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STUDY QUESTION: Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by
measuring the expression of a small number of genes and a continuous, non-categorical modelling approach?

SUMMARY ANSWER: Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient
to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample.

WHAT IS KNOWN ALREADY: Commercially available endometrial timing approaches based on gene expression require large gene
sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive.

STUDY DESIGN, SIZE, DURATION: Gene expression was measured by RTq-PCR in different sample sets, comprising a total of
664 endometrial biopsies obtained 4–12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were
profiled by RTq-PCR as well as RNA-sequencing.

PARTICIPANTS/MATERIALS, SETTING, METHODS: A computational procedure, named ‘EndoTime’, was established that models
the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as
sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing
estimates for each sample while preserving the overall distribution of time points.

MAIN RESULTS AND THE ROLE OF CHANCE: The Wilcoxon rank-sum test was used to confirm that ordering samples by
EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than
ordering the same expression values by patient-reported times (GPX3: P< 0.005; CXCL14: P< 2.7e�6; DPP4: P< 3.7e�13). Pearson
correlation between EndoTime estimates for the same sample set but based on RTq-PCR or RNA-sequencing data showed a high degree
of congruency between the two (P¼ 8.6e�10, R2 ¼ 0.687). Estimated timings did not differ significantly between control subjects and
patients with recurrent pregnancy loss or recurrent implantation failure (P> 0.05).

LARGE SCALE DATA: The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.
com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO
(accession GSE180485).

LIMITATIONS, REASONS FOR CAUTION: Timing estimates are informed by glandular gene expression and will only represent the
temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still
required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger
sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different
days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a
sufficient level of noise to ensure that a variety of time points will be sampled.

WIDER IMPLICATIONS OF THE FINDINGS: Our method is the first to assay the temporal state of luteal-phase endometrial samples
on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal
profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use.
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reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
Menstruation is the defining characteristic of the endometrium in
humans and higher primates, a trait otherwise found in only a handful
of non-primate species (Bellofiore et al., 2017). As a consequence of
menstruation, the endometrium undergoes iterative cycles of tissue re-
generation, rapid proliferation and differentiation, which cumulate in a
transient window of implantation during the midluteal phase of the
cycle. The window of implantation represents an inflection point in
the cycle, after which the endometrium either breaks down or is
transformed into the decidua of pregnancy, a specialized matrix that
accommodates the placenta throughout gestation (Gellersen and
Brosens, 2014). Endometrial cyclicity is driven by the rise and fall in
ovarian oestrogen and progesterone production, triggering coordinated
spatiotemporal gene expression changes in resident epithelial, stromal
and vascular cells (Wang et al., 2020). Furthermore, the midluteal win-
dow of implantation heralds the start of intense tissue remodelling,
characterized not only by abrupt and dramatic changes in epithelial
gene expression (Wang et al., 2020), differentiation of stromal cells in
pre-decidual cells (Lucas et al., 2020) and angiogenesis (Demir et al.,
2010), but also by an influx of circulating innate immune cells (Strunz
et al., 2021), most prominently uterine natural killer cells (Brighton
et al., 2017) as well as non-haematopoietic bone marrow-derived
progenitor cells (Diniz-da-Costa et al., 2021).

It is widely accepted that pathological cues that interfere with the
sequence of endometrial events leading to a functional implantation
window causes reproductive failure, including recurrent implantation
failure (RIF) and recurrent pregnancy loss (RPL) (Koot et al., 2016;
Lucas et al., 2020). However, it has proven challenging to parse the
precise underlying mechanisms. There are multiple challenges intrinsic
to endometrial research, including heterogeneity in the cellular compo-
sition of endometrial biopsies (Suhorutshenko et al., 2018), inherent
inter-cycle variability in local immune cells (Brighton et al., 2017) and,
most prominently, the rapid temporal changes in gene expression
across the luteal phase (Wang et al., 2020). Accurate timing informa-
tion is therefore critical in endometrial analysis (Devesa-Peiro et al.,
2021). While the average length of menstrual cycle is 28 days, there is
considerable intra- and inter-individual variation (Soumpasis et al.,
2020). A pragmatic solution is to schedule biopsies relative to the pre-
ovulatory LH surge (Tewary et al., 2020). A prospective study on a
small cohort of healthy women (n¼ 40) reported that the urinary LH
surge occurs mostly within one day prior to ovulation, although
the range was 4 days (Johnson et al., 2015; Roos et al., 2015).
Furthermore, the rise in urinary pregnanediol-3-glucuronide, a proges-
terone metabolite, is more variable, occurring over a range of 5 days
after ovulation (Johnson et al., 2015; Roos et al., 2015). Thus,
while the timing of endometrial biopsies relative to clinical markers of
ovulation is useful and convenient, it does not ensure comparable
exposures to progesterone stimulation.

