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STUDY QUESTION: Can we derive adequate models to predict the probability of conception among couples actively trying to
conceive?

SUMMARY ANSWER: Leveraging data collected from female participants in a North American preconception cohort study, we devel-
oped models to predict pregnancy with performance of ~70% in the area under the receiver operating characteristic curve (AUC).

WHAT IS KNOWN ALREADY: Earlier work has focused primarily on identifying individual risk factors for infertility. Several predictive
models have been developed in subfertile populations, with relatively low discrimination (AUC: 59—64%).

STUDY DESIGN, SIZE, DURATION: Study participants were female, aged 2145 years, residents of the USA or Canada, not using fer-
tility treatment, and actively trying to conceive at enrollment (2013-2019). Participants completed a baseline questionnaire at enrollment
and follow-up questionnaires every 2 months for up to |2 months or until conception. We used data from 4133 participants with no more
than one menstrual cycle of pregnancy attempt at study entry.

PARTICIPANTS/MATERIALS, SETTING, METHODS: On the baseline questionnaire, participants reported data on sociodemo-
graphic factors, lifestyle and behavioral factors, diet quality, medical history and selected male partner characteristics. A total of 163 predic-
tors were considered in this study. We implemented regularized logistic regression, support vector machines, neural networks and gradient
boosted decision trees to derive models predicting the probability of pregnancy: (i) within fewer than 12 menstrual cycles of pregnancy at-
tempt time (Model 1), and (i) within 6 menstrual cycles of pregnancy attempt time (Model Il). Cox models were used to predict the prob-
ability of pregnancy within each menstrual cycle for up to 12 cycles of follow-up (Model Ill). We assessed model performance using the
AUC and the weighted-F| score for Models | and I, and the concordance index for Model IlI.

MAIN RESULTS AND THE ROLE OF CHANCE: Model | and Il AUCs were 70% and 66%, respectively, in parsimonious models, and
the concordance index for Model Il was 63%. The predictors that were positively associated with pregnancy in all models were: having
previously breastfed an infant and using multivitamins or folic acid supplements. The predictors that were inversely associated with preg-
nancy in all models were: female age, female BMI and history of infertility. Among nulligravid women with no history of infertility, the most
important predictors were: female age, female BMI, male BMI, use of a fertility app, attempt time at study entry and perceived stress.
LIMITATIONS, REASONS FOR CAUTION: Reliance on self-reported predictor data could have introduced misclassification, which
would likely be non-differential with respect to the pregnancy outcome given the prospective design. In addition, we cannot be certain that
all relevant predictor variables were considered. Finally, though we validated the models using split-sample replication techniques, we did
not conduct an external validation study.
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WIDER IMPLICATIONS OF THE FINDINGS: Given a wide range of predictor data, machine learning algorithms can be leveraged to
analyze epidemiologic data and predict the probability of conception with discrimination that exceeds earlier work.
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Introduction

In North America, 10—15% of couples experience infertility, defined as
the inability to conceive within |2 months of regular unprotected inter-
course (Thoma et al., 2013). In the USA, up to 12% of reproductive
aged women and 9.4% of men aged 2544 years used fertility treat-
ments in 20062010 (Chandra et al., 2013). The costs of these serv-
ices exceed $5 billion in the USA annually (Macaluso et al., 2010) and
are expected to increase as couples delay childbearing. Developing
better prognostic tools for couples trying to conceive could inform
clinical care and mitigate potential costs. For women who are con-
cerned about their fertility potential before they start trying to con-
ceive, an accurate predictive model could facilitate decisions about
how long to delay childbearing or how to prioritize other potentially
modifiable factors.

Previous research has identified many individual risk factors for infer-
tility and predictors of fecundability (i.e. the per-cycle probability of
conception). Female age and BMI, as well as male BMI, have been
identified as risk factors for infertility (Homan et al, 2007; Best and
Bhattacharya, 2015; Sundaram et al., 2017; Wesselink et al., 2017). In
addition, female preconception exposures including alcohol consump-
tion (Fan et al, 2017); sleep quality (Willis et al, 2019); cigarette
smoking (Wesselink et al., 2019); use of certain hormonal contracep-
tives (Yland et al, 2020); dietary factors (Gaskins and Chavarro,
2018); depressive symptoms (Nillni et al., 2016; Evans-Hoeker et al.,
2018); stress (Louis et al., 201 1; Lynch et al., 2014; Akhter et al.,
2016; Wesselink et al., 2018); and environmental exposures such as
air pollution (Conforti et al., 2018) and endocrine disrupting chemicals
(Kahn et al.,, 2021) are associated with reduced fecundability. Other
male risk factors include exposure to environmental chemicals (Snijder
et al, 2012; Buck Louis et dl., 2016), cigarette smoking (Soares and
Melo, 2008) and short sleep duration (Wise et al., 2018). However,
few studies have moved beyond individual risk factors to develop pre-
dictive models of pregnancy probability, and the predictive power of
these models was modest (Eimers et al, 1994; Collins et al., 1995;
Snick et al, 1997; Hunault et al, 2004, 2005; van der Steeg et dl.,
2007; Coppus et al., 2009).

In this study, we used supervised machine learning methods to pre-
dict the cumulative probability of pregnancy over 6 and 12 menstrual
cycles and to predict fecundability (the per-cycle probability of concep-
tion) in an incident cohort study of pregnancy planners. We considered
163 potential predictors and applied several classification algorithms and
variable selection procedures to identify the most accurate models and
to evaluate the relative predictive strength of individual risk factors.

