baseline. One patient conceived a child after surgery,



**Figure 2. Causal flow diagram showing pre- and post-bariatric surgery (BS) processes involved in male reproductive functioning.** Pre-BS, endocrine-disrupting chemicals (EDCs) promote obesity and aggravate male reproductive health outcomes. Post-BS, owing to precipitous weight loss, EDCs are mobilized from adipose tissue into serum. Evidence (25 studies) demonstrates that weight loss post-BS improves reproductive hormone levels despite the large amount of EDCs released; however, the combined effect of weight loss and EDC mobilization on semen quality remains to be determined.

#### Search terms used in the review

Search 1 : (Bariatric OR "Weight loss surgery" OR "metabolic surgery") AND (Sperm OR Semen)  
 Search 2: (Bariatric OR "Weight loss surgery" OR "metabolic surgery") AND ("Endocrine-disrupting chemicals" OR organochlorines OR "persistent organic pollutants")  
 Search 3: Bariatric OR "Weight loss surgery" OR "metabolic surgery" AND Sperm OR Semen AND "Endocrine-disrupting chemicals" OR organochlorines OR "persistent organic pollutants"

#### Records found through database searching

Search 1: 606    Search 2: 270    Search 3: 99

**Records excluded**  
 Search 1: n=594    Search 2: n=257    Search 3: n= 99  
 Reasons:  
 - Duplicated  
 - Non-human subjects  
 - Not male subjects  
 - Not related to Bariatric surgery  
 - Reviews

#### Full-text articles screened

Search 1: n=12  
 Search 2: n= 13  
 Search 3: none

**Excluded through full-text screening**  
 Search 1: n= 1 → Did not analyzed semen before bariatric surgery  
 Search 2: n=3 → not adult subjects, did not measured Endocrine disrupting chemicals, non-consistent follow-up time post-bariatric surgery

#### Studies included in the review

Search 1: 11  
 Search 2: 10

**Figure 3. Flowchart showing the literature searches and screening processes.** Results included publications until 16 September 2021 on PubMed, Web of Science or Scopus databases.

**Table I** Cohort studies and case reports analyzing human semen pre- and post-bariatric surgery, sorted in descending order according to sample size.

| Prospective cohort and case-control studies |         |                                                                                                             |                 |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study (author, year)                        | Country | Population                                                                                                  | Type of surgery | Time of semen analysis after surgery and method used                                                                                                                | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Carette et al. (2019)                       | France  | 46 males with no infertility history, but 8 presented oligozoospermia at baseline, $38.9 \pm 7.9$ years old | RYGB and SG     | 6 months and 12 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> . Morphology was assessed according to Auger et al. (2000) | <p>6 months of post-surgery:</p> <ul style="list-style-type: none"> <li>No significant changes were observed</li> <li>Six patients with normal baseline sperm count became oligospermic</li> <li>Normalization of sperm count in four of eight oligozoospermic men</li> </ul> <p>12 months of post-surgery:</p> <ul style="list-style-type: none"> <li>~40% significant decrease in total sperm count</li> <li>Seven patients with normal baseline sperm count became oligozoospermic</li> <li>A decrease in partial and total DNA fragmentation</li> <li>Improvement of sperm count in five of eight oligozoospermic men</li> <li>Percentage of normal spermatozoa decreased from 15.4% (68.7) at baseline to 12.4% (66.4%) (<math>P = 0.04</math>)</li> </ul> |
| El Bardi et al. (2016)                      | Qatar   | 46 males: 13 azoospermic, 9 oligozoospermic and 14 with normal sperm concentration; 37 (29–44) years old    | SG              | 12 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> .                                                                       | <ul style="list-style-type: none"> <li>No significant changes were observed in men with normal sperm analysis</li> <li>Significant increase in sperm concentration among men with azoospermia and oligozoospermia, but only 6 of 19 oligozoospermic had sperm concentration increased <math>&gt; 15</math> million/ml, and 6 of 13 azoospermic men improved sperm concentration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |
| Velout et al. (2021)                        | Italy   | 35 males with idiopathic infertility, $39.4 \pm 5.1$ years old                                              | SG              | 6 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> .                                                                        | <ul style="list-style-type: none"> <li>Significant increase in semen volume (from 2.25 to 2.8 ml), sperm concentration (from 6.4 to 10.85 M/ml), total sperm concentration (from 7.56 kg/m<sup>2</sup> to 11.85 M/m<sup>2</sup>), total</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(continued)

**Table I** Continued

| Study (author, year)          | Country | Population                                                                                                                                                                                                         | Prospective cohort and case-control studies |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean of fat mass lost  |
|-------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                               |         |                                                                                                                                                                                                                    | Type of surgery                             | Time of semen analysis after surgery and method used                                                                                                     | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| Sammavat <i>et al.</i> (2018) | Italy   | 31 males: 23 underwent surgery and 8 non-operated men<br>Only six patients had a normal seminal analysis at baseline                                                                                               | RYGB                                        | 6 months<br>Semen analysis was performed according to WHO guideline (2010).                                                                              | <ul style="list-style-type: none"> <li>• Increase in semen volume of 0.6 ml, and 10% viability</li> <li>• A decrease in SII-8 levels and sperm DNA fragmentation after bariatric surgery</li> <li>• Three patients had normalized sperm parameters post-surgery</li> <li>• A non-significant increased trend in motility and sperm concentration</li> </ul>                                                                                                                                     | 11.1 kg/m <sup>2</sup> |
| Calderón <i>et al.</i> (2019) | Spain   | 20 males: 8 presented abnormal morphology, 5 had abnormal sperm motility and 4 low sperm concentration. From these, only 15 patients had seminal analyses repeated at 24 months after surgery.<br>40 ± 8 years old | RYGB and SG                                 | 24 months<br>Semen analysis was performed according to World Health Organization guidelines (2010).                                                      | <ul style="list-style-type: none"> <li>• Significant decrease of 0.2 ml in sperm volume (<math>P = 0.04</math>)</li> <li>• 60% of patients presented low sperm concentration (&lt; 15 million/ml) post-bariatric surgery, compared to 36% at baseline</li> </ul>                                                                                                                                                                                                                                | 18 kg/m <sup>2</sup>   |
| Wood <i>et al.</i> (2020)     | Brazil  | 18 males, one was impossible to provide a semen sample post-surgery; 32.0 (IQR: 16.0) years old                                                                                                                    | RYGB and SG                                 | 6 months<br>Semen analysis was performed according to WHO guideline (2010). Morphology was assessed by the Kruger criteria (Kruger <i>et al.</i> , 1988) | <ul style="list-style-type: none"> <li>• Significant reduction in sperm concentration and on total ejaculated sperm count</li> <li>• 2 patients developed azoospermia at the end of the follow-up period. These patients had initial semen concentrations of 0.1 and 82 million/ml.</li> <li>• Higher prevalence of oligozoospermic patients (concentration lower than 1.5 million/ml) and of severe oligozoospermic patients (concentration lower than 5 million/ml) after surgery.</li> </ul> | 11.6 kg/m <sup>2</sup> |

(continued)

Table I Continued

| Prospective cohort and case-control studies |         |                                                                                                         |                 |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------|---------|---------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study (author, year)                        | Country | Population                                                                                              | Type of surgery | Time of semen analysis after surgery and method used                                                                                                                          | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fariaello et al. (2021)                     | Brazil  | From 24 men, 15 male participated (3 excluded as azoospermic, 4 changed address, 2 had vasectomy)       | RYGB            | 3, 6, 9 and 12 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> . Morphology was assessed by the Kruger criteria (Kruger et al. 1988) | <ul style="list-style-type: none"> <li>Patients experience an increase in TT, FT, FSH and SHBG and reduction in prolactin levels.</li> <li>Progressive increase in semen volume, sperm concentration, motility and morphology.</li> <li>Significant increase in semen volume and motility at 12 months post-BS</li> <li>Significant increase in %normal sperm morphology, and DNA integrity from 6 months post-surgery.</li> </ul> |
| (Reis and Dias, 2012)                       | Brazil  | 10 males who underwent surgery compared to 10 control under a weight loss plan; $22.2 \pm 11$ years old | RYGB            | 24 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> .                                                                                 | <ul style="list-style-type: none"> <li>No significant improvement or deterioration in sperm parameters, although hormonal and sexual functions significantly improved</li> </ul>                                                                                                                                                                                                                                                   |
| (Legro et al., 2015)                        | USA     | 4 males, 37.5 (30–40) years old                                                                         | RYGB            | 1, 3, 6 and 12 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> . Morphology was assessed by the Kruger criteria (Kruger et al. 1988) | <ul style="list-style-type: none"> <li>No significant changes observed, serial semen analysis showed normal ranges for most parameters despite massive weight loss</li> <li>• SpERM concentrations tended to decrease 1 month after surgery (<math>P = 0.11</math>), but then returned to preoperative levels by 12 months</li> </ul>                                                                                              |

(continued)