A complementary strategy is to infer timing by analysing the endo-
metrial phenotype. Histological dating using the Noyes criteria was the
foundational approach (Noyes et al., 1950), but its accuracy has been
brought into question (Coutifaris et al., 2004; Murray et al., 2004).
Alternative methods for timing are based largely on detection of pro-
teins, transcripts or microRNAs that mark the putative implantation
window (Giudice and Saleh, 1995; Lessey, 1998; Develioglu et al.,
1999; Dubowy et al., 2003; Kliman et al., 2006; Aghajanova et al.,
2009; Sha et al., 2011; Zhang et al., 2012). In addition, several compu-
tational approaches for the prediction of the window of implantation
are available commercially. The Win-test (Haouzi et al., 2009, 2021),
ERA (D�ıaz-Gimeno et al., 2011; Ruiz-Alonso et al., 2013) and ER
Map/ER Grade (Enciso et al., 2018) utilize gene panels of varying size
(11, 238 and 40 genes, respectively) in order to categorize endome-
trial samples as pre-receptive, receptive, or post-receptive. However,
these approaches not only offer limited temporal resolution but also
risk misclassification of samples at the boundary of these time win-
dows. At present, there are no cost-effective, validated methods to as-
sess luteal phase endometrium in a continuous, time-dependent
domain.

This study describes the development and validation of an
expression-based assay that reflects time as a continuous measure-
ment of days and hours, using a discrete set of temporal endometrial
genes. For any given sample within a set, gene expression levels are
used to define probability distributions based on the expression of all
other samples in order to identify the most likely sample timing esti-
mate with respect to the data of each gene, before being aggregated
to provide a singular estimate. This process is then iterated, with each
new series of estimated timings informing the next set of distributions
until the process reaches convergence. Our method, termed
EndoTime, is freely available as open-source software.

Materials and methods

Ethics
The study was approved by the NHS Research Ethics Committee,
Hammersmith and Queen Charlotte’s & Chelsea Research Ethics
Committee (1997/5065), and Tommy’s National Reproductive Health
Biobank (REC reference: 18/WA/0356). All samples were obtained
with written informed consent and in accordance with The Declaration
of Helsinki (2000) guidelines.

Endometrial sample collection
Endometrial biopsies were obtained from women attending the
Implantation Clinic, a dedicated research clinic at University Hospitals
Coventry and Warwickshire (UHCW) National Health Service Trust.
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Surplus tissues from endometrial biopsies obtained for diagnostic pur-
poses were used for this study. Participants were instructed to use
over-the-counter urinary ovulation tests and contacted the clinic on
the day of a positive test or soon after. An endometrial biopsy was
then scheduled 4–12 days after a positive test. The timing of endome-
trial biopsies was designated as LHþ (day), i.e. the number of days fol-
lowing a positive urinary ovulation test. Following transvaginal
ultrasound assessment to exclude overt pelvic pathology, an endome-
trial biopsy was obtained using a Wallach EndocellTM endometrial sam-
pler. All samples were immediately portioned with one part placed in
RNAlater Stabilization Solution (Sigma-Aldrich, Dorset, UK) for a mini-
mum of 24 h at 4�C before removal and storage at �80�C, one part
snap frozen in liquid nitrogen, and one part fixed in 10% formalin for
immunohistochemistry.

Two sets of RTq-PCR data were utilized in the development of
EndoTime. Data Set I was used for model training, consisting of DCT
values for 257 endometrial samples, with 96 provided by patients diag-
nosed with RPL, 81 by patients diagnosed with RIF and 80 acting as
controls. Data Set II was applied in tandem with a trained model in or-
der to provide timing estimates for 36 samples independently of
patient-reported values. EndoTime was then applied to an indepen-
dent data set, Data Set III, comprising of 407 LH-timed endometrial bi-
opsies. Demographic information for all three data sets is presented in
Supplementary Table SI. The number of samples at each timepoint
(LHþ) is shown in Supplementary Table SII. The sign for all DCT val-
ues in all three sets was first inverted in order to positively correlate
with gene expression.

RTq-PCR
Total RNA was extracted from RNAlater-protected endometrial biop-
sies using STAT-60 (AMS Biotechnology, Oxford, UK), according to
the manufacturer’s instructions. Reverse transcription was performed
from 1mg RNA using the Quantitect Reverse Transcription Kit
(QIAGEN, Manchester, UK) and cDNA was diluted to 10 ng/ml equiv-
alent before use in qPCR. Amplification was performed on a Quant5
Real-Time PCR system (Applied Biosystems, Paisley, UK) in 10ml reac-
tions using 2� QuantiFast SYBR Green PCR Master Mix containing
ROX dye (QIAGEN), with 300 nM each of forward and reverse pri-
mers. L19 was used as a reference gene. Primer sequences of marker
genes and the endometrial cell type(s) of expression are tabulated in
Supplementary Table SIII.

RNA-sequencing
RNA was purified using RNA STAT-60 (AMS Bio) according to manu-
facturer’s instructions and treated using Amplification Grade DNase I
(Invitrogen) followed by ethanol precipitation and clean-up. Quality
control, library preparation and sequencing were performed by the
Wellcome Trust Centre for Human Genetics. Libraries were prepared
using the Illumina TruSeq Stranded mRNA sample prep kit according
to manufacturer’s instructions. Paired-end 75 bp sequencing was per-
formed on Illumina HiSeq4000.