Materials and methods

Study population

Pregnancy Study Online (PRESTO) is a web-based preconception
cohort study that examines the extent to which environmental and
behavioral factors such as diet, exercise and medication use influence
fertility and pregnancy outcomes (Wise et al., 2015). The study began
in 2013 and is ongoing. Eligible female participants are aged
2|-45years, residing in the USA or Canada, trying to conceive, and
not using fertility treatments. We excluded participants with more
than one menstrual cycle of pregnancy attempt time at enrollment be-
cause these women may have changed their behaviors in response to
difficulties conceiving (Wise et al., 2020). We analyzed data from cou-
ples who had not yet tried to conceive and those who had tried for
one cycle at study entry together. This is consistent with a report by
Joffe et al. (2005), which indicated that grouping couples with reports
of ‘zero’ and ‘one’ cycle of pregnancy attempt time does not induce
bias. This study included data from 4133 participants enrolled during
2013 through 2019.

Data collection

Female participants completed a baseline questionnaire at enroll-
ment, on which they reported data on sociodemographic factors,
behavioral factors, medical and reproductive history, and selected
male partner characteristics. Ten days after enrollment, partici-
pants were invited to complete the diet history questionnaire ||
(BHQ ). The DHQ Il was designed by the National Cancer
Institute and the first version of the DHQ was validated against
24-h dietary recalls in a USA population (Subar et al., 2001; Millen
et al., 2006). In validation studies, correlations between energy-
adjusted, DHQ-reported food servings and 24-h recall-reported
food servings ranged from 0.43 for other starchy vegetables to
0.84 for milk. Based on dietary factors reported via the DHQ II,
we assessed overall diet quality using the Healthy Eating Index-
2010 (HEI-2010) score (Guenther et al., 2013). Participants
completed bimonthly follow-up questionnaires for |12 months, or
until reported pregnancy, cessation of pregnancy attempts, study
withdrawal or loss to follow-up, whichever occurred first. Data on
menstrual cycle dates, pregnancy attempts and pregnancy status
were obtained via the baseline questionnaire and updated on each
follow-up questionnaire. A complete list of the 163 variables
included in this analysis is provided in Table I.
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Table | Complete list of variables included in analysis.

Category

Demographic and socioeconomic
characteristics

Lifestyle, behavioral and wellness
factors

Dietary factors and use of
supplements

Early life exposures and family
history

Reproductive characteristics and
disorders

Variables included in preliminary analysis

Age, marital status, race,I ethnicity, region of residence, urbanization of residential area, year at study entry, highest
level of education, parents’ education level, household income, employment status, hours/week of work, shift
work, night shift frequency in the past month.

Cigarette smoking (if so, number per day); total duration of smoking; history of smoking during pregnancy; use of
e-cigarettes (if so, ml/day); frequency of marijuana use; exposure to second-hand smoke; alcohol intake; caffeine
consumption; moderate physical activity; vigorous physical activity; sedentary activity; sleep duration; trouble
sleeping; perceived stress scale score; major depression inventory score.

Healthy Eating Index-2010 score; supplemental intake of vitamins A, Bl, B2, B3, B4, B5, B6, B7, B12, C, D, E, K;
beta-carotene; folic acid; iron; zinc; calcium; magnesium; selenium; omega-3 fatty acids; consumption of whole milk,
2% milk, 19 milk, skim milk, soy milk, other milk, fruit juice, bottled water, tap water, sugar-sweetened soda, diet
soda, sugar-sweetened energy drinks, diet energy drinks; use of multivitamins or folic acid supplements.

Adopted; number of siblings; multiple gestation; born preterm; born with low birthweight; breastfed; delivered via
cesarean section; mother’s cigarette smoking during pregnancy; mother’s age at participant’s birth; mother’s history
of pregnancy complications, miscarriage.

Age at menarche; menstrual regularity; menstrual period characteristics (typical length,> number of flow days, flow
amount, pain); received human papillomavirus vaccine; abnormal pap smear; ever diagnosed with a thyroid condi-
tion, fibroids, polycystic ovarian syndrome, endometriosis, a urinary tract infection, pelvic inflammatory disease,
chlamydia, herpes, vaginosis, genital warts; recent use of medications for polycystic ovarian syndrome; gravidity;
parity; history of cesarean section; years since last pregnancy; history of unplanned pregnancy; history of subfertility
or infertility; history of infertility treatment; history of breastfeeding; number of lifetime sexual partners; doing
something to improve pregnancy chances; intercourse frequency; using a fertility app; last method of contraception.

Physical characteristics, non-
reproductive medical history and
medication use

Environmental exposures
(occupational and personal care
product use)

Male partner characteristics

Body mass index; waist measure; Ferriman-Gallwey Hirsutism Score; handedness; number of primary care visits last
year; high blood pressure; received influenza vaccine last year; ever diagnosed with migraines (if so, recent migraine
frequency), asthma, hay fever, depression, anxiety, gastroesophageal reflux disease, diabetes; use of the following
medications in the 4 weeks before baseline: pain medications, antibiotics, asthma medications, diabetes medications;
use of psychotropic medications.

Exposed regularly to agricultural pesticides; metal particulates or fumes; solvents, oil-based paints or cleaning
compounds; high temperature environments; chemotherapeutic drugs; engine exhaust; chemicals for hair dyeing,
straightening or curing; chemicals for manicure/pedicure. Use of chemical hair relaxer.

Age, body mass index, education, cigarette smoking (if so, number per day), circumcision status.

'We conceptualized race as a social construct that serves as a rough proxy for exposure to interpersonal and structural racism.

2Menstrual cycle length and regularity were assessed via the following questions on the baseline questionnaire: (i) Did your period become regular on its own without the use of hor-
monal contraceptives such as the pill, patch, implants or injectables (regular in a way so you can usually predict about when the next period will start)? (i) Within the past couple of
years, has your menstrual period been regular? Please think about those times you were not using hormonal contraceptives. (i) Thinking about the time(s) when you have not used
hormonal contraceptives, what is your typical menstrual cycle length? That is, the number of days from the first day of one menstrual period to the first day of your next menstrual

period.