**Table I** Continued

| Study (author, year)              | Country | Population                                                                                                                                                                                                                                                                                                                                       | Type of surgery                                     | Time of semen analysis after surgery and method used                                                                                                                                                                                                           | Case reports                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     | Mean of fat mass lost                                                                               |
|-----------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                   |         |                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                                                                                                                                                                                                                                                | Outcomes                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |                                                                                                     |
| Lazaros <i>et al.</i> (2012)      | Greece  | Two patients with low sperm quality from a fertility clinic<br>Patient 1: 41.5 years old<br>Patient 2: 46 years old                                                                                                                                                                                                                              | RYGB                                                | Patient 1: 8 months<br>Patient 2: 12 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> .                                                                                                                                | Patient 1<br>• Decrease of 50% in sperm concentration, motility and morphology after surgery<br>• Total sperm aneuploidy rate increased from 25.9% before surgery to 53.3% after surgery<br>• Percentage of mature spermatozoa was reduced from 72% before surgery to 34.6% after surgery                                                                                  | Patient 1<br>• 13.4 kg/m <sup>2</sup><br>Patient 2<br>• 8.8 kg/m <sup>2</sup>                       | Patient 1<br>13.4 kg/m <sup>2</sup><br>Patient 2<br>8.8 kg/m <sup>2</sup>                           |
| Di Frega <i>et al.</i> (2005)     | Italy   | Six patients previously fathered children with normal sex hormones;<br>38.3 ± 2.4 years old                                                                                                                                                                                                                                                      | RYGB                                                | 16.8 ± 3.6 months<br>Semen analysis was performed according to <a href="#">WHO guideline (1999)</a>                                                                                                                                                            | Patient 2<br>• Had 32 × 10 <sup>6</sup> spermatozoa ml <sup>-1</sup> before surgery and presented with no spermatozoa either in his semen samples or in his testicular biopsy samples after surgery<br>• 3–4 sperm analyses during 12–15 months<br>• All men became azoospermic, and testis biopsy revealed non-obstructive azoospermia with complete spermatogenic arrest | 76.8 ± 12.3 kg                                                                                      | 76.8 ± 12.3 kg                                                                                      |
| Serramondade <i>et al.</i> (2012) | France  | Three males from a fertility clinic<br>Patient 1: teratozoospermic with a 4-year history of primary idiopathic infertility, normal sex-hormones levels, 30 years old<br>Patient 2: extreme oligoastheno-teratozoospermic with a 6-year history of primary infertility, 41 years old<br>Patient 3: oligoasthenoteratozoospermic, 18-month history | Patient 1: SG<br>Patient 2: RYGB<br>Patient 3: RYGB | Patient 1: 10 and 13 months<br>Patient 2: 6, 15 and 24 months<br>Patient 3: 3 and 6 months<br>Semen analysis was performed according to <a href="#">WHO guideline (2010)</a> . Morphology was assessed according to <a href="#">Auger <i>et al.</i> (2000)</a> | Patient 1<br>• All patients received mineral and vitamin supplementation post-surgery<br>Patient 2<br>• Drastic worsening, resulting in severe oligoasthenoteratozoospermia, decrease of 80–90% in sperm concentration, and 20–25% in motility<br>Patient 3<br>• 2 years after surgery showed semen improvement with normalization of both concentration and motility      | Patient 1<br>108 kg in 9 months<br>Patient 2<br>79 kg in 5 months<br>Patient 3<br>36 kg in 6 months | Patient 1<br>108 kg in 9 months<br>Patient 2<br>79 kg in 5 months<br>Patient 3<br>36 kg in 6 months |

(continued)

Table I Continued

| Study (author, year) | Country | Population                           | Type of surgery | Time of semen analysis after surgery and method used | Case reports |                       |
|----------------------|---------|--------------------------------------|-----------------|------------------------------------------------------|--------------|-----------------------|
|                      |         |                                      |                 |                                                      | Outcomes     | Mean of fat mass lost |
|                      |         | of primary infertility, 30 years old |                 |                                                      |              |                       |
|                      |         |                                      |                 |                                                      |              |                       |

FT, free testosterone; QR, interquartile range; RYGB, Roux-en-Y gastric bypass; SHBG, sex hormone-binding globulin; SG, sleeve gastrectomy; TT, total testosterone; BS, bariatric surgery.

but another patient failed to conceive even after ART (Calderón et al., 2019).

Three case reports identified severe effects post-BS, such as increases in sperm aneuploidy, azoospermia and infertility in men seeking ART post-BS (di Frega et al., 2005; Lazaros et al., 2012; Sermondade et al., 2012). Lazaros et al. (2012) described two cases of men who underwent fertility treatment and succeeded in conceiving a child before BS. At 8-month post-BS, one man had a 50% decrease in sperm concentration, motility and morphology; the aneuploidy rate increased from 25.9% before to 53.3% after surgery, and the percentage of mature spermatozoa declined from 72% before to 34.6% after surgery. The second man had no detectable spermatozoa in semen or in testicular biopsy samples at 12 months after surgery. Di Frega et al. (2005) reported a series of six males (all of whom fathered a child before surgery) who developed secondary infertility, identified as non-obstructive azoospermia with complete spermatogenic arrest post-BS. Results were confirmed in semen analyses 12–20 months after RYGB. Sermondade et al. (2012) also performed a repeated measure of semen parameters in three patients who underwent BS, reporting a dramatic worsening of sperm concentration, motility and morphology, as well as cryptozoospermia. In only one patient did the sperm concentration recover to baseline levels 24 months after surgery.

The published studies suffer from a key limitation concerning the number of participants and different study designs. Thus, the long-term effects of BS on semen parameters remain unclear and require further investigation, particularly with respect to causal mediation. We hypothesize that these worsened outcomes may reflect a short follow-up period for spermatogenesis recovery, dramatic metabolic changes, nutritional deficiencies and the release of EDCs or other toxic compounds from AT.

## Potential mechanisms underlying BS impact on semen quality

### Change in testicular temperature

A decrease in testicular temperature may result from fat mass loss. Spermatogenesis is a temperature-dependent process, and an increase in scrotal temperature can disrupt its progression. The increased scrotal temperature that accompanies obesity is associated with alteration of semen parameters, higher FSH plasma levels and, in some cases, even increased sperm aneuploidies and reduced testicular volume (Garolla et al., 2015). However, no study has investigated testicular temperature changes before and after BS and its effects on sperm parameters.

### Recovery of spermatogenesis after hormonal regulation

Normalized semen parameters may reflect the normalization of reproductive hormone levels (a decrease in estradiol and an increase in gonadotrophins, total testosterone, SHBG and T:E<sub>2</sub>). Seminal vesicle and prostate secretions are both controlled by androgens, and in the presence of low circulating testosterone (<264 ng/dl), ejaculate volume is reduced (Hopps et al., 2004; Di Guardo et al., 2020).

An improvement in sex hormones can occur in the first-month post-surgery (Legro *et al.*, 2012). BS-induced weight loss promotes sex hormone level normalization by decreasing aromatase, proinflammatory cytokines and leptin levels that will re-establish HPG axis function and hypothalamic GnRH and LH secretion (Kim *et al.*, 2011; Terra *et al.*, 2013). Additionally, increasing adiponectin will regulate insulin sensitivity and, consequently, restore circulating hepatic SHBG levels, thereby regulating the balance of testosterone and estradiol levels (Luconi *et al.*, 2013; Samavat *et al.*, 2018). The recovery of testosterone levels post-BS re-establishes LH and FSH feedback on the pituitary as well as LH stimulation of testosterone secretion by Leydig cells in the testis (Palmer *et al.*, 2012). Obesity-associated secondary hypogonadism may resolve (Lee *et al.*, 2019). However, four studies demonstrated a deterioration in semen parameters even after reproductive hormones normalized and the T:E<sub>2</sub> ratio increased, suggesting a perturbation of testis function that is unrelated to the action of sex hormones (di Frega *et al.*, 2005).

Another hypothesis stated by Calderón *et al.* (2019) is that a follow-up period of <2 years may be insufficient to adequately assess the recovery of sperm after BS as a consequence of sex hormone normalization post-surgery. Protocols for the treatment of hypogonadism with GnRH or HCG require an average duration of therapy of 4–5 months before the first sperm appears in the ejaculate, but may require up to 2 years of therapy (Stahl, 2017). Although 2 years post-BS may be sufficient time for patients with previous secondary infertility to improve, this does not explain the worsening sperm concentration and volume. Further, Calderón *et al.* (2019) observed sperm deterioration in patients re-evaluated at 4 years of post-surgery. In contrast, Sermondade *et al.* (2012) described one patient with normalization of both concentration and motility 24 months after surgery. Considering these conflicts, it is uncertain whether the negative effects of BS on semen quality are transitory and, if so, how long the recovery period may be. Longitudinal studies that follow-up sperm parameters for more than 24 months of post-surgery will provide a better understanding of BS impacts.