Tissue imaging
Endometrial biopsies were fixed overnight in 10% neutral buffered for-
malin at 4�C and wax embedded in Surgipath Formula ‘R’ paraffin

using the Shandon Excelsior ES Tissue processor (ThermoFisher).
Tissues were sliced into 3 lM sections on a microtome and adhered
to coverslips by overnight incubation at 60�C. Deparaffinization, anti-
gen retrieval (pH 9), antibody staining, haematoxylin counter stain and
3,3’-diaminobenzidine colour development were fully automated in a
Leica BondMax autostainer (Leica BioSystems). Tissue sections were
stained for CD56 (a uNK cell-specific surface antigen) using a 1:200
dilution of concentrated CD56 antibody (NCL-L-CD56-504,
Novocastra, Leica BioSystems). Stained slides were de-hydrated,
cleared and cover-slipped in a Tissue-Tek Prisma Automated Slide
Stainer, model 6134 (Sakura Flinetek Inc., CA, USA). Bright-field
images were obtained on a Mirax Midi slide scanner using a 20� ob-
jective lens and opened in Panoramic Viewer v1.15.4 (3DHISTECH
Ltd, Budapest, Hungary).

Pre-processing of RTq-PCR data
Expression (DCT) values in individual samples in Data Sets I and III
were normalized to a scale of zero to one per gene and then adjusted
by a batch-specific additive constant as a modest batch effect correc-
tion, making mean expression values equal in each batch. Samples in
Data Set II were processed for RTq-PCR analysis as a single batch.

Pre-processing of rLH1 values
EndoTime modelling required that reported sample time points be
converted from an ordinal to a continuous domain, a process that was
undertaken in two steps. First, random noise sampled from a uniform
distribution between �0.5 and 0.5 was added to each reported LHþ
(rLHþ) value. Second, samples were sorted in ascending order
according to these updated timings, and the timings were smoothed
using linear regression. This procedure allowed for each sample to be
spaced evenly throughout the defined time course in a non-discrete
manner, but close to its original rLHþ value, an approach that was
considered robust in the presence of samples with unusually high or
low reported timing values.

EndoTime method
The approach for modelling via EndoTime relies upon an iteration of
temporal gene expression profile refinement followed by the applica-
tion of these refined profiles to estimate sample timings. Continuous
rLHþ values generated during pre-processing were used to form initial
expression profiles specific to each gene in the panel, which were then
partitioned into windows of equal size (Supplementary Fig. S1). A nor-
mal distribution was used to model gene expression inside the time
window with a mean inferred from samples inside the window and a
weighted standard deviation based on the relative distance of points
from the mean (Supplementary Fig. S2). Each window represented a
singular time point derived from the median of binned reported time
points. The first iteration utilized a bin size of 80 samples, which de-
creased by 10 with each successive iteration to a minimum of 20.
Where temporal profiles deviate strongly from linearity, the normal
distribution for data in a window could make for an inaccurate match
of the data, but as window sizes are decreased deviations from linear-
ity will become minor in later iterations of EndoTime.

Each sample within the data set was then assessed individually for
its likely timing. The expression values for each marker gene within
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each window were used to generate a probability density curve based
on the likelihood that the expression values observed in a sample
were drawn from the distribution seen in the windowed data. This
resulted in a set of six probability density curves being generated per
sample, with each curve representing the results of attempting to esti-
mate timing for the sample based on one gene alone, with associated
curve maxima suggesting the time point with the greatest likelihood.
Utilizing a shrinking bin size allowed for the first iteration of the pro-
cess to filter out the majority of noise introduced by unreliable rLHþ
into the data. Subsequent iterations refined estimations, while enforc-
ing a minimum bin size ensured that the curves were smooth and pre-
sented a single clear maximum (Supplementary Fig. S3).

This process of generating six individual probability density curves
also allowed for an assessment to be made regarding the congruency
of their peak maxima and therefore the consistency with which each
gene provided the same timing estimate. Synchronous samples were
those wherein the six maxima all suggested a similar estimate, while
asynchronous samples were those that presented conflicting estima-
tions; an ‘asynchrony’ score was provided to each sample based on
the standard deviation among all six maxima, which describes how co-
herently the aforementioned probability density curve-based approach
provides a singular timing estimate.

Consolidating these six curves into a single curve by averaging their
scaled densities allowed for the identification of a maximum in a single
curve, which was used as the new time point estimation for the sam-
ple. A window-based approach was used when consolidating the six
individual curves into one, with bin sizes equal to those used when
generating the underlying reference profiles of panel gene expression.
This process iterated until convergence, with each iteration undertak-
ing both refinement of temporal profiles and time point estimation.
The difference between the estimations provided by the preceding
and current iteration was measured using the Euclidean distance and
convergence was declared once the distance fell below 2.

During the modelling process, the absolute values of sample timings
could deviate from the desired range as our method was primarily
designed to optimize the correct order of samples, rather than retain-
ing the original unit associated with timings. To ensure that EndoTime
outputs are in line with original units, the raw timings obtained by
modelling were converted following the last iteration such that the
overall distribution of patient-reported LH times is approximately
matched by the EndoTime output.

The six panel genes initially formed part of a set of 15 genes that
were measured across the samples of Data Set I (Supplementary
Table SIV), providing sufficient data to reconstruct the original tempo-
ral profiles in the presence of substantial noise. After establishing the
EndoTime method, we gradually reduced this set of genes by succes-
sively removing the gene that least affected the Spearman correlation
of sample ranks inferred with and without the gene. We stopped this
process at six genes even though the correlation was still greater than
0.99 in order to be able to ascertain asynchrony scores with
confidence.