Outcomes

We developed three models to predict (i) pregnancy in fewer than 12
menstrual cycles; (i) pregnancy within 6 menstrual cycles; and (iii) the
average probability of pregnancy per menstrual cycle. We chose these
outcome measures to reflect clinically relevant definitions of infertility,
subfertility and fecundability (Evers, 2002; Gnoth et dl., 2005). We de-
fined the first outcome as fewer than |2 menstrual cycles, rather than
<12 cycles, because participants who conceive in the twelfth cycle are
unlikely to have the opportunity to identify and report their pregnancy
before the end of the study period. For the first two models, we used
a dataset with one observation per participant and excluded partici-
pants who were lost to follow-up before reaching a study endpoint
(for the first model, N=3195; for the second model, N =3476). For

the third model (fecundability), we included all participants under ob-
servation regardless of follow-up duration (N =4133).

Pre-processing and statistical feature
selection

We performed several data pre-processing steps to prepare the data-
set for feature selection and to avoid model overfitting (Hawkins,
2004). First, we converted categorical variables into indicator variables
and standardized each predictor by subtracting its mean and dividing
by its SD. Next, for each pair of highly correlated variables (correlation
coefficient >0.8), we removed the variable that had a lower correla-
tion with the outcome to avoid issues of collinearity. We then
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performed statistical feature selection as follows: we evaluated the dif-
ference in means or proportions between participants with and with-
out a pregnancy, using the chi-squared test (Cochran, 1952) for binary
predictors and the Kolmogorov—Smirnov test for continuous predic-
tors (Massey, 1951). We removed the variables that were not signifi-
cantly associated with the outcome (P> 0.05).

Classification methods

We compared four supervised classification methods to develop
predictive models for pregnancy (Hastie et al, 2009; Jiang et dl.,
2020). Supervised machine learning is an approach in which a dataset
is randomly split into a training dataset and a testing dataset. Then,
an algorithm (described in greater detail below) is applied to the
training data to infer a function that maps a combination of inputs
(i.e. predictors) to outputs (i.e. the outcome pregnancy). In a pro-
cess called feature selection (or elimination), the predictive ability of
the model is optimized by selecting variables to improve prediction
of the outcome. The model with the final selected set of variables is
then trained on the entire training set and its performance evaluated
on the testing set.

For Models | (pregnancy in fewer than 12 menstrual cycles) and |l
(pregnancy within 6 menstrual cycles), we first fit logistic regression
models with an added regularization term to penalize an overfit model
(Friedman et al., 2010). Models derived using regularization are robust
to the presence of outliers in the training data set (Chen et al., 2019;
Chen and Paschalidis, 2020). We considered both an ¢;-norm (LILR)
and an /,-norm regularizer (L2LR) (Lee et al., 2006). The former is ap-
propriate if we believe that few variables are predictive of the out-
come (sparse model), whereas the latter is appropriate in cases where
a dense model is more appropriate. Second, we used support vector
machines (SVMs), which find a separating hyperplane in the variable
space so that the data points from the two different classes reside on
different sides of that hyperplane (Cortes and Vapnik, 1995). We con-
sidered both a standard linear SVM with an ¢;-norm regularizer
(L2SVM) and a linear SVYM with an ¢;-norm regularizer (LISVM)
designed to induce a sparse solution. Third, we used the Light
Gradient Boosting Machine (LightGBM) algorithm, which is an ensem-
ble tree-based model that uses a gradient boosting framework (Mason
et al, 1999; Friedman, 2002). Fourth, we used artificial neural net-
works (ANNSs), which attempt to organize data based on structures
inspired by mammalian brain functioning (Ripley, 2007). We used Feed
Forward Multilayer Perceptron Neural Networks (MLP), with at least
three layers of nodes (an input layer, a hidden layer and an output
layer) (Salcedo-Sanz, 2016). In a feed-forward ANN, information
moves in one direction: from input to output. Because there are inter-
mediate layers of information, the MLP algorithm can model complex
non-linear relationships. We tuned several hyperparameters including
the number of hidden neurons, the number of layers and the number
of iterations. For training, we used a Rectified Linear Unit (ReLU) acti-
vation function for the hidden layer and applied the ‘Adam’ optimizer
(Kingma and Ba, 2014). These algorithms were chosen because of
their extensive usage and their performance superiority demonstrated
in the literature (Brisimi et al, 2018; Hao et al., 2020; Wang et dl.,
2020).

We present results for full, sparse and parsimonious models. The
full models (i.e. least parsimonious) contain all variables selected after

statistical feature selection (eliminating variables with no statistically sig-
nificant relationship with the outcome). The sparse models contain
variables selected after both statistical feature selection and recursive
feature elimination. Recursive feature elimination is a feature selection
algorithm that ranks the predictors selected into the full model by im-
portance and iteratively eliminates the least important variables, ulti-
mately selecting a small set of variables that maximize the area under
the receiver operating characteristic curve (AUC) in the testing data-
set. The parsimonious models were generated by limiting recursive
feature elimination to select a model with up to |5 variables.
Specifically, we used LILR to obtain weights associated with the coeffi-
cients of the model and eliminated the variable with the smallest abso-
lute weight. We then performed LILR to obtain a new model and
repeated this process until the final model was selected. The final
model maximizes a metric equal to the mean AUC minus the SD of
the AUC in the testing dataset (described in more detail below). The
parsimonious models are easier to implement and interpret relative to
the full models, which have more variables but similar discrimination.
To accommodate categorical variables that were recoded as indicator
variables in the preprocessing phase, we selected a reference level for
each categorical variable and forced every non-reference level to be in-
cluded in a model if any other (non-reference) level of the categorical
variable was selected.