## Dramatic metabolic change

The dramatic metabolic change caused by rapid weight loss is purported to reduce semen quality but should be reversible after weight stabilizes (Carette *et al.*, 2019). Under dietary restriction or starvation, energy for reproduction is allocated toward somatic maintenance (Nalam *et al.*, 2008). One study investigated changes in total daily energy expenditure and resting metabolic rate (RMR) under basal conditions in post-BS patients compared to preoperative baseline (Wolfe *et al.*, 2018). Results indicated that RMR and total daily energy expenditure fall precipitously in the first 6 months, reflecting a metabolic adaptation. However, the metabolic adaptation progressively diminishes between 6 and 24 months, resulting in a rise in energy expenditure after surgery. Thus, metabolism is stabilized around 24 months of post-surgery, when a decrease in sperm volume may still be observed.

## Nutritional deficiencies

Mineral and vitamin deficiencies after BS may contribute to sperm deterioration. All studies addressed the type of surgical procedures in patients. While both are restrictive procedures, in SG, the stomach volume is reduced such that food storage capacity is diminished, while

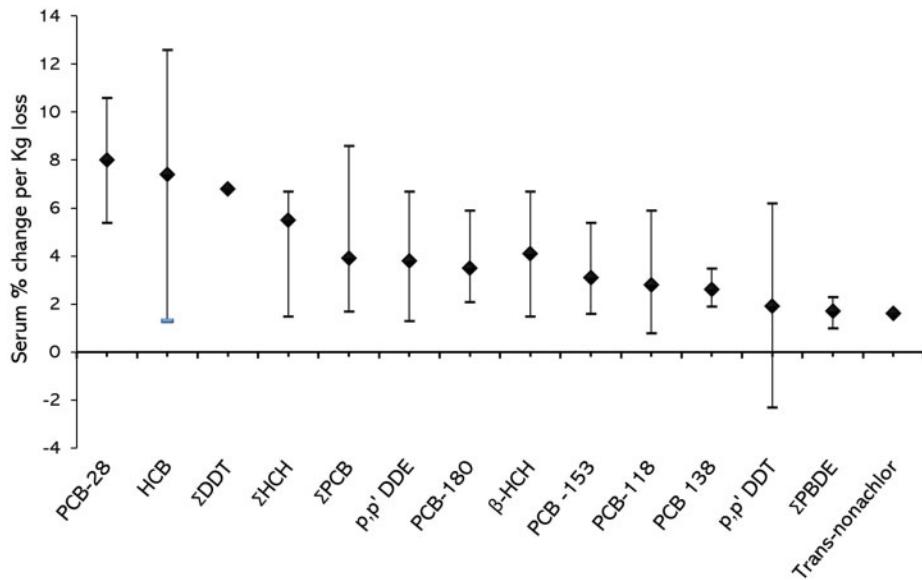
RYGB shortens the functional length of the small intestine, which impedes nutrient absorption and can cause undernutrition without adequate supplementation.

Both procedures promote similar weight reduction, but RYGB procedures are associated with more protein–energy malnutrition and deficiencies in micronutrients such as iron, folate, vitamin A, vitamin D, vitamin B1 and vitamin B<sub>12</sub> (Mechanick *et al.*, 2020). Essential minerals act as enzyme cofactors in biochemical pathways; therefore, their deficiency could harm sperm production and increase sperm aneuploidy frequency (Young *et al.*, 2008). Nutritional deficiencies can affect spermatogenesis and contribute to the sperm deterioration that was observed in some studies post-BS. Nutritional deficiencies are more likely during the initial weight loss phase (up to 12–18 months of post-BS), which may affect spermatogenesis (Calderón *et al.*, 2018; Mechanick *et al.*, 2020). However, deteriorating semen quality is observed after both SG and RYGB at 3, 6 and 24 months of post-surgery (Sermondade *et al.*, 2012; Calderón *et al.*, 2019; Carette *et al.*, 2019). In fact, the lowest sperm counts were in men who underwent SG. To avoid nutritional deficiencies, BS patients must undergo intense nutritional supplementation and monitoring in the first 2 years after surgery (Ziegler *et al.*, 2009). Sermondade *et al.* (2012), however, described three patients who received mineral and vitamin supplementation and still presented worsening sperm parameters from 3 to 24 months after either type of surgery.

## Mobilization of lipophilic toxic compounds from adipose tissue

The highest total weight loss occurs in the first year post-BS, when a progressive increase in serum EDC levels is observed (Dirtu *et al.*, 2013; Jansen *et al.*, 2018). From the 10 studies that measured EDC levels post-BS (Table II), six of them followed up for a maximum of 1 year. Minor weight loss still occurs in the second year (van de Laar *et al.*, 2019), likely continuing to increase blood EDC levels. Figure 4 shows the percentage increase in the most studied EDCs for each kg lost after BS, as found in published reports.

Although serum EDC concentrations are significantly higher post-BS, no study has defined the relations between post-BS serum EDCs and semen parameters. The only study available, specifically in French women, reported serum increases of PCB153 by 130%, p,p'-DDE by 120% to and HCB by 120% at 12 months of post-BS compared to baseline (Fénichel *et al.*, 2021). Men have higher levels of EDCs circulating in their blood and greater weight loss after surgery. Thus, men can have a higher concentration of EDCs mobilized to the circulation. Considering that EDCs have a wide range of endocrine actions and are associated with abnormal sperm quality and function, their potential effect on spermatogenesis after BS should not be overlooked.


## Potential impact of EDCs on semen parameters

EDCs are disruptive at low doses in animals and humans (La Merrill *et al.*, 2020), and significant dose-dependent responses are observed in semen parameters in men who have not undergone BS but have serum concentrations of EDCs similar to, or lower than, those detected post-BS. Indeed, EDCs have established associations (generally negative and dose-dependent) with sperm parameters in cohort studies of

**Table II** Cohort studies that monitored endocrine-disrupting chemicals before and after bariatric surgery.

| Study                               | Sample size                                                                                                                                                                                         | Country  | Type of surgery                                             | Follow-up time                                                                             | EDCs measured                                                                                                                                                                                                                                                                |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brown et al. (2019)                 | 27 participants, 28–50 years, BMI 39.3–47.8 kg/m <sup>2</sup>                                                                                                                                       | USA      | N/A                                                         | 6 months                                                                                   | 24 PCBs, 9 OCPs, 11 PBDEs, 2,2',4,4',5,5'-hexabromobiphenyl, and 4 PFCs                                                                                                                                                                                                      |
| Jansen et al. (2018)                | 63 participants (50 females and 13 males), 45 (27–59) years, BMI 38.9 kg/m <sup>2</sup> (SD ± 3.2) and 39.9 kg/m <sup>2</sup> (SD ± 3.9) for females and males, respectively                        | Norway   | N/A                                                         | 12 months                                                                                  | HCB, β-HCH, p, p'-DDE; 7 PCBs and ΣPCB, 7.5 BDEs and ΣBDE5; and HBCD                                                                                                                                                                                                         |
| Rantakokko et al. (2015)            | 161 participants, 47.6 ± 8.4 years, BMI 44.6 ± 5.7 kg/m <sup>2</sup>                                                                                                                                | Finland  | N/A                                                         | 12 months                                                                                  | 6 PCBs, HCB, β-HCH, trans-nona-chlor, p, p'-DDE, 4 BDE, 7 PFAAs (PFHxS, PFOS, PFHxA, PFOA, PFNA, PFDA and PFUnA)                                                                                                                                                             |
| Pestana et al. (2014)               | 189 patients, 42.5 ± 10.9 years (19–65) included 166 females (88.7%)                                                                                                                                | Portugal | N/A                                                         | 12 months                                                                                  | aldrin, dieleadrin, endrin, HCB, HCH Lindane, ΣHCB (sum of α-HCH, β-HCH and δ-HCH). Endosulfan, methoxychlor, TCDD, p,p'-DDD, o, p'-DDT and p,p'-DDE                                                                                                                         |
| Dirinck et al. (2016)               | 184 (53 male and 131 female) at baseline, 71 (24 male and 47 female) at 6 months, 50 (17 male and 33 female) at 12 months; 40 ± 12 years old, BMI 42.1 ± 3.8 kg/m <sup>2</sup>                      | Belgium  | N/A                                                         | AT baseline and serum at 6 and 12 months                                                   | 27 PCBs (IUPAC nos. 28, 74, 95, 99, 101, 105, 118, 149, 146, 153, 138, 187, 183, 128, 167, 174, 177, 171, 172, 156, 180, 170, 199, 196/203, 194, 206, and 209)                                                                                                               |
| Dirtu et al. (2013)                 | 151 participants (46 male and 105 female) and 44 lean controls, 41 (18–84) years old, BMI 38.5 kg/m <sup>2</sup> (26.2–62.3)                                                                        | Belgium  | N/A                                                         | 3, 6, 12 months                                                                            | 64 OHCs: α-, β- and γ-HCH, DDT and its metabolites, HCB, chlordane metabolites, such as oxychlordane and trans-nona-chlor, 22 PCBs and their hydroxylated metabolites (HO-PCBs)—18 compounds, pentachlorophenol (PCP), tribromoanisole and PBDEs—7 trito hepta-BDE congeners |
| Kim et al. (2011)                   | 18 lean control and 71 obese participants, 44 ± 1.6 years old, BMI 48 ± 0.79 kg/m <sup>2</sup>                                                                                                      | France   | Roux-en-Y gastric bypass (RYGB)                             | 3, 6 and 12 months blood and subcutaneous adipose tissue, at baseline and during follow-up | 17 dioxins/furans and 18 PCBs                                                                                                                                                                                                                                                |
| Hue et al. (2006)                   | Caucasian male adults: control (n = 15; BMI < 25 kg/m <sup>2</sup> ), obese (n = 14; BMI 30–39.9 kg/m <sup>2</sup> ) and morbidly obese (n = 13; BMI ≥ 40 kg/m <sup>2</sup> ), 45.5 ± 8.1 years old | Canada   | Duodenal switch (BPD-DS) procedure                          | 3 and 12 months                                                                            | 14 PCBs and 11 chlorinated pesticides: β-HCH, p,p'-DDT, p,p'-DDE, HCB, mirex, aldrin, γ-chlordane, α-chlordane, oxychlordane, cis-nonachlor and trans-nonachlor                                                                                                              |
| Charlier et al. (2002)              | 30 participants (eight men, 22 women), BMI 37.2 ± 3.5 kg/m <sup>2</sup>                                                                                                                             | Belgium  | Gastric by-pass and laparoscopic adjustable gastric banding | 6 months                                                                                   | DDT, DDE, HCB and 7 PCBs (no. 28, 52, 101, 118, 138, 153 and 180)                                                                                                                                                                                                            |
| Backman and Kolmodin-Hedman, (1978) | 8 participants, 38.5 ± 3.4 years old, bodyweight 137.2 ± 7.7 kg                                                                                                                                     | Sweden   | Jejuno-ileostomy                                            | 12 months                                                                                  | p,p'-DDT and p,p'-DDE                                                                                                                                                                                                                                                        |