Pre-processing of RNA-seq data
RNA-seq libraries were mapped to the hg19 human genome assembly
(2014) using Bowtie v. 2.2.3 (Langmead et al., 2009), TopHat v.2.0.12
(Trapnell et al., 2009) and Samtools v.0.1.19 (Li et al., 2009) and reads

mapped to features were counted via HTSeq v.0.6.1 (Anders et al.,
2015) prior to Transcripts Per Million (TPM) normalization.

In order to apply EndoTime to RNA-seq data, an approach was
developed to convert read counts of EndoTime panel genes to
pseudo-RTq-PCR data. TPM for each of the six timing panel genes
were initially log2-transformed and then transformed to match the
mean and standard deviation for each respective gene in the RTq-PCR
data of Data Set I, with all processing performed using base functions
in R v.4.0.2 (R Core Team, 2021).

Statistical analyses
To assess the improvement in timing accuracy, we used a cross valida-
tion approach. Sample timings were estimated using EndoTime with a
panel of only five genes, holding out the expression data for one gene.
Expression data for the held-out gene was ordered (i) by patient-
reported times (denoting this vector as vP), (ii) by EndoTime timing
estimates (denoted as vE) and (iii) by expression level, in ascending or-
der if the expression level of the held-out gene increases over time
and descending order otherwise (denoted as vG). As patient-reported
times are integer values with a unit of days, breaking ties needed to be
resolved in order to compare directly against the other vectors. This
was done by ordering samples of the same day in ascending or
descending order according to the expression level of the held-out
gene. We applied the Wilcoxon rank-sum test to check whether the
absolute values of the differences vG—vP were greater than for vG—vE

in a single-sided test. A significant P-value indicates that the order of
samples provided by EndoTime is closer to the perfect order. In this
setting, breaking the ties for patient-reported times as described above
yields the largest P-value among all possible resolutions of ties, meaning
that statistical significance may be under-stated but not over-stated
with this approach as the P-value computed is an upper bound for the
P-value that could be obtained if patient-reported times were more
finely resolved. This process was repeated six times, holding out one
panel gene at a time, and P-values Bonferroni-corrected for multiple
testing.

RNA-seq data was examined via Principal Component Analysis in
MATLAB following transformation of raw counts using the rlog func-
tion from the R library DESeq2 v.1.30.1 (Love et al., 2014).

Patient demographics were assessed for normality via Shapiro–Wilk
test. P-values for normally distributed data were then computed either
via unpaired t-test (Data Set I) or P-values against control or 0 losses
were computed via ordinary one-way ANOVA with Dunnett’s multi-
ple comparisons test (Data Sets II and III). P-values for non-normally
distributed data were calculated via Wilcoxon rank-sum test (Data
Set I) or Kruskal–Wallis with Dunn’s multiple comparisons test (Data
Sets II and III).

Results
The EndoTime method was developed using two sample sets of luteal
phase endometrial biopsies. Demographic information for both sample
sets are presented in Supplementary Tables SI and SII. Data Set I con-
sisted of 257 endometrial biopsies assayed by RTq-PCR in nine
batches, out of which 96 were obtained from women with a history of
RPL (defined here as 3 or more consecutive pregnancy losses), 81
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were from women with repeated implantation failure (i.e. no positive
pregnancy test following three or more transfers of day 5 blastocysts)
and the remaining 80 biopsies were from control subjects. Refinement
of the EndoTime gene panel resulted in the selection of six temporal
marker genes, several of which are shared in the gene panels of exist-
ing computational methods for endometrial biopsy timing: all six genes
can be found in the ERA panel and GPX3 can be found in the ER-Map
panel. The distribution of expression values for all six panel genes
were found to be comparable between clinical cohorts (P> 0.05,
Wilcoxon rank-sum test, Supplementary Fig. S4). Data Set II consisted
of 36 endometrial biopsies assayed by RTq-PCR and RNA-seq as a
single batch. EndoTime was applied to 407 endometrial biopsies (Data
Set III) to determine if the incidence of ‘mistimed’ or ‘out-of-phase’
samples relates to the recurrence risk of miscarriage. Supplementary
Table SI provides demographic information on all three sample sets.
The distribution of endometrial biopsies relative to the patient-
reported positive urinary ovulation test is shown in Supplementary
Table SII.

The EndoTime method
Timing estimates of endometrial biopsies should ideally rely on tempo-
ral reference profiles of marker genes that span the entire luteal phase
and are free of noise, as illustrated by synthetic data in Fig. 1A, gener-
ated using R via linear and logistic functions between hypothetical val-
ues for time and gene expression. In reality, only a limited number of
biopsies can be sampled (Fig. 1B), and patient-reported days since a
positive urinary ovulation test (rLHþ) will be subject to a degree of er-
ror and noise as simulated in Fig. 1C, thus obscuring the true temporal
expression patterns. We observed that the simulated data show a
very similar pattern to real-world data (Fig. 1D), illustrating the practi-
cal relevance of this theoretical framework. EndoTime aims to mini-
mize the impact of this source of noise by recovering the original
expression patterns and thereby allowing for more accurate estimation
of endometrial timing.