For Model Il (fecundability), we fit a discrete-time analog of the
Cox proportional hazards model with cycle number as the time scale,
allowing for delayed entry into the risk set (i.e. if a participant already
had one cycle of pregnancy attempt at enroliment). Participants con-
tributed at-risk cycles to the analysis from enroliment until reported
pregnancy or a censoring event, which included initiation of fertility
treatment, withdrawal from the study, cessation of pregnancy
attempts, loss-to-follow-up or |2 cycles of pregnancy attempt, which-
ever occurred first. We present results for the full model after statisti-
cal feature selection, as described above, and for a parsimonious
model. To derive the parsimonious model, we fit separate Cox mod-
els with each individual predictor and then sorted the variables based
on each model’s concordance index. The concordance index is similar
to the AUC (described below) but accounts for event time and loss
to follow-up (Schmid et al., 2016; Longato et al., 2020). We selected
the top fifteen variables and forced non-selected levels of polytomous
categorical variables into the final model, as described above.

Sensitivity analysis

We restricted our analyses to nulligravid women with no history of in-
fertility to evaluate the robustness of our results in a population that
was presumably naive to their fertility status.

Performance metrics

For Models | and Il, we primarily evaluated model performance using
the AUC. The AUC, or C-statistic, quantifies model discrimination,
such that a value of 0.5 indicates that discrimination is no better than
random, while a value of | would indicate perfect prediction. The
models were developed and evaluated as follows. First, we split the
dataset into five random parts of equal size, where four parts consti-
tuted the training dataset, and the fifth part constituted the testing
dataset. Second, we used the training dataset to tune the model
hyperparameters via 5-fold cross-validation. In 5-fold cross-
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validation, the training dataset is split into five parts of equal size. A
model is trained using four parts as training data, and the resulting
model is validated on the fifth part. This procedure is repeated for
each of the 5 folds, such that each part of the training dataset is
used to validate the model trained on the other four parts of the
training dataset. Third, we fit the model with the best cross-valida-
tion score (the highest AUC, obtained in Step 2) on the entire
training dataset and evaluated its performance metrics on the test-
ing dataset created in Step |. Fourth, we repeated the first three
steps (split the data into five random parts, tune the model hyper-
parameters with 5-fold cross-validation using the training dataset
and evaluate model performance in the testing dataset) five times.
Finally, we calculated the mean and SD of the model performance
statistics across these five runs.

We also evaluated model performance using the weighted-F| score.
The Fl-score is computed as the harmonic mean of positive predictive
value and sensitivity, such that the highest value (1.0) indicates both
perfect positive predictive value and sensitivity, and the lowest value
(0) indicates that either the positive predictive value or the sensitivity is
zero. To account for imbalance in the data (i.e. differences in the pro-
portions of participants who did and did not conceive), we computed
a weighted Fl-score as the average of the Fl-scores for participants
with and without a pregnancy, weighted by the number of participants
in each class. While the AUC is more easily interpretable, the weighted
Fl-score is more robust to data imbalances (Saito and Rehmsmeier,
2015). Finally, we present weighted-precision and weighted-recall met-
rics. Precision is equivalent to a positive predictive value, and recall is
equivalent to sensitivity. To compute these metrics, we calculate preci-
sion and recall for each class (i.e. pregnant versus non-pregnant) and
their average weighted by the number of true instances for each class.

For Model Ill, we evaluated performance using the concordance in-
dex, as described above.

All analyses were performed with Python statistical functions.
Relevant programs can be accessed here: https://github.com/noc-
lab/Predictive-models-of-pregnancy. This repository also contains de-
tailed instructions that can be used by anyone to run the three primary
models on their own data. Additional methodological information on

how we addressed imbalance in the data and tuning of hyperpara-
meters is provided in the Supplementary File S|.

Results

After excluding participants with incomplete follow-up for Models |
and Il, we analyzed data from 3195 and 3476 participants for Models |
and |, respectively, and 16876 cycles from 4133 participants for
Model Ill. The study participants were aged 30years on average and
ranged in age from 2| to 44years. Among the 3195 participants in-
cluded in Model |, 2747 (86%) became pregnant in |2 menstrual
cycles. Among the 3476 participants included in Model Il, 2406 (69%)
became pregnant within 6 menstrual cycles. The distributions of class
(i.e. pregnant versus non-pregnant), overall and by number of men-
strual cycles of attempt time at study entry, are presented in
Supplementary Tables SI and Sll. For each of the three models, the
same |63 variables were considered for preprocessing (Table I). After
statistical feature selection, 40 variables were selected into the full
model predicting pregnancy in 12 menstrual cycles (Model I) and 41
variables were selected into the full model predicting pregnancy within
6 menstrual cycles (Model Il). After recursive feature elimination, 30
and 25 variables were selected for the sparse Models | and Il, respec-
tively. The final parsimonious models included 14 and |5 variables for
Models | and I, respectively. We present performance statistics for
the parsimonious models in Table Il. The AUC for Model | was 68—
70% for all classification algorithms considered (SD: 0.8% to 1.9%).
The AUCs for Model Il were 65-66% (SD: 1.9% to 2.6%). The L2LR
and L2SVM algorithms generally yielded the highest AUC. The
weighted-F| scores were similar across each algorithm, and no algo-
rithm consistently yielded the highest score. The weighted-F| scores
obtained with the L2LR algorithm were 81.8 (SD: 1.0) for Model | and
67.5 (SD: 1.6) for Model Il. The parsimonious models performed simi-
larly to the full and sparse models (Supplementary Table SlIl). The
concordance index for Model IIl was 63.5% for the full model after sta-
tistical feature selection (24 variables) and 62.6% for the final parsimo-
nious model. Supplementary Fig. S| presents area under the precision-
recall curves for Models I, II, IV and V.