BDE, brominated diphenyl ether; DDD, dichloro-diphenyl-dichloroethane; DDE, dichloro-diphenyl-dichloroethylene; DDT, dichloro-diphenyl-trichloroethane; EDCs, endocrine-disrupting chemicals; HBCD, hexabromocyclododecane; HCB, hexachlorocyclohexane; HCH, hexachlorocyclohexane; OCPs, organochlorine pesticides; OHCs, organohalogen contaminants; PBDEs, polybrominated diphenyl ethers; PCB, polychlorinated biphenyls; PFAAs, perfluoroalkyl acids; PFCs, perfluorochemicals; PFDA, perfluorodecanoic acid; PFHxA, perfluorooctanoic acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluoronanoic acid; PFUnA, perfluoroundecanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; PFUnA, perfluoroundecanoic acid; TCDD, 2,3,7,8-tetrachloro-dibenzodioxin; α-HCH, α-hexachlorocyclohexane; β-HCH, β-hexachlorocyclohexane; δ-HCH, δ-hexachlorocyclohexane; AT, adipose tissue.



**Figure 4. Mean percentage increase in EDCs per 1 kg weight loss after bariatric surgery.** The percentage of EDCs increase in serum was calculated using the data from the five studies that provided EDCs in blood before and after bariatric surgery (Charlier *et al.*, 2002; Dirtu *et al.*, 2013; Rantakokko *et al.*, 2015; Dirinck *et al.*, 2016; Jansen *et al.*, 2018). The calculated percentages were based on data from one to five studies, and bars show the mean and min–max range. The sample size of existing studies ranged between 151 and 487 patients. EDCs, endocrine-disrupting chemicals; DDE, dichloro-diphenyl-dichloroethylene; DDT, dichloro-diphenyl-trichloroethane;  $\Sigma$ HCH, sum of HCH congeners  $\alpha$ -,  $\beta$ - and  $\gamma$ ;-PBDE, Polybrominated diphenyl ethers;  $\Sigma$ PBDE, sum of BDE congeners -47, -99, -100 and -153; PCB, polychlorinated biphenyls;  $\Sigma$ PCBs, sum of PCB congeners -118, -138, -153 and -180.

non-occupational and occupational exposures (Table III). Adverse effects include impairment of conventional sperm parameters, genotoxicity and genetic instability. Importantly, these reported effects occur at serum EDC concentrations that are commonly found in post-BS patients. Exposure to DDT and its isomers, PCBs and  $\gamma$ -HCH are linked to reduced sperm concentration and count, decreased motility and a higher percentage of morphologically abnormal sperm (Dallinga *et al.*, 2002; Hauser *et al.*, 2003a,b; Khan *et al.*, 2010; Martenies and Perry, 2013; Paul *et al.*, 2017). Some EDCs can exhibit non-monotonic dose–response curves (Vandenberg, 2014), but studies cited in Table III show that elevated EDC concentration is associated with stronger declines in semen parameters. Notably, serum EDC concentrations reported in these non-surgery cohort studies are lower than, or similar to, those found in men at 1-year post-BS (Table III).

Some EDCs and their metabolites generate reactive oxygen species (ROS). ROS create free radicals and damage cell membranes, organelles and DNA (Sidorkiewicz *et al.*, 2017), which are associated with infertility, miscarriage and developmental abnormalities in the offspring (Aitken *et al.*, 2016). Spermatozoa are particularly susceptible to oxidative damage from ROS because their cell membranes largely consist of unsaturated fatty acids that become oxidized, and the sperm cytoplasm has low concentrations of enzymes that neutralize ROS (Aitken *et al.*, 2016). Genotoxicity might result from oxidative damage to nucleobases, induction of membrane lipid peroxidation, DNA methylation and dysfunction of DNA repair. Comet tests measure the degree of sperm DNA damage qualitatively by visualizing single- and double-strand breaks using electrophoresis (Kim, 2018). The higher the level

of damage to the DNA, the brighter and longer the comet tail. Concentrations of  $\Sigma$ PCB and HCB similar to those found in post-BS patient sera are associated with an increase in total comet length, in %DNA damage and tail distributed moment in non-surgery cohort studies (Hauser *et al.*, 2003b). Further, PCB-153 was associated with DNA fragmentation in three studies in European populations (Rignell-Hydbom *et al.*, 2005; Spanò *et al.*, 2005; Stronati *et al.*, 2006), and DDT exposure was linked to higher sperm DNA fragmentation measures among men (De Jager *et al.*, 2009). The maximum concentration of PCB-153 in post-BS patients is reported as 550 ng/g lipid (Charlier *et al.*, 2002). One study observed that the percentage sperm DNA fragmentation index (%DFI) was 41% (95% CI, 11–78) higher when PCB-153 serum concentration was above 113 ng/g lipid (Rignell-Hydbom *et al.*, 2005).

Sperm aneuploidy serves as a biomarker for male reproductive toxicity (Mandrioli *et al.*, 2016). Serum concentrations of  $p,p'$ -DDE and  $\Sigma$ PCB (287 ng/g lipid) similar to those in post-BS patients (Dirtu *et al.*, 2013) are associated with significantly increased rates of sex chromosome disomy in sperm (Table III) in men from the Faroe Islands (Perry *et al.*, 2016) and men from subfertile couples from the Massachusetts General Hospital Fertility Center (McAuliffe *et al.*, 2012). Thus, there is a reason for concern that the precipitous release of EDCs into the blood post-BS could negatively impact sperm chromosome constitution. Only one case study investigated sperm aneuploidy pre- and post-BS, reporting a 27.4% increase in disomic sperm after surgery (Lazaros *et al.*, 2012). Whether the EDC release post-BS is responsible for negative impacts on male reproductive health remains to be

**Table III** Impact of EDCs on semen parameters reported in non-surgery populations with similar or lower serum EDC concentrations to those reported in post-bariatric surgery studies.