Accomplishing this goal requires us to solve a Chicken and Egg
problem: inferring the correct time point for a given biopsy requires
accurate reference expression profiles, but recovery of these profiles
relies on accurately timed biopsies. An overview of our approach to
solving this problem can be seen in Fig. 2. This is an iterative approach,
using the initial rLHþ time points to model expression profiles while
accounting for uncertainty (Fig. 3A), then updating biopsy timings for
all samples based on the modelled reference profiles (Fig. 3B). These
two steps are iterated, with reference profiles gradually becoming less
noisy as timing estimates are improved in a stepwise manner (Fig. 3C).
The process is repeated until convergence, defined as a minimal over-
all change of sample timings from one iteration to the next.

Modelling temporal expression profiles is achieved using a window-
based approach that considers samples in individual segments of the
time domain and modelling their mean and variance as a normal distri-
bution (Supplementary Fig. S1). The size of the windows is gradually
decreased from iteration to iteration as sharper temporal profiles al-
low for a more detailed model of the reference profiles. The position
of samples inside a window is considered when computing the means
such that samples near the centre of the window have stronger influ-
ence than samples near the edge (Supplementary Fig. S2).

The modelled temporal profiles (Fig. 3A) are used to compute
probability density functions for each sample and each marker
gene, which show how likely each time point is for the given sam-
ple as judged by the reference profile of a single marker gene.
Joint probability density functions are then computed, generated
by a similar process of scaling and binning the density functions for
all six marker genes per sample, followed by calculating the aver-
age density within each bin. The result is a singular ‘pseudo’-den-
sity function for each sample showing likelihood of sample timing
based on the reference profiles for all marker genes (Fig. 3B). The
maxima of these functions are then identified for each sample,
which provide maximum likelihood estimates for the most appro-
priate sample timing. The iterated process of updating the refer-
ence profiles and updating sample timings gradually refines the
reference profiles and increases the certainty in timing estimates
(Fig. 3C, Supplementary Fig. S3).

Validation of EndoTime method
We applied the EndoTime method on Data Set I, comprising of 257
luteal endometrial samples. We used a leave-one-out cross-validation
approach for the set of marker genes used, inferring timings based on
five genes while not using the expression data of the held-out, sixth
gene. We hypothesized that EndoTime estimates will yield sharper,
less noisy temporal profiles for temporally regulated genes. If samples
were ordered merely to fit the data of five genes without inferring the
true order of samples, then the temporal profile for the held-out gene
would not improve. This process was repeated six times, holding out
one gene at a time. We found that the temporal profile of each held-
out gene became tighter after EndoTime with expression values, devi-
ating less from the temporal trajectory when compared to profiles
plotted using patient-reported times (Fig. 4, right and left panels, re-
spectively). This effect was particularly pronounced for CXCL14, DPP4,
and GPX3. The Wilcoxon rank-sum test was used to confirm that the
improvement in temporal expression profiles for three held-out genes
was statistically significant (see Materials and methods; GPX3:
P< 0.005; CXCL14: P< 2.7e�6; DPP4: P< 3.7e�13). The other
genes, though visually appearing tighter, did not test significantly under
the conservative testing our approach, which resolves breaking ties for
patient-reported times in a way that maximizes P-values (see Materials
and methods). These genes may also be less tightly regulated in the lu-
teal phase. We concluded that EndoTime arranged samples on the
time axis in a biologically more accurate manner than patient-reported
times.

Detecting asynchronous samples
While the order of samples computed by EndoTime reduces the vari-
ability in temporal profiles substantially, some individual samples ap-
pear to be outliers. We queried if it was possible to assess the
reliability of estimates on a per-sample basis to enable the automatic
detection of the least reliable samples. As EndoTime computes proba-
bility distributions of timing for each marker gene individually before
aggregation, the procedure could be compared to a voting scheme
where each marker gene has one vote, enabling an assessment of con-
sistency among marker genes. We formulated a score to measure
asynchrony between timing estimates based on individual marker
genes (Fig. 5A). Samples with a high asynchrony score show large
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Figure 1. Effect of sampling and noise on measured temporal profiles. (A) Ideal expression curves for three artificial genes with infinite
sampling density and without noise. (B) Simulated data as in A but with limited uniform sampling over the time axis more reflective of real-world bi-
opsy availability. (C) Data simulated as in B with random noise added to time points (noise sampled from the normal distribution, mean ¼ 0, SD ¼ 2)
to reflect uncertainty in reporting. (D) Expression measurements of three genes in clinical samples with patient-reported timings. The observed gene
expression patterns are a good match for anticipated patterns simulated in C in terms of noise level and fuzzy appearance of temporal profiles. As
original data are only resolved to full days, samples have been moved randomly on the time axis with an average displacement of 6 h (maximum of
12 h) to make data visualization more comparable with simulated data on a continuous domain.
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..discrepancies between marker genes and account for the most outly-
ing samples (Fig. 5B and C, right panel; and Fig. 5D, bottom panel). By
contrast, synchronous samples show consistency among marker genes
(Fig. 5C, left panel; Fig. 5D, top panel), and a good fit to the temporal

profile (Fig. 5B). Thus, EndoTime’s asynchrony score can automatically
inform the user about unreliable estimates, which may either be due
to noise in experimental measurement for the affected samples or re-
flect asynchronous gene expression in the tissue. The user may decide