Table Il Performance metrics for the parsimonious models, PRESTO 2013-2019.

Performance measure % (SD)

Model | Model Il
Algorithm' AUC Weighted Weighted Weighted AUC Weighted Weighted Weighted
Fl score precision recall Fl score precision recall
L2LR 70.2 (1.6) 81.8 (1.0 80.8 (1.0) 83.3(1.3) 66.1 (2.1) 67.5(1.6) 67.2 (1.5) 69.5(1.4)
LILR 69.8 (1.8) 81.6 (0.6) 80.6 (0.8) 83.5(l.1) 66.0 (1.9) 67.4(1.6) 67.0 (1.6) 69.3 (1.5)
LISVM 69.8 (1.9) 81.8 (0.8) 80.6 (0.8) 83.6 (0.8) 66.0 (1.9) 67.4(1.2) 66.9 (1.3) 69.1(1.3)
L2SVM 70.0 (1.6) 81.5(l.1) 80.5(1.2) 83.3(1.3) 66.2 (2.1) 67.2 (1.0) 66.9 (1.1) 69.6 (0.9)
MLP 69.9 (0.8) 82.1 (0.9) 81.1(1.2) 83.9 (1.3) 65.1 (2.1) 67.5(1.5) 67.0 (1.5) 68.5(1.7)
LightGBM 68.1 (1.4) 81.6 (0.8) 80.8 (0.9) 82.9(1.2) 64.9 (2.6) 66.9 (1.3) 66.6 (1.4) 67.6 (1.1)

Model | predicts pregnancy in <12 menstrual cycles (N = 3195 participants). Model Il predicts pregnancy in <7 menstrual cycles (N = 3476 participants). The parsimonious models
contain variables selected after both statistical feature selection and recursive feature elimination, and limiting recursive feature elimination to select a model with up to |5 variables.
'L2LR, #,-penalized logistic regression; LI LR, £,-penalized logistic regression; L1SVM, support vector machine (SVM) with an £;-norm regularizer; L2SVM, SYM with an £,-norm regular-
izer; MLP, Feed Forward Multilayer Perceptron Neural Networks; LightGBM, Light Gradient Boosting Machine.
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Table Il Variables selected by the parsimonious Model | (predicting pregnancy in 12 cycles) using the L2LR algorithm,

PRESTO 2013-2019, n =3195 participants.

Variable Standardized
regression
coefficient

Menstrual cycle length (days) 0.27

Female age at baseline (years) —0.26

Urbanization of residential area: rural (ref = urbanized 0.25

area)

Previously tried to conceive for >12 months: ‘yes’ —0.24

(ref = ‘no, tried for < 12 months’)

One menstrual cycle of attempt time at study entry -0.23

(ref = 0)

Daily use of multivitamins/folic acid (yes/no) 0.22

Last method of contraception: hormonal IUD (yes/no)' 0.19

Female BMI (kg/m?) —0.19

Ever breastfed an infant (yes/no) 0.18

Ever been pregnant (yes/no) 0.15

Female education (years) 0.14

Received influenza vaccine in the past year (yes/no) 0.13

Stress (Perceived Stress Scale score) —0.12

Total number of pregnancies 0.12

Variables forced into the model?

Urbanization of residential area: Canada (ref = urbanized 0.0l

area)

Urbanization of residential area: urban cluster —0.01

(ref = urbanized area)

Previously tried to conceive for >12 months: ‘no, never —0.01

tried before’ (ref = ‘no, tried for < 12 months’)

Overall Pregnant Not pregnant

Frequency SD Frequency SD Frequency SD

or mean or mean or mean

29.6 40 29.7 4.1 287 3.0
29.8 38 29.7 3.6 30.6 45
4% 20% 5% 21% 1% 12%
5% 21% 4% 19% 10% 30%
58% 49% 56% 50% 68% 47%
84% 37% 85% 35% 73% 44%
12% 32% 12% 33% 7% 25%
266 6.5 263 62 28.4 7.8
31% 46% 32% 47% 22% 41%
50% 50% 52% 50% 42% 49%
16.0 12 16.1 12 15.8 1.4
53% 50% 54% 50% 44% 50%
5.5 5.8 153 5.8 16.3 5.6
1.0 1.4 1.0 14 08 1.4
18% 39% 18% 39% 19% 39%
8% 27% 8% 27% 8% 27%
42% 49% 41% 49% 48% 50%

Variables are presented in order of the magnitude of the standardized regression coefficients.

'Last methods of contraception were not mutually exclusive and were coded as indicator variables with no reference category. Natural methods included withdrawal, avoiding sex

when fertile, calendar methods and monitoring cervical mucus or basal body temperature.

2For all models, we selected a reference group for each categorical variable that was recoded as indicator variables in the preprocessing phase and forced every non-reference level to
be included in the model if any level of the categorical variable was selected. These variables are listed in addition to the variables selected by the parsimonious model.

In order of decreasing magnitude of the regression coefficients (i.e.
strongest to weakest predictor), the variables selected into the parsi-
monious Model | that were positively associated with pregnancy were
menstrual cycle length, living in a rural region, daily use of multivitamins
or folic acid, using the hormonal intrauterine device (IUD) as one’s
most recent method of contraception, having previously breastfed an
infant, having ever been pregnant, female education, recent influenza
vaccination and gravidity (total number of pregnancies) (Table Ill). The
variables that were inversely associated with pregnancy were female
age, having a history of infertility, having completed one menstrual cy-
cle of pregnancy attempt time at study entry (versus zero), female BMI
and stress. The distributions of these variables overall, and by preg-
nancy status, are presented in Table Ill. Results for parsimonious
Models Il and Il are presented in Tables IV and V, respectively.
The variables selected into the parsimonious Model Il that were
positively associated with pregnancy were daily use of multivitamins or

folic acid, having previously breastfed an infant, HEI-2010 score, hav-
ing a previous unplanned pregnancy, trying to improve one’s chances
of pregnancy (e.g. charting cycles, ovulation or cervical mucus testing,
timing intercourse to the fertile window), and time since the partici-
pant’s last pregnancy (<Iyear). The variables that were inversely
associated with pregnancy were female BMI, having a history of infer-
tility, male age, non-use of a fertility app, male BMI, having completed
one menstrual cycle of pregnancy attempt time at study entry (versus
zero), male partner smoking, female age and having a history of sub-
fertility or infertility. Results were generally similar for Model III.
Variables selected into Model lll but neither Models | nor Il included
intercourse frequency and menstrual cycle regularity. The model
coefficients and their 95% Cls are presented graphically in
Supplementary Fig. S2.