| EDC                           | Reported range concentration after bariatric surgery* | Measured concentration or range in other studies | Study population and country                                               | Outcome definition                          | The measure of association (95% CI or P-value)                                                                                                                                                                                                                                          | Resume adverse effect                            | Study (author, year)    |
|-------------------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
| <b>p,p'-DDE</b>               | <b>23.3–1570 ng/g lipid</b>                           | 0.53 (0.23–30.2 ng/g serum)                      | 341 men, 20–54 years old, in the U.S.                                      | Sex chromosome disomy and disomy 18         | Significant increase in the rate of XX, XY, and total sex-chromosome disomy for the second (0.23 ng/g), third (0.41 ng/g), and fourth quartiles (0.61 ng/g) of p,p'-DDE compared to the lowest quartile; these results persisted even after adjustment for potential confounders        | ↑ XX, XY disomy<br>↑ Total sex chromosome disomy | McAuliffe et al. (2012) |
| <b>p,p'-DDE</b>               | <b>23.3–1570 ng/g lipid</b>                           | 40.4–2251 ng/g lipid                             | 149 fishermen from the east and west coast, 47 ± 9.2 years old, in Sweden. | Sex hormones and sperm Y:X chromosome ratio | There were no significant relationships between p,p'-DDE and disomy 18                                                                                                                                                                                                                  | ↑ Y chromosome fraction                          | Tidlo et al., (2006)    |
| <b>p,p'-DDE</b>               | <b>23.3–1570 ng/g lipid</b>                           | 222 ng/g lipid (64.2–8912 ng/g lipid)            | 212 male partners of a subfertile couple, 35.3 ± 6 years old, in the U.S.  | Sperm concentration, motility, morphology   | Participants in the category with the lowest quintile concentration of p,p'-DDE (<135 ng/g lipid) had significantly lower Y chromosome fraction compared to the category with the highest quintile concentration (>472 ng/g lipid) (mean difference 1.6%, 95% CI 0.8–2.5, $P = 0.001$ ) | ↓ Motility                                       | Hauser et al. (2003a)   |
| <b><math>\Sigma</math>PCB</b> | <b>65.8–2310 ng/g lipid</b>                           | 216 ng/g (56.0–1735 ng/g lipid)                  | 212 male partners of a subfertile couple, 35.3 ± 6 years old, in the USA   | Sperm concentration, motility, morphology   | Although not statistically significant, p,p'-DDE showed a weak dose-response trend with below reference-value sperm motility (1.00, 1.14, 1.51, the P-value for trend = 0.3)                                                                                                            | ↓ Motility<br>↓ Morphology                       | Hauser et al. (2003a)   |
| <b><math>\Sigma</math>PCB</b> | <b>65.8–2310 ng/g lipid</b>                           | 0.55 (0.16–6.14 ng/g serum)                      | 341 men, 20–54 years old, in the USA                                       | Sex chromosome disomy and disomy 18         | There were inverse, though not significant, relationships between $\Sigma$ PCBs with sperm motility and sperm morphology (1.00 1.77, 1.88, the P-value for trend = 0.08), stronger in raw data                                                                                          | ↓ Motility<br>↓ Morphology                       | Hauser et al. (2003a)   |
|                               |                                                       |                                                  |                                                                            |                                             | $\sum_4$ PCBs (congener 118, 138, 153, 180) were associated with a significant increase in the rate of YY, XY, and total sex-chromosome disomy after adjustment for potential confounders                                                                                               | ↑ YY and XY chromosome disomy<br>↓ XX disomy     | McAuliffe et al. (2012) |
|                               |                                                       |                                                  |                                                                            |                                             | XX disomy was significantly decreased above the first quartile of $\sum_4$ PCBs                                                                                                                                                                                                         |                                                  |                         |
|                               |                                                       |                                                  |                                                                            |                                             | There were no significant relationships between PCBs and disomy 18                                                                                                                                                                                                                      |                                                  |                         |

(continued)

Table III Continued

| EDC                           | Reported range concentration after bariatric surgery* | Measured concentration or range in other studies | Study population and country                                                                                          | Outcome definition                                                                             | The measure of association (95% CI or P-value)                                                                                                                                                                                                                                                  | Resume adverse effect                                          | Study (author, year)   |
|-------------------------------|-------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|
| <b><math>\Sigma</math>PCB</b> | <b>65.8–2310 ng/g lipid</b>                           | 56–1590 ng/g lipid                               | 212 male partners of a sub-fertile couple in the U.S.                                                                 | Sperm concentration, motility, morphology, comet extent, %DNA in tail, tail distributed moment | Association with a small increase in comet extent [0.43 mm per IQR increase in $\Sigma$ PCB; 95% CI: $\pm 3.30$ , 4.16], tail % (0.43% /IQR increase in $\Sigma$ PCB; 95% CI: $\pm 0.72$ , 1.58), and tail distributed moment (0.22 mm/IQR increase in $\Sigma$ PCB; 95% CI: $\pm 1.26$ , 1.71) | ↑ Total comet length<br>↑ %DNA in tail tail distributed moment | Hauser et al. (2003b)  |
| <b><math>\Sigma</math>PCB</b> | <b>65.8–2310 ng/g lipid</b>                           | $2.34 \pm 1.2$ ng/g lipid                        | 65 men visiting Maastricht University Hospital for fertility treatments, $34.5 \pm 5.4$ years old, in the Netherlands | Sperm concentration, sperm count, motility and morphology                                      | A significant positive relationship was found between the combined PCB levels in the blood with sperm count ( $n = 10$ , $R^2 = 0.79$ , $P = 0.0005$ ), PMSC ( $n = 10$ , $R^2 = 0.86$ , $P = 0.0001$ ) and sperm morphology ( $n = 9$ , $R^2 = 0.40$ , $P = 0.05$ )                            | ↑ Sperm count<br>↑ Morphology<br>↑ PMSC                        | Dallinga et al. (2002) |
| <b>PCB 118</b>                | <b>4.82–690 ng/g lipid</b>                            | $2.7 \pm 1.3$ ng/g lipid                         | 50 men, 24 of which had low semen quality and 26 had high semen quality, $38.04 \pm 5.01$ years old, in Spain         | Semen volume, sperm concentration, motility, morphology                                        | PCB-118 levels were negatively correlated with sperm volume ( $r = -0.539$ ; $P = 0.031$ ) in those participants with normal sperm parameters                                                                                                                                                   | ↓ Volume                                                       | Paul et al. (2017)     |
| <b>PCB 138</b>                | <b>65.8–12310 ng/g lipid</b>                          | $7.3–295.4$ ng/g lipid                           | 212 male partners of a subfertile couple, $35.3 \pm 6$ years old, in the U.S.                                         | Sperm concentration, motility, morphology                                                      | There was a statistically significant inverse relationship between log-transformed sperm concentration and PCB-138 ( $P = 0.08$ )                                                                                                                                                               | ↓ Concentration<br>↓ Motility<br>↑ Morphology                  | Hauser et al. (2003a)  |

(continued)

**Table III** Continued

| EDC            | Reported range concentration after bariatric surgery* | Measured concentration or range in other studies             | Study population and country                                                               | Outcome definition                                                             | The measure of association (95% CI or P-value)                                                                                                                                                                                                                                                                                                                                                           | Resume adverse effect                                         | Study (author, year)         |
|----------------|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| <b>PCB 153</b> | <b>17.3–550 ng/g lipid</b>                            | 40.5–1460 ng/g lipid                                         | 149 fishermen from the Swedish, east and west coast, 47 ± 9.2 years old, in Sweden         | Sex hormones and sperm Y: X chromosome ratio                                   | PCB-153 showed a tendency of a lower fraction of Y chromosomes among participants within the lowest quintile (< 112 ng/g) compared to participants in the category with the highest quintile (>328 ng/g lipid) exposure (mean difference 0.8%, 95% CI 0.1–1.7, $P = 0.07$ )                                                                                                                              | ↑ Y chromosome fraction                                       | Tidó et al. (2006)           |
| <b>PCB 153</b> | <b>17.3–550 ng/g lipid</b>                            | 39–1460 ng/g lipid<br>First quintile<br>< 113 ng/g<br>Second | 176 fishermen with low and high consumption of fatty fish, 48 years old (29–67), in Sweden | Sperm chromatin structure assay (SCSA) to assess sperm DNA/chromatin integrity | PCB-153 was categorized into five equally sized quintiles, the quintile with the lowest exposure had significantly lower levels of %DFI compared with the other quintiles ( $P < 0.0001$ ). This effect remained when age was included in the model ( $P = 0.006$ ). The four highest exposed quintiles (> 113 ng/g lipid) had 4.1% (95% CI, 1–78) higher %DFI compared with the lowest exposed quintile | Increase in 4.1% the %DFI                                     | Rignell-Hydbom et al. (2005) |
| <b>HCB</b>     | <b>7.31–1200 ng/g lipid</b>                           | 6.6–68.1 ng/g lipid                                          | 212 male partners of a sub-fertile couple, 35.3 ± 6 years old, in the USA                  | %DNA in tail, total comet length, TDM                                          | HCB was associated, though not significantly, with a small increase in comet extent (0.32 mm/IQR increase in sum of PCB, 95% CI: ±3.69, 4.32), tail % (0.47 %/IQR in sum of PCB, 95% CI: ±0.75, 1.69), and TDM (0.19 mm/IQR in sum of PCB, 95% CI: ±1.40, 1.79)                                                                                                                                          | ↑ Total comet length<br>↑ %DNA tail ↑ tail distributed moment | Hauser et al. (2003b)        |
| <b>ΣPBDE</b>   | <b>0.9–75.6 ng/g lipid</b>                            | 12.7 ng/g (BDE-47) and 11.7 ng/g (BDE-99)                    | 153 men, 18–41 years old, Canada                                                           | Sperm concentration, motility and quality                                      | Computer-assisted semen analysis was completed using SpermVision software (12.520/7000). A clinical assumption was that the motile portion of sperm is more indicative of the fertility potential in a semen sample than the total sperm population                                                                                                                                                      | N/A                                                           | Albert et al. (2018)         |

\*Endocrine-disrupting chemical (EDC) range concentrations after surgery were based on the measured serum levels in the studies described in Table II. BDE, brominated diphenyl ether; DDE, dichloro-diphenyl-dichloroethylene; DFI, sperm DNA fragmentation index; HCB, hexachlorocyclohexane; IQR, interquartile range; PBDE, polybrominated diphenyl ethers; PCB, polychlorinated biphenyls;  $\Sigma$  PCBs, sum of PCB congeners 118, 138, 153, 180; PMSC, progressive motile sperm concentration; TDM, tail distributed moment.

determined. Knowledge on the impact of EDCs on spermatogenesis post-BS is necessary to develop strategies to protect patient fertility, including storing sperm before surgery.