-ΔCT RTq-PCR 
data for six panel 

genes and reported 
LH+ times

Transform reported
timings into 
monotonic

continuous variables

Scale qPCR data 
0 to 1 and perform 

batch effect 
correction

Extrapolate data 
at the edges of 
the time course

Reduce bin size
unless

minimum is reached

Spread samples 
evenly across time 
course, maintaining

sample order

Timing estimates and
asynchrony scores

per sample

Generate sample 
timing density 

curve for 
each panel gene

Generate aggregate
densities across

panel genes

Identify aggregate
curve maximum as
estimated timing

Per Sample:

Main Iteration:

Input

Output

Have timing
estimates changed
much during last

iteration?

Yes
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Figure 2. Estimation of endometrial sample timings by EndoTime. Pre-processing steps normalize and apply minor batch correction
to –DCT qPCR gene expression data and transform reported sample timings, in LHþ, into a continuous domain suitable for modelling. The bulk of
the computation is an iterative process of binning data, generating an aggregate pseudo-density curve per sample, the maxima of which are selected
as an estimate for the most likely sample timings, and assessment of the relative difference in sample estimates between one iteration and the preced-
ing one. Once the difference in estimates falls below a predefined threshold value, diminishing returns are considered to have been reached and the
modelling process ceases, returning the final sample timing estimates and an associated values for asynchrony, which reflect the degree to which all
six panel genes agree upon estimates.
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to remove such samples from the analysis and refine further the tem-
poral profiles and timing estimates for the remaining samples or, alter-
natively, repeat the cDNA conversion and RTq-PCR assay of samples
deemed asynchronous.

EndoTime can be applied to RNA-seq data
Using EndoTime analysis of the 257 biopsies in Data Set I yielded re-
fined gene expression profiles, arranged according to the estimated
timings. These profiles can subsequently be utilized alongside new
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Figure 3. Illustration of one iteration of the EndoTime modelling process. (A) Computing temporal profiles. Left: Regression curves fit
to expression data for three genes of the timing marker panel. Right: Expression values for three samples from the training data are the basis for re-
evaluating timings of these samples. (B) Temporal profiles learned in A are used to improve time point estimates. For each sample, the likelihood of
each time point is computed, with suggested sample timing represented by peak maxima for each sample. (C) Improved time point estimates provide
improved temporal profiles. Left: Expression data arranged according to patient-reported LHþ. Values for the three samples from A and B are cir-
cled. Right: Expression data re-arranged according to new time estimates obtained in B. Expression curves are visibly tighter and more distinct after
just one iteration. EndoTime repeats this process until convergence.
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sample sets, an application that is particularly useful if these new sets
are not large enough to obtain detailed reference profiles, or if
patient-reported timings are not available, which are necessary to initi-
ate the training process.

Data Set II consisted of 36 endometrial biopsies for which RTq-
PCR as well as RNA-seq data across 33 329 genes was obtained
as well as RTq-PCR data for the EndoTime gene panel. We used
this set to assess if estimates derived from RTq-PCR data would
yield comparable results when EndoTime is applied to measure-
ments of the same six marker genes by RNA-sequencing. This ne-
cessitated normalizing the RNA-seq read counts to make these
comparable to the normalized RTq-PCR values in terms of means
and variances. As reference profiles were fixed by the modelling
exercise for both data types, EndoTime was applied only to carry
out a single estimation step for sample timings without updating
the temporal profiles. Figure 6 demonstrates that RTq-PCR and
RNA-seq time estimates are highly correlated (P¼ 8.6e�10, R2 ¼
0.687). We concluded that meaningful EndoTime estimates can
be obtained from RNA-seq data even if there is not enough data
to re-train reference profiles.

Inaccuracy of reported LH surge times
A fundamental concern towards reliance upon patient-reported
timings provided with clinical biopsies is the potential for inaccuracy.
The endometrium is intrinsically dynamic and mistimed samples could
confound the diagnosis of underlying pathologies. Histological
approaches can provide insights into biopsy timing but require addi-
tional processing of samples and appropriate expertise.

EndoTime analysis of the 257 biopsies in Data Set I revealed a
mean difference between reported and estimated LH timing of
1.29 days, with 48 samples showing an estimated deviance of more
than two days and 19 samples a deviance of more than three days.
One biopsy was estimated to be 6.22 days later than the rLHþ value.
The likelihood of mistiming appeared to be broadly independent of
the temporal state of the tissue (Fig. 7A), with deviations occurring
throughout the luteal phase. This disparity was also seen upon com-
parison of patient-reported timings with histological analysis of the tis-
sue samples, the latter of which were congruent with the predictions
provided by EndoTime (Fig. 7B).