Among 1957 nulligravid women without a history of infertility, we
developed models predicting pregnancy in fewer than |2 menstrual
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Table IV Variables selected by the parsimonious Model Il (predicting pregnancy within é cycles) using the L2LR algorithm,

PRESTO 2013-2019, n = 3476 participants.

Variable Standardized
regression
coefficient

Female BMI (kg/m?) —0.11

Daily use of multivitamins/folic acid (yes/no) 0.08

Ever breastfed an infant (yes/no) 0.08

Previously tried to conceive for >12 months: ‘yes’ —0.08

(ref = ‘no, tried for < 12 months’)

Healthy Eating Index-2010 score (HEI-2010 score) 0.07

Male age (years) —0.07

Use of fertility app: ‘no, but | plan to’ (ref = ‘yes’) —0.07

History of unplanned pregnancy (yes/no) 0.07

Male BMI (kg/m?) —0.07

One menstrual cycle of attempt time at study entry (ref = 0) —0.06

Male cigarette smoking: ‘yes, on a regular basis’ (ref = ‘no’) —0.06

Female age at baseline (years) —0.06

Trying to improve chances of pregnancy (yes/no) 0.05

Time since last pregnancy: < | year (ref = nulliparous) 0.05

History of subfertility or infertility (yes/no) —0.05

Variables forced into the model'

Previously tried to conceive for >12 months: ‘no, never tried —0.05

before’ (ref = ‘no, tried for < 12 months’)

Time since last pregnancy: |-2years (ref = nulliparous) 0.04

Male cigarette smoking: ‘yes, occasionally’ (ref = ‘no’) —0.02

Time since last pregnancy: >5 years (ref = nulliparous) —0.02

Use of fertility app: ‘no’ (ref = ‘yes’) —0.02

Time since last pregnancy: 3—4 years (ref = nulliparous) 0.02

Overall Pregnant Not pregnant

Frequency SD Frequency SD Frequency SD

or mean or mean or mean
26.8 6.7 26.1 6.1 283 7.7
84% 37% 86% 35% 78% 42%
30% 46% 33% 47% 24% 43%
5% 2% 4% 18% 8% 28%
66.0 1.2 66.8 10.9 643 1.6
31.8 5.0 315 46 32.4 5.8
8% 27% 6% 24% 1% 31%
34% 47% 37% 48% 27% 44%
277 5.3 273 5.1 285 5.6
58% 49% 55% 50% 65% 48%
8% 27% 6% 24% 12% 32%
29.8 3.8 296 3.6 303 42
70% 46% 72% 45% 64% 48%
2% 41% 24% 2% 18% 38%
10% 30% 9% 28% 13% 34%
2% 49% 40% 49% 46% 50%
17% 38% 19% 39% 14% 35%
4% 20% 4% 19% 5% 22%
6% 24% 5% 22% 8% 27%
23% 2% 22% 41% 26% 44%
4% 21% 5% 21% 4% 19%

Variables are presented in order of the magnitude of the standardized regression coefficients.

'For all models, we selected a reference group for each categorical variable that was recoded as indicator variables in the preprocessing phase and forced every non-reference level to
be included in the model if any level of the categorical variable was selected. These variables are listed in addition to the variables selected by the parsimonious model.

cycles (Model V), predicting pregnancy within 6 menstrual cycles
(Model V) and predicting fecundability (Model VI). We analyzed data
from 1571, 1722 and 1957 participants for Models 1V, V and VI, respec-
tively. The performance of these models was slightly lower than the
analogous models in the full cohort. The performance statistics for the
full and sparse Models IV and V are presented in Supplementary Table
SIV. Using statistical feature selection, 16 and |2 variables were selected
into the full models for Model IV and V, respectively. After recursive
feature elimination, 5 and 9 variables were selected for the sparse
Models IV and V, respectively. Because fewer than |5 features were se-
lected by each of the sparse models, the sparse models were equivalent
to the parsimonious models. Consistent with the main analysis, the
L2LR algorithm performed best for the sparse models. The AUCs were
69.5% (SD: 1.4) for Model IV and 65.6% (SD: 2.9) for Model V. The
concordance index for Model VI was 60.2%. Variables selected by these
models that were positively associated with pregnancy included men-
strual cycle length, using a hormonal IUD as one’s most recent method

of contraception, intercourse frequency, trying to improve one’s chan-
ces of pregnancy, use of vitamin E supplements and HEI-2010 score.
Variables inversely associated with the probability of pregnancy included
having completed one menstrual cycle of pregnancy attempt time at
study entry (versus zero), female age, male and female BMI, menstrual
cycle irregularity, non-use of a fertility app, stress, depressive symptoms,
history of vaginosis, male partner smoking, milk consumption and sleep
characteristics (Supplementary Tables V, VI, VII). Occupational expo-
sures including exposure to metal particulates or fumes and exposure
to high temperature environments were also selected to Model VI, but
with very small coefficients (Supplementary Table VII).