## Recommendations for future studies

The effect of weight loss after BS on semen parameters is still inconclusive as only a few studies, often with small sample sizes, have been performed. The impact of BS on male reproduction is not well investigated, which is surprising considering the known effects of obesity on male fertility. Several gaps in our knowledge emerge from the findings of this review that would benefit from further research, which must be advanced with improvements in study design to adequately test the hypotheses we have developed here.

BS-induced weight loss brings dramatic metabolic changes in the first 1–2 years of post-surgery, and BS patients commonly experience nutrient deficiencies. Nutritional supplementation and monitoring of nutritional status are mandatory post-BS to prevent such deficiencies. Because malnutrition is associated with poor sperm quality, future studies evaluating semen parameters post-BS should consider nutritional status and metabolic changes as an important confounding variable.

Indeed, while the physiological environment post-BS is complex, the potential for EDC mobilization after BS to exert endocrine-disrupting effects should not be overlooked. There is little information on temporal changes in circulating EDCs following BS. We recommend at least three serum samples post-surgery to build a curve of exposure. Also, it is likely that high serum EDC levels are temporary and will stabilize as bodyweight stabilizes, at around 24 months of post-surgery. Determining whether there are critical periods of EDC exposure post-BS is important for understanding reproductive outcomes and to discuss the risks with patients. Information about the risk of semen parameter deterioration post-surgery, if or when sperm parameters might recover, and which patients are most affected, will inform couples seeking to become pregnant post-BS.

It is therefore necessary to undertake prospective, long-term longitudinal studies that recruit patients at their first BS consult and follow them for 24 months, or preferably longer, post-BS. Additionally, studies should control for type of surgery, nutritional status and sex hormone levels, as well as factors related to semen quality, such as age, chemical exposure and smoking. To do this, using multivariate longitudinal mixed models that include random coefficients is recommended because relations over time can be evaluated rather than at individual time points, and because mixed models can capture increases in responses (EDCs progression in serum) in relation to the other random-effects variables. Multicenter recruitment is recommended to achieve satisfactory sample sizes ( $n > 25$  to achieve 80% of power), because males typically represent only 20% of BS patients. Critically, the requirements for reliable semen examination must be carefully followed to identify post-BS EDC impacts more accurately. Poor-quality assessments of semen parameters can cause random errors to influence results so that true relations or differences cannot be detected. New standards for basic semen examination are now available (International Standards Organization, 2021; WHO, 2021).

Importantly, patients undergoing BS offer a unique population in which to evaluate how serum EDC concentrations influence male

reproductive health. Toxicology studies alone will be of limited information without determining the extent to which animal findings can be extrapolated to humans. Longitudinal epidemiological studies may provide robust evidence to understand EDC toxicodynamics and the role of AT in EDC exposure.

## Conclusion

Only relatively few studies with small sample sizes have addressed semen parameters after BS, and the findings are inconsistent. Indeed, most studies focus on sex hormones and attest that secondary hypogonadism improves post-BS. However, even with improved sex hormone levels and general reproductive function, a deterioration in semen parameters has been reported post-surgery. There is a multitude of explanations that can be provided for spermatogenesis disturbance post-BS, as discussed in this paper, but the progressive release of EDCs from AT during weight loss should receive special attention. It is important to determine if EDC release triggers a general worsening in semen quality and an increase in the risk of genetic instability, in at least a subset of men. This information is necessary to guide clinical management, such as including a fertility evaluation before surgery and discussing the possibility of sperm preservation. Filling these gaps requires adequately powered long-term prospective cohort studies of BS patients, with continuous follow-up of sperm parameters, nutritional status, sex hormone levels and EDC serum concentrations. Identifying these many dynamics will help ensure that men undergoing surgical treatment for obesity can preserve their fertility.

## Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

## Acknowledgements

The authors thank Laura Neumann, Nathan McCray, Mashiyat Ahmed, Suzanne Arrington, Eric Knapke, Marlaina Freisthler and Rebecca Robbins for their valuable technical and editorial support.

## Authors' roles

D.M.—Conceptualization (investigation and literature interpretation), Writing and Data Curation. S.M.—Writing—review and editing. M.P.—Supervision, conceptualization, writing—review and editing.

## Funding

No external support was received.

## Conflict of interest

The authors declare no actual or potential competing financial interest or benefit and that their freedom to design, conduct, interpret and publish research is not compromised by any controlling sponsor as a condition of review or publication.

## References

Albert O, Huang JY, Alekxa K, Hales BF, Goodyer CG, Robaire B, Chevrier J, Chan P. Exposure to Polybrominated Diphenyl Ethers and Phthalates in Healthy Men Living in the Greater Montreal Area: A Study of Hormonal Balance and Semen Quality. *Environ Int* 2018; **116**:165–175.

Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. *Environ Health Perspect* 2008; **116**:761–768.

Auger J, Eustache F, David G. Standardisation de la classification morphologique des spermatozoïdes humains selon la méthode de David modifiée. *Androl* 2000; **10**:358–373.

Backman L, Kolmodin-Hedman B. Concentration of DDT and DDE in plasma and subcutaneous adipose tissue before and after intestinal bypass operation for treatment of obesity. *Toxicol Appl Pharmacol* 1978; **46**:663–669.

Brolin RE. Update: NIH consensus conference. gastrointestinal surgery for severe obesity. *Nutrition* 1996; **12**:403–404.

Brown RH, Ng DK, Steele K, Schweitzer M, Groopman JD. Mobilization of Environmental Toxicants Following Bariatric Surgery. *Obesity* 2019; **27**:1865–1873.

Calderón B, Galdón A, Calañas A, Peromingo R, Galindo J, García-Moreno F, Rodríguez-Velasco G, Martín-Hidalgo A, Vazquez C, Escobar-Morreale HF et al. Effects of bariatric surgery on male obesity-associated secondary hypogonadism: comparison of laparoscopic gastric bypass with restrictive procedures. *Obes Surg* 2014; **24**:1686–1692.

Calderón B, Hevia V, Vega-Piñero B, Martín-Hidalgo A, Mendez-del Sol H, Escobar-Morreale HF, Botella-Carretero JI. Serum retinol, folic acid, and copper are associated with sperm abnormalities in men with obesity. *J Am Coll Nutr* 2018; **37**:194–200.

Calderón B, Huerta L, Galindo J, González Casbas JM, Escobar-Morreale HF, Martín-Hidalgo A, Botella-Carretero JI. Lack of improvement of sperm characteristics in obese males after obesity surgery despite the beneficial changes observed in reproductive hormones. *Obes Surg* 2019; **29**:2045–2050.

Carette C, Levy R, Eustache F, Baron G, Coupaye M, Msika S, Barrat C, Cohen R, Catheline JM, Brugnon F et al. Changes in total sperm count after gastric bypass and sleeve gastrectomy: the BARIASPERM prospective study. *Surg Obes Relat Dis* 2019; **15**:1271–1279.

Charlier C, Desaive C, Plomteux G. Human exposure to endocrine disrupters: consequences of gastroplasty on plasma concentration of toxic pollutants. *Int J Obes Relat Metab Disord* 2002; **26**:1465–1468.

Dallinga JW, Moonen EJC, Dumoulin JCM, Evers JLH, Geraedts JPM, Kleinjans JCS. Decreased human semen quality and organochlorine compounds in blood. *Hum Reprod* 2002; **17**:1973–1979.

De Jager C, Aneck-Hahn NH, Bornman MS, Farias P, Leter G, Eleuteri P, Rescia M, Spanò M. Sperm chromatin integrity in DDT-exposed young men living in a malaria area in the Limpopo Province, South Africa. *Hum Reprod* 2009; **24**:2429–2438.

di Frega AS, Dale B, Di Matteo L, Wilding M. Secondary male factor infertility after Roux-en-Y gastric bypass for morbid obesity: case report. *Hum Reprod* 2005; **20**:997–998.