EndoTime captures primary source of
transcriptomic variability in endometrium
Appraisal of the influence of time on transcriptomic variability in
comparison to other potential sources of variation, such as interpa-
tient variability, was achieved by performing principal component
analysis on the RNA-seq data in Data Set II. The two principal
components that explained the largest percentage of variance over-
laid RTq-PCR-based EndoTime estimations (Fig. 8), implying that at
least 44.1% of variance among 33 329 genes measured can be
explained by temporal fluctuations as measured accurately using
just the six genes in the EndoTime panel. We conclude that
EndoTime captures the primary parameter underlying transcrip-
tomic variability in endometrial biopsies obtained during the luteal
phase of the menstrual cycle.

A shift in EndoTime between patient groups could indicate a role
for ‘out-of-phase’ endometrium in driving reproductive failure. To test
whether the clinical phenotype impacts on the performance of
EndoTime, we first examined the expression levels of our six panel
genes in control, RIF and RPL patients in Data Set I. As shown in

CXCL14 CXCL14

DPP4 DPP4

GPX3 GPX3

IGFBP1 IGFBP1

IL2RB IL2RB

SLC15A2 SLC15A2

Figure 4. Method validation by leave-one-out approach.
Left: Expression measurements for panel genes plotted using time
points reported by patients. As original data are only resolved to full
days, samples have been moved randomly on the time axis with an
average displacement of 6 h (maximum of 12 h) to make data visuali-
zation more comparable with EndoTime estimates on continuous
domain. Right: Temporal profile of each gene after using data of the
other five genes to obtain timing estimates for all samples.
Substantially sharper profiles show that EndoTime reveals the true
order of samples more accurately than clinical records.
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Figure 5. Quantification of sample asynchrony based on consistency between panel genes. (A) Samples are ranked according to their
asynchrony score. Breakpoint of segmented linear model designates cut-off point for outliers. (B) Gene expression profiles for three timing panel
genes following modelling, with outlying asynchronous samples highlighted. Each sample deemed asynchronous shows discrepant expression values
for at least one gene. (C) Timing likelihood for all panel genes for two synchronous samples (left, top and bottom) and two asynchronous samples
(right, top and bottom). Synchronous samples exhibit curves with maxima conforming towards a singular predicted time point, while asynchronous
samples exhibit contradictory maxima. (D) Time point estimates based on maxima for each panel gene for samples shown in C.
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Supplementary Fig. S4, the distribution of these genes was comparable
between the clinical groups (P> 0.05, Wilcoxon rank-sum test with
Bonferroni multiple testing correction). Likewise, with EndoTime esti-
mates, the difference between reported and estimated LH time and
the asynchrony scores also did not differ between the groups
(Fig. 9A–C). To validate these findings further, we applied EndoTime
to Data Set III, which comprised 407 endometrial biopsies from
women with a history of 0–5 miscarriages. Each miscarriage increases
the risk of further pregnancy loss by �10%, independent of maternal
age (Magnus et al., 2019; Coomarasamy et al., 2020; Kolte et al.,
2021). Hence, this sample set enabled testing whether the prevalence
of ‘mistimed’ or ‘out of phase’ samples increases in function of the re-
currence risk of miscarriage. Again, we found no evidence that
EndoTime estimates are impacted by the likelihood of reproductive
failure (Fig. 9D). As shown in Fig. 9E, neither the frequency of ‘early’
nor ‘late’ endometrial biopsies was affected by the number of previous
pregnancy losses. EndoTime was also not influenced by either age or
BMI (Supplementary Fig. S5).

Discussion
EndoTime utilizes the transcriptomic profiles of an informative panel of
genes to obtain temporal estimates in a continuous domain, rather
than making a categorical classification. This avoids misclassifications

Figure 7. Identification of mistimed samples. (A) Samples shown in order identified by EndoTime (y-axis). EndoTime times shown as smooth
curve. Deviations of reported timings from EndoTime timings shown as coloured horizontal lines. (B) Bright-field imaging with staining by the uNK
marker CD56 for four samples. These images can be used to verify the progress of tissue development as earlier time points are associated with sim-
ple and tubular glands, while corkscrew-shaped glands are associated with biopsies donated during later time points. Samples 2 and 4 appear to be
early samples, while Sample 1 and 3 are late samples. EndoTime estimates are consistent with this. Reported timings agree for Sample 2 and 3 but
are discrepant for Sample 1 and 4 by about four days. eLHþ, estimated LHþ.

RTq-PCR

Figure 6. Correlation of predicted time points from RTq-
PCR data versus predictions from RNA-seq data of six
panel genes. eLHþ, estimated LHþ.
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that are likely when samples are close to the temporal threshold be-
tween different categorical phases of the cycle and increases the reso-
lution of temporal analyses. Given that two of the existing,
transcriptomics-based methods partition samples into just three cate-
gories, a misclassification into the neighbouring category implies sub-
stantially altered biological interpretation. We have shown the
accuracy of EndoTime by leave-one-out validation, which involves re-
moving one panel gene at a time and assessing the sharpening of the
temporal profile of the held-out gene. In all cases, the results were
comparable to those when using the entire panel, with only minimal
increased noise in the estimated timings.

The combined advantages of measuring only six genes alongside
freely available software mean that EndoTime minimizes the obstacles
for wide adoption. EndoTime enables any measurements obtained
from endometrial biopsies to be interpreted in relation to precise sam-
ple timing, thereby revealing the true temporal patterns much more
accurately.