Discussion

In this prospective cohort study of 4133 North American pregnancy
planners, we applied several supervised learning methods to predict
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Table V Variables selected by the parsimonious Model 1l (fecundability), PRESTO 2013-2019, n = 4133 participants.

Variable Hazard ratio 95% confidence
interval
Previously tried to conceive for > 12 months: ‘yes’ (ref = ‘no, tried for < 12 months’) 0.85 (0.80, 0.90)
Ever breastfed an infant (yes/no) [.16 (1.09, 1.23)
Female BMI (kg/m?) 0.89 (0.84,0.93)
Time since last pregnancy: |-2 years (ref = nulliparous) [.12 (1.04, 1.21)
Female age at baseline (years) 0.90 (0.85,0.95)
Trying to improve chances of pregnancy (yes/no) [.11 (1.06, 1.15)
Female education (years) 1.09 (1.03, 1.15)
Intercourse frequency (times/week) 1.08 (1.03, 1.12)
Male BMI (kg/m?) 0.93 (0.89, 0.98)
Male cigarette smoking: ‘yes, on a regular basis’ (ref = ‘no’) 0.93 (0.89, 0.98)
Has menstrual cycle been regular without hormonal contraception 0.94 (0.89,0.99)
in past 2 years? ‘no, irregular’ (ref = ‘yes, regular’)
Daily use of multivitamins/folic acid (yes/no) 1.06 (r.ot, 1.11)
Did your period become regular on its own? ‘no, irregular’ (ref = ‘yes, regular’) 0.96 0.92, 1.01)
Male age (years) 0.96 0.91, 1.01)
Tap water consumption (drinks/week) 1.04 (1.01, 1.07)
Variables forced into the model'
Time since last pregnancy: < | year (ref = nulliparous) 1.37 (1.14, 1.64)
Time since last pregnancy: 3—4 years (ref = nulliparous) 1.32 (r.of, 1.71)
Male cigarette smoking: ‘yes, occasionally’ (ref = ‘no’) 0.87 (0.70, 1.08)
Has menstrual cycle been regular without hormonal contraception 1.03 0.93, 1.14)
in past 2 years? ‘unknown, was using hormonal contraception’
(ref = ‘yes, regular’)
Did your period become regular on its own? ‘unknown, was 1.02 0.89, 1.17)
using hormonal contraception’ (ref = ‘yes, regular’)
Time since last pregnancy: >5 years (ref = nulliparous) 1.0l 0.79, 1.29)

Variables are presented in order of the magnitude of the regression coefficients (i.e. the natural logarithm of the hazard ratio).
'For all models, we selected a reference group for each categorical variable that was recoded as indicator variables in the preprocessing phase and forced every non-reference level to
be included in the model if any level of the categorical variable was selected. These variables are listed in addition to the variables selected by the parsimonious model.

the probability of pregnancy within three time periods: 12 menstrual
cycles, 6 menstrual cycles and on a per-cycle basis. The L2LR and
L2SVM algorithms generally yielded the highest AUC, particularly for
the parsimonious models. For all models, discrimination (AUC) was
close to 70%. The highest AUCs were 71.2% for Model |, 67.1% for
Model Il, 69.5% for Model IV and 65.6% for Model V. These findings
demonstrate that it is possible to develop predictive models with rea-
sonable discrimination using self-reported data in the absence of more
detailed medical information such as laboratory or imaging tests.

The discrimination of our models is greater than previously pub-
lished predictive models for pregnancy independent of fertility treat-
ment, which yielded AUC’s between 59% and 64% (Coppus et dl.,
2009). For example, Eimers et al. (1994) developed a predictive model
for pregnancy among 996 couples consulting for infertility care in the
Netherlands between 1974 and 1984. The investigators collected data
on patient medical history, laboratory tests including semen analysis
and postcoital tests (i.e. an examination of the interaction between
sperm and the cervical mucus after intercourse), and a gynecologic

physical examination. They used forward stepwise Cox regression to
produce a model including female age, duration of infertility, primary
versus secondary infertility, history of infertility in the male partner’s
family, sperm motility and the postcoital test results. Similar studies
were conducted by Collins et al. (1995), using data from 1061 couples
seeking infertility care at eleven Canadian University hospitals, and
Snick et al. (1997), using data from 402 couples seeking infertility care
at a Dutch general hospital. Hunault et al. (2004) pooled the data
from the Eimers, Collins and Snick studies to evaluate the accuracy of
these models and to develop two new synthesis models. The synthesis
models included female age, duration of subfertility, sperm motility,
whether the couple had been referred for infertility care by a general
physician or a gynecologist, and the results of a postcoital test. These
models were externally validated and found to have AUCs of 59-63%
(Hunault et al., 2005; van der Steeg et al., 2007).

Although previous studies predicted the probability of pregnancy in-
dependent of fertility treatment, they were exclusively conducted in
populations with subfertility using little or no data on lifestyle,
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environmental and sociodemographic factors (Eimers et al, 1994;
Collins et al., 1995; Snick et al., 1997; Hunault et al., 2004, 2005; van
der Steeg et al., 2007; Coppus et al., 2009). Our study may be more
generalizable to couples across the fertility spectrum, because we in-
cluded couples with a wide range of reproductive potential. In addi-
tion, we considered a range of potential predictors that may be more
easily modified than clinical markers such as semen quality or hormone
levels. For example, fertility app use, use of multivitamins or folic acid
supplements and trying to improve one’s chances of pregnancy (e.g.
charting cycles, ovulation or cervical mucus testing, timing intercourse
to the fertile window) are relatively modifiable behaviors. Lifestyle
interventions can also be undertaken to modify individual-level
behaviors that may increase a couple’s chance of conception, such
as promoting a healthy BMI, improving diet and reducing stress.
However, many of these behaviors are determined by broader en-
vironmental and systemic drivers and thus may be best addressed
through macro-level policy interventions that address upstream
determinants (e.g. regulation of food supply and marketing). A
causal analysis of each risk factor would be worthwhile for future
and more targeted work. In this study, there were some variables
that appeared to be particularly important predictors of preg-
nancy. These included female age and BMI, history of infertility,
the number of menstrual cycles of pregnancy attempt time at
study entry, having previously breastfed an infant and use of multi-
vitamins or folic acid supplements. These findings are generally
consistent with previous studies on individual risk factors for infer-
tility that were conducted in other populations (Jensen et al.,
1999; Homan et al., 2007; Wise et al., 201 |; Cueto et al., 2016).
However, having previously breastfed an infant, which was associ-
ated with an increased probability of pregnancy in this study,
has not been previously studied as a predictor of fecundability.
This may reflect underlying fertility, prolonged effects of hormonal
changes during breastfeeding or higher socioeconomic status
among women who breastfeed their infants (Jones et al., 201 1;
Odar Stough et al., 2019).