Di Guardo F, Vloeberghs V, Bardhi E, Blockeel C, Verheyen G, Tournaye H, Drakopoulos P. Low testosterone and semen parameters in male partners of infertile couples undergoing ivf with a total sperm count greater than 5 million. *J Clin Med* 2020; **9**:3824.

Dirinck EL, Dirtu AC, Govindan M, Covaci A, Jorens PG, Van Gaal LF. Endocrine-disrupting polychlorinated biphenyls in metabolically healthy and unhealthy obese subjects before and after weight loss: difference at the start but not at the finish. *Am J Clin Nutr* 2016; **103**:989–998.

Dirtu AC, Dirinck E, Malarvannan G, Neels H, Van Gaal L, Jorens PG, Covaci A. Dynamics of organohalogenated contaminants in human serum from obese individuals during one year of weight loss treatment. *Environ Sci Technol* 2013; **47**:12441–12449.

El Bardisi H, Majzoub A, Arafa M, AlMalki A, Al Said S, Khalafalla K, Jabbour G, Basha M, Al Ansari A, Sabanegh E. Effect of bariatric surgery on semen parameters and sex hormone concentrations: a prospective study. *Reprod Biomed Online* 2016; **33**:606–611.

Evangelou E, Ntritsos G, Chondrogiorgi M, Kavvoura FK, Hernández AF, Ntzani EE, Tzoulaki I. Exposure to pesticides and diabetes: a systematic review and meta-analysis. *Environ Int* 2016; **91**:60–68.

Fariello R, de Carvalho R, Spaine D, Andretta R, Caetano E, Sá G, Cedenho A, Frialetti R. Analysis of the functional aspects of sperm and testicular oxidative stress in individuals undergoing metabolic surgery. *Obes Surg* 2021; **31**:2887–2895.

Fénichel P, Coquillard P, Brucker-Davis F, Marchand P, Cano-Sancho G, Boda M, Antignac JP, Iannelli A, Gugenheim J, Le Bizec B et al. Sustained bloodstream release of persistent organic pollutants induced by extensive weight loss after bariatric surgery: implications for women of childbearing age. *Environ Int* 2021; **151**:106400.

Fui MNT, Dupuis P, Grossmann M. Lowered testosterone in male obesity: mechanisms, morbidity and management. *Asian J Androl* 2014; **16**:223–231.

Garolla A, Torino M, Miola P, Caretta N, Pizzol D, Menegazzo M, Bertoldo A, Foresta C. Twenty-four-hour monitoring of scrotal temperature in obese men and men with a varicocele as a mirror of spermatogenic function. *Hum Reprod* 2015; **30**:1006–1013.

Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: the endocrine society's second scientific statement on endocrine-disrupting chemicals. *Endocr Rev* 2015; **36**:E1–E150.

Gül A. Dynamics of inflammatory response in autoinflammatory disorders: autonomous and hyperinflammatory states. *Front Immunol* 2018; **9**:2422.

Han X, Zhang F, Meng L, Xu Y, Li Y, Li A, Turyk ME, Yang R, Wang P, Zhang J et al. Exposure to organochlorine pesticides and the risk of type 2 diabetes in the population of East China. *Ecotoxicol Environ Saf* 2020; **190**:110125.

Hauser R, Chen Z, Pothier L, Ryan L, Altshul L. The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p,p'-DDE. *Environ Health Perspect* 2003a; **111**:1505–1511.

Hauser R, Singh NP, Chen Z, Pothier L, Altshul L. Lack of an association between environmental exposure to polychlorinated biphenyls and p,p'-DDE and DNA damage in human sperm measured using the neutral comet assay. *Hum Reprod* 2003b; **18**:2525–2533.

Heindel JJ, Blumberg B. Environmental obesogens: mechanisms and controversies. *Annu Rev Pharmacol Toxicol* 2019; **59**:89–106.

Heindel JJ, Blumberg B, Cave M, Machtlinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargsi R et al. Metabolism disrupting chemicals and metabolic disorders. *Reprod Toxicol* 2017; **68**: 3–33.

Hopps CV, Schlegel PN, Goldstein M. *A Practical Approach to Male Infertility*. In *Principles of Gender-Specific Medicine*, Vol. 1. Elsevier Inc., 2004, 538–549.

Hue O, Marcotte J, Berrigan F, Simoneau M, Doré J, Marceau P, Marceau S, Tremblay A, Teasdale N. Increased plasma levels of toxic pollutants accompanying weight loss induced by hypocaloric diet or by bariatric surgery. *Obes Surg* 2006; **16**: 1145–1154.

International Standards Organization. ISO 23162:2021. *Basic Semen Examination—Specification and Test Methods*. Geneva: ISO, 2021.

Jandacek RJ, Anderson N, Liu M, Zheng S, Yang Q, Tso P. Effects of yo-yo diet, caloric restriction, and olestra on tissue distribution of hexachlorobenzene. *Am J Physiol Gastrointest Liver Physiol* 2005; **288**: G292–G299.

Jansen A, Polder A, Müller MHB, Skjerve E, Aaseth J, Lyche JL. Increased levels of persistent organic pollutants in serum one year after a great weight loss in humans: are the levels exceeding health based guideline values? *Sci Total Environ* 2018; **622–623**: 1317–1326.

Joffin N, Noirez P, Antignac JP, Kim M. J, Marchand P, Falabregue M, Le Bizec B, Forest C, Emond C, Barouki R et al. Release and toxicity of adipose tissue-stored TCDD: direct evidence from a xeno-grafted fat model. *Environ Int* 2018; **121**: 1113–1120.

Kahn BE, Brannigan RE. Obesity and male infertility. *Curr Opin Urol* 2017; **27**: 441–445.

Khan FH, Ganesan P, Kumar S. Y chromosome microdeletion and altered sperm quality in human males with high concentration of seminal hexachlorocyclohexane (HCH). *Chemosphere* 2010; **80**: 972–977.

Kim GY. What should be done for men with sperm DNA fragmentation? *Clin Exp Reprod Med* 2018; **45**: 101–109.

Kim MJ, Marchand P, Henegar C, Antignac JP, Alili R, Poitou C, Bouillot JL, Basdevant A, Le Bizec B, Barouki R et al. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. *Environ Health Perspect* 2011; **119**: 377–383.

Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Oehninger S. Predictive value of abnormal sperm morphology in in vitro fertilization. *Fertil Steril* 1988; **49**: 112–117.

La Merrill M, Emond C, Kim MJ, Antignac JP, Le Bizec B, Clément K, Birnbaum LS, Barouki R. Toxicological function of adipose tissue: focus on persistent organic pollutants. *Environ Health Perspect* 2013; **121**: 162–169.

La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. *Nat Rev Endocrinol* 2020; **16**: 45–57.

Lazaros L, Hatzi E, Markoula S, Takenaka A, Sofikitis NSofikitis N, Zikopoulos K, Georgiou I. Dramatic reduction in sperm parameters following bariatric surgery: report of two cases. *Andrologia* 2012; **44**: 428–432.

Lee Y, Dang JT, Switzer N, Yu J, Tian C, Birch DW, Karmali S. Impact of Bariatric Surgery on Male Sex Hormones and Sperm Quality: a Systematic Review and Meta-Analysis. *OBES SURG* 2019; **29**: 334–346.

Lee DH, Porta M, Jacobs DR, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. *Endocr Rev* 2014; **35**: 557–601.

Legro RS, Kunselman AR, Meadows JW, Kesner JS, Krieg EF, Rogers AM, Cooney RN. Time-related increase in urinary testosterone levels and stable semen analysis parameters after bariatric surgery in men. *Reprod Biomed Online* 2015; **30**: 150–156.

Legro RS, Dodson WC, Gnatuk CL, Estes SJ, Kunselman AR, Meadows JW, Kesner JS, Krieg EF, Rogers AM, Haluck RS et al. Effects of gastric bypass surgery on female reproductive function. *J Clin Endocrinol Metab* 2012; **97**: 4540–4548.

Luconi M, Samavat J, Seghieri G, Iannuzzi G, Lucchese M, Rotella C, Forti G, Maggi M, Mannucci E. Determinants of testosterone recovery after bariatric surgery: is it only a matter of reduction of body mass index? *Fertil Steril* 2013; **99**: 1872–1879.e1.

Mandrioli D, Belpoggi F, Silbergeld EK, Perry MJ. Aneuploidy: a common and early evidence-based biomarker for carcinogens and reproductive toxicants. *Environ Health* 2016; **15**: 1–10.

Martenies SE, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. *Toxicology* 2013; **307**: 66–73.

McAuliffe ME, Williams PL, Korrick SA, Altshul LM, Perry MJ. Environmental exposure to polychlorinated biphenyls and p,p'-DDE and sperm sex-chromosome disomy. *Environ Health Perspect* 2012; **120**: 535–540.