Importantly, the model training is part of the EndoTime software,
enabling the application of EndoTime in other settings, for example
with modified sets of panel genes or in different patient cohorts. In
fact, EndoTime may be applicable to other tissues and other biological
processes if the panel genes are chosen accordingly. Temporal pat-
terns in the current panel genes are limited to monotonic shapes, ei-
ther continuously increasing (five genes) or continuously decreasing
(one gene) as these are the patterns found for most temporally vari-
able genes in this tissue. Monotonic shapes are most informative as

each expression level is only seen once across time, but the EndoTime
methodology can be used for any temporal patterns. We believe that
EndoTime has a range of applications in research settings as well as
broad potential for clinical application as well.

EndoTime provides a good degree of transparency to the user,
with each panel gene contributing its own estimate of sample tim-
ing, which are then aggregated in a single final time estimate.
Estimates based on individual genes that appear inconsistent are
reported to the user as asynchrony between panel genes, providing
a measure of reliability and highlighting estimates with low confi-
dence. Transcriptomic measurements in an individual biopsy sample
can be plotted against the normal temporal profiles identified by
EndoTime, providing a direct visual representation of the evidence
for synchrony or asynchrony. Asynchrony may arise due to both
technical errors and/or biological determinants. Although there
was no observable correlation between timing errors and any of
the three clinical groups that comprise Data Set I, future work
could further investigate correlations of asynchrony with reproduc-
tive pathologies in larger data sets. Notably in this study, the con-
cept of a biopsy being considered as ‘asynchronous’ relates to the
relative congruence of all panel genes towards a singular estimated
timepoint (Sebastian-Leon et al., 2018).

EndoTime is able to provide timing estimations of greater accuracy
as the size of contributing batches increases due to improved batch ef-
fect correction in the underlying transcriptomic data used for model-
ling. Samples in this study were obtained exclusively between 2 and
6 p.m., which limits the degree to which timing estimations might be
influenced by fluctuations imposed by the circadian clock, such as
those associated with PER2 (Uchikawa et al., 2011; Muter et al.,
2015). EndoTime’s accuracy might be improved via addition of an en-
dometrial circadian gene to the panel and subsequent adjustments to
the model should allow for greater timing resolution accounts for
these daily rhythms. Of the six marker genes utilized, four are notably
associated with the epithelium, implying that EndoTime estimates are
mostly informed by the epithelial compartment of the endometrium.

By transforming RNA-seq measurements to match the distribution
of RTq-PCR data prior to modelling via EndoTime, estimates can be
obtained that are highly congruent. This conclusion was supported fur-
ther upon projecting estimated timings over the principal component
analysis of RNA-seq data, showing that over 44% of transcriptomic
variance between samples can be explained as temporal fluctuations in
gene expression. This offers the possibility of applying EndoTime to
the transformation and timing estimation of endometrial RNA-seq
data. This should broaden the application of EndoTime and identify ad-
ditional temporally sensitive genes that might further improve the gene
panel in the future. This may also provide a foundation for dissecting
normal temporal changes from changes related to patient cohorts. In
addition, it creates potential for developing methods for adjusting the
timing of RNA-seq data sets computationally to make these more
comparable across patient cohorts.

In summary, EndoTime is a novel open access software which
advances the process of timing luteal phase endometrial biopsies along
a continuous scale, presenting opportunities for further improvements
in terms of its generalization across the entire endometrium.
EndoTime’s application to a wider range of transcriptomic
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Figure 8. EndoTime estimates capture largest single
source of variability in endometrial transcriptomes. PCA
performed on 33 329-dimensional RNA-seq data. Colours indicate
EndoTime timings inferred from just six genes which are consistent
with sample positions in PC 1 and 2 which capture 44.1% of tran-
scriptomic variation. eLHþ, estimated LHþ.
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..measurements and its timing resolution presents potentially far-
reaching research and clinical applications.

Supplementary data
Supplementary data are available at Human Reproduction online.

Data availability
The RNA-seq data are available in the Gene Expression Omnibus un-
der accession GSE180485. The RTq-PCR data are available in the
GitHub repository for the EndoTime software at https://www.github.
com/AE-Mitchell/EndoTime.
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Figure 9. Comparisons of EndoTime estimates across clinical groups. (A) Distributions of EndoTime timing estimates (eLHþ) between
Control, RIF and RPL groups within Data Set I (P> 0.05, Wilcoxon rank-sum test). (B) Distributions of the difference between reported LHþ
(rLHþ) and eLHþ between Control, RIF and RPL groups within Data Set I (P> 0.05, Wilcoxon rank-sum test). (C) Distributions of gene asynchrony
across Control, RIF and RPL groups within Data Set I (P> 0.05, Wilcoxon rank-sum test with Bonferroni multiple testing correction). (D)
Distribution of eLHþ according to number of historical pregnancy losses within Data Set III (P> 0.05, ordinary one-way ANOVA with Dunnett’s
multiple comparisons test). (E) Frequency of biopsies with reported timings that are either earlier (‘Early’), later (‘Late’) or within §1.5 days of the
eLHþ in function of the number of previous pregnancy losses (P> 0.05, Chi-squared test). eLHþ, estimated LHþ; n.s., non-significant.
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