In this study, we developed an additional set of predictive models
among nulligravid women with no history of infertility who had been
trying to conceive for no more than one menstrual cycle of attempt
time at enroliment. The performance of these models was slightly de-
creased compared with the main analyses. This is likely because having
a history of infertility is a strong predictor of future fecundability, and
therefore restricting the analytic sample by this variable would limit the
predictive ability of the model. This was most obvious in Model V,
which predicted pregnancy within six menstrual cycles. In these re-
stricted analyses, the most important predictors of pregnancy across
all models were the number of menstrual cycles of pregnancy attempt
time at study entry, and female age.

Study limitations include potential misclassification of the predictor
variables, given that all data were based on self-reporting. There is lim-
ited research on the impact of measurement error on machine learn-
ing prediction models (van Doorn et al., 2017; Jiang et al., 2021), and
it is unclear how misclassification of the predictors influenced our study
results in terms of accuracy and variable selection. There was also the
potential for misspecification of the functional form of the predictor
variables, which could have influenced the variable selection process.

In addition, there may have been some misclassification of our esti-
mate of time to pregnancy, which relied on self-reported menstrual cy-
cle length and date of the last menstrual period. Given the prospective
design of the study, such misclassification is likely to be non-differential
with respect to the outcome. Bias may also have been introduced if
the length of follow-up varied by the predictors under study, as
Models | and Il did not account for varying lengths of follow-up.
However, results were generally consistent with Model Ill, which
accounted for varying lengths of follow-up. Another potential limitation
is our lack of inclusion of important predictors of pregnancy, such as
hormone levels, which may have reduced the predictive ability of our
models. Other potentially important predictors that we did not mea-
sure include environmental exposures (Conforti et al., 2018; Hipwell
et al, 2019; Kahn et al, 202l), early life adversity (Harville and
Boynton-Jarrett, 2013; Jacobs et al., 2015), occupational stress
(Barzilai-Pesach et al., 2006; Valsamakis et al., 2019), experiences of
discrimination (Krieger, 2000), social disadvantage, neighborhood char-
acteristics (Williams and Collins, 2001) and multigenerational expo-
sures (Eskenazi et al., 2021; Wesselink, 2021). In addition, we lacked
comprehensive data on male exposures, which contribute to up to
50% of all subfertility among couples (Irvine, 1998). However, we col-
lected data on several important male characteristics on the female
baseline questionnaire, including male age, BMI, education and smoking
status. Overall, we considered a diverse range of 163 potential predic-
tors, which is substantially greater than previous studies in this area
(Eimers et al, 1994; Collins et al., 1995; Snick et al., 1997; Hunault
et al., 2004, 2005; van der Steeg et al., 2007; Coppus et al., 2009). It
should be noted that the effect estimates in these models lack causal
interpretation, as variables were selected into the final models based
on their predictive power, rather than the hypothesized causal struc-
tures of the data. Identifying causes of infertility was beyond the scope
of this study. Also beyond the scope of this study was the develop-
ment of models within clinically relevant subgroups (e.g. age >40years
or infertility-related conditions). Finally, though we validated the mod-
els using split sample replication techniques, we were unable to con-
duct an external validation study.

Conclusions

In this large prospective cohort, we used machine learning algorithms
to develop predictive models of pregnancy, using three distinct, clini-
cally relevant definitions of infertility, subfertility and fecundability.
Comparing results across the three outcomes facilitates robust triangu-
lation of fertility potential; the relative utility of each outcome may de-
pend on a couple’s preferences and risk profile. Our methods can
predict pregnancy with discrimination as high as 71.2% by properly
weighing a small set of predictive variables that include lifestyle and re-
productive characteristics. Overall, the most consistent predictors of
the probability of conception were female age, female BMI, male age,
male BMI, history of infertility, history of breastfeeding, time since the
participant’s last pregnancy, daily use of multivitamins or folic acid, try-
ing to improve one’s chances of pregnancy (e.g. charting cycles, ovula-
tion or cervical mucus testing, timing intercourse to the fertile
window), male partner smoking and female education. Among nulligra-
vid women without a history of infertility, the most important
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predictors were female age, female BMI, male BMI, use of a fertility
app and perceived stress. These findings are particularly relevant for
couples planning a pregnancy and clinicians providing preconception
care to women who are discontinuing contraception in order to con-
ceive. If these models are successfully validated in external populations,
they could potentially be implemented as a counseling tool.

Supplementary data

Supplementary data are available at Human Reproduction online.
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The data underlying this article cannot be shared publicly, as PRESTO
participants did not provide informed consent to share their data with
external entities. The authors have shared their analytic code, along
with detailed instructions for using the scripts, at the following location:
https:/ /github.com/noc-lab/Predictive-models-of-pregnancy.
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