Mechanick JI, Apovian C, Brethauer S, Garvey WT, Joffe AM, Kim J, Kushner RF, Lindquist R, Pessah-Pollack R, Seger J et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. *Surg Obes Relat Dis* 2020; **16**: 175–247.

Mustieles V, Fernández MF, Martín-Olmedo P, González-Alzaga B, Fontalba-Navas A, Hauser R, Olea N, Arrebola JP. Human adipose tissue levels of persistent organic pollutants and metabolic syndrome components: combining a cross-sectional with a 10-year longitudinal study using a multi-pollutant approach. *Environ Int* 2017; **104**: 48–57.

Nalam RL, Pletcher SD, Matzuk MM. Appetite for reproduction: dietary restriction, aging and the mammalian gonad. *J Biol* 2008; **7**: 23.

Ohmiya Y, Nakai K. Effect of starvation on excretion, distribution and metabolism of ddt in mice. *Tohoku J Exp Med* 1977; **122**: 143–153.

Oliveira PF, Sousa M, Silva BM, Monteiro MP, Alves MG. Obesity, energy balance and spermatogenesis. *Reproduction* 2017; **153**: R173–R185.

Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. *Spermatogenesis* 2012; **2**: 253–263.

Paul R, Moltó J, Ortúñ N, Romero A, Bezos C, Aizpurua J, Gómez-Torres MJ. Relationship between serum dioxin-like polychlorinated biphenyls and post-testicular maturation in human sperm. *Reprod Toxicol* 2017; **73**:312–321.

Perry MJ, Young HA, Grandjean P, Halling J, Petersen MS, Martenies SE, Karimi P, Weihe P. Sperm aneuploidy in Faroese men with lifetime exposure to dichlorodiphenyldichloroethylene (p,p'-DDE) and polychlorinated biphenyl (PCB) pollutants. *Environ Health Perspect* 2016; **124**:951–956.

Pestana D, Faria G, Sá C, Fernandes VC, Teixeira D, Norberto S, Faria A, Meireles M, Marques C, Correia-Sá L et al. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals—Depot differences and dysmetabolism implications. *Environ Res* 2014; **133**:170–177.

Ramaraju GA, Teppala S, Prathigudupu K, Kalagara M, Thota S, Kota M, Cheemakurthi R. Association between obesity and sperm quality. *Andrologia* 2018; **50**:e12888.

Ramos A, Kow L, Brown W, Welbourn R, Dixon J, Kinsman R, Walton P. *The International Federation for the Surgery of Obesity and Metabolic Disorders Global Registry*. 5th IFSO Global Registry Report. UK: Dendrite Clinical Systems Ltd, 2019.

Rantakokko P, Männistö V, Airaksinen R, Koponen J, Viluksela M, Kiviranta H, Pihlajamäki J. Persistent organic pollutants and non-alcoholic fatty liver disease in morbidly obese patients: a cohort study. *Environ Health* 2015; **14**. doi:10.1186/s12940-015-0066-z.

Reis LO, Dias FGF. Male fertility, obesity, and bariatric surgery. *Reprod Sci* 2012; **19**:778–785.

Rignell-Hydbom A, Rylander L, Giwercman A, Jönsson BAG, Lindh C, Eleuteri P, Rescia M, Leter G, Cordelli E, Spano M et al. Exposure to PCBs and p,p'-DDE and human sperm chromatin integrity. *Environ Health Perspect* 2005; **113**:175–179.

Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT et al. Persistent organic pollutant exposure leads to insulin resistance syndrome. *Environ Health Perspect* 2010; **118**:465–471.

Samavat J, Cantini G, Lotti F, Di Franco A, Tamburrino L, Degl'Innocenti S, Maseroli E, Filimberti E, Facchiano E, Lucchese M et al. Massive weight loss obtained by bariatric surgery affects semen quality in morbid male obesity: a preliminary prospective double-armed study. *Obes Surg* 2018; **28**:69–76.

Sermondade N, Massin N, Boitrelle F, Pfeffer J, Eustache F, Sifer C, Czernichow S, Lévy R. Sperm parameters and male fertility after bariatric surgery: three case series. *Reprod Biomed Online* 2012; **24**: 206–210.

Sharma A, Mollier J, Brocklesby RWK, Caves C, Jayasena CN, Minhas S. Endocrine-disrupting chemicals and male reproductive health. *Reprod Med Biol* 2020; **19**:243–253.

Sidorkiewicz I, Zaręba K, Wołczyński S, Czerniecki J. Endocrine-disrupting chemicals—mechanisms of action on male reproductive system. *Toxicol Ind Health* 2017; **33**:601–609.

Slopien R, Horst N, Jaremek JD, Chinniah D, Spaczynski R. The impact of surgical treatment of obesity on the female fertility. *Gynecol Endocrinol* 2019; **35**:100–102.

Spanò M, Toft G, Hagmar L, Eleuteri P, Rescia M, Rignell-Hydbom A, Tyrkiel E, Zvyezday V, Bonde JP, Bizzaro D et al.; INUENDO.

Exposure to PCB and p,p'-DDE in European and Inuit populations: impact on human sperm chromatin integrity. *Hum Reprod* 2005; **20**:3488–3499.

Stahl PJ. Recovery of spermatogenesis after hormone therapy: what to expect and when to expect it. *Fertil Steril* 2017; **107**:338–339.

Stronati A, Manicardi GC, Cecati M, Bordicchia M, Ferrante L, Spanò M, Toft G, Bonde JP, Jönsson BAG, Rignell-Hydbom A et al. Relationships between sperm DNA fragmentation, sperm apoptotic markers and serum levels of CB-153 and p,p'-DDE in European and Inuit populations. *Reproduction* 2006; **132**:949–958.

Terra X, Auguet T, Guiu-Jurado E, Berlanga A, Orellana-Gavaldà JM, Hernández M, Sabench F, Porras JA, Llart J, Martínez S et al. Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy. *Obes Surg* 2013; **23**:1790–1798.

Tiido T, Rignell-Hydbom A, Jönsson BA, Giwercman YL, Pedersen HS, Wojtyniak B, Ludwicki JK, Lesovoy V, Zvyezday V, Spano M et al. Impact of PCB and p,p'-DDE Contaminants on Human Sperm Y:X Chromosome Ratio: Studies in Three European Populations and the Inuit Population in Greenland. *Environ Health Perspect* 2006; **114**:718–724.

van de Laar AW, Nienhuijs SW, Apers JA, van Rijswijk AS, de Zoete JP, Gadiot RP. The Dutch bariatric weight loss chart: a multicenter tool to assess weight outcome up to 7 years after sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass. *Surg Obes Relat Dis* 2019; **15**:200–210.

Vandenberg LN. Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study. *Dose Response* 2014; **12**:259–276.

Velotti N, Palma FDED, Fernandez LMS, Manigrasso M, Galloro G, Vitiello A, Berardi G, Milone M, Palma GDD, Musella M. Effect of bariatric surgery on in vitro fertilization in infertile men with obesity. *Surg Obes Relat Dis* 2021; **17**:1752–1759.

WHO. 2017. *GHO | By Category | Prevalence of Overweight among Adults, BMI ≥ 25, Age-Standardized—Estimates by Country*. World Health Organization. <http://apps.who.int/gho/data/node.main.A897A?lang=en> (5 December 2018, date last accessed).

Williams G. Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER- $\alpha$  and GPER signalling. *Mol Cell Endocrinol* 2012; **351**:269–278.

Wolfe BM, Schoeller DA, McCrady-Spitzer SK, Thomas DM, Sorenson CE, Levine JA. Resting metabolic rate, total daily energy expenditure, and metabolic adaptation 6 months and 24 months after bariatric surgery. *Obesity (Silver Spring)* 2018; **26**:862–868.

Wood GJA, Tiseo BC, Paluello DV, de Martin H, Santo MA, Nahas W, Srougi M, Cocuzza M. Bariatric surgery impact on reproductive hormones, semen analysis, and sperm DNA fragmentation in men with severe obesity: prospective study. *Obes Surg* 2020; **30**:4840–4851.

World Health Organization. *Laboratory Manual for the Examination and Processing of Human Semen*. 4th edn. Cambridge, UK: Cambridge University Press, 1999, 128.

World Health Organization. *Laboratory Manual for the Examination and Processing of Human Semen*. 5th edn. Geneva: World Health Organization, 2010, 286.

World Health Organization. *Laboratory Manual for the Examination and Processing of Human Semen*. 6th edn. Geneva: World Health Organization, 2021.

Young SS, Eskenazi B, Marchetti FM, Block G, Wyrobek AJ. The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. *Hum Reprod* 2008; **23**: 1014–1022.

Ziegler O, Sirveaux MA, Brunaud L, Reibel N, Quilliot D. Medical follow up after bariatric surgery: nutritional and drug issues general recommendations for the prevention and treatment of nutritional deficiencies. *Diabetes Metab* 2009; **35**: 544–557.

Zumoff B, Miller LK, Strain GW. Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolactone. *Metab Clin Exp* 2003; **52**: 1126–1128.