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The majority of research within reproductive and gynecologic health, or investigating ART, is observational in design. One of the most critical
challenges for observational studies is confounding, while one of the most important for discovery and inference is effect modification.
In this commentary, we explain what confounding and effect modification are and why they matter. We present examples illustrating
how failing to adjust for a confounder leads to invalid conclusions, as well as examples where adjusting for a factor that is not a
confounder also leads to invalid or imprecise conclusions. Careful consideration of which factors may act as confounders or modifiers
of the association of interest is critical to conducting sound research, particularly with complex observational studies in reproductive
medicine.

Introduction

Most studies of ART and reproductive medicine are observational in
design. Randomized controlled trials (RCTs), widely considered the
gold standard for examining cause–effect relations, are valued because
randomization can help create balance in the distribution of risk factors
between the groups being compared. However, RCTs may not be
ethical (e.g. when the intervention is hypothesized to be harmful) or
feasible (e.g. when a long duration of follow-up is required before the
intervention is likely to affect outcomes), and an observational design
is the only practical approach.

Observational studies can yield valid results akin to randomized inter-
vention studies when conducted and analyzed appropriately. When
done properly, observational studies can positively influence clinical
practice and our understanding of exposure–disease relationships in
reproductive medicine. Unfortunately, observational studies are sus-
ceptible to several biases. One of the most pervasive challenges for
observational studies is confounding.
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What is confounding, and why
should I care?
In observational studies, the groups being compared (e.g. exposed and
unexposed) may be imbalanced with regard to other factors that affect
the outcome. If this imbalance is not controlled, confounding can occur
and lead to a bias. Confounding is said to occur when the true effect
of the exposure on the outcome is distorted by some other factor,
leading to inaccurate estimates of effect. For instance, suppose we
are interested in investigating whether sedentary behavior reduces the
likelihood of pregnancy following IVF. Sedentary behavior cannot be
randomly assigned, and RCTs with physical activity interventions often
suffer from non-compliance. Thus, we rely on observational data in
this case. Suppose we collect data on 600 female patients and find the
results presented in Table I.

At first pass, we see that pregnancy was less common among women
with sedentary behavior compared to those who are physically active,
as indicated by the unadjusted risk ratio (RR) of 0.55. Should we start
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Table I Hypothetical data on the unadjusted (crude)
relationship between sedentary behavior and preg-
nancy.

Behavior
........................................................
Active (n = 300) Sedentary (n = 300)

.....................................................................................
N (%) pregnant 135 (45%) 75 (25%)

Risk ratio 1.00 (Referent) 0.55

Figure 1 A DAG illustrating relationships among seden-
tary behavior, obesity, and pregnancy. In this DAG, obesity is
a confounder of the relationship between sedentary behavior and
pregnancy. DAG: directed acyclic graph.

counseling our IVF patients to increase physical activity in order to
increase their chances of pregnancy? Before jumping to the conclusion
that sedentary behavior is causing the lower risk of pregnancy, we need
to consider other factors that could be lurking behind the association
between sedentary behavior and pregnancy.

Had these data been from a sufficiently large randomized controlled
experiment, the act of randomization should have made these two
groups balanced with regard to all other characteristics that may affect
both their activity level and their chances of becoming pregnant (e.g.
obesity); the only expected difference between groups is treatment
assignment—intervention or otherwise, allowing causal inferences to
be made.

In this example, however, we did not randomly assign the exposure
of interest, sedentary behavior, and thus there is no assurance that
the only difference between the two groups is their level of physical
activity. Active and sedentary women likely differ in other behaviors
as well, such as diet, alcohol consumption and cigarette smoking,
which may also causally influence pregnancy probability. As an example,
consider obesity as a variable that is associated with both active/seden-
tary behavior and pregnancy probability. These relationships can be
depicted using a directed acyclic graph (or DAG), as in Fig. 1 (see
Robins, 1987; Pearl, 1995; Greenland et al., 1999; Glymour & Green-
land (2008); or Shrier & Platt (2008) for more about DAGs). In brief,
DAGs use directed arrows to indicate a causal relationship between
the variables they connect, whereas absence of an arrow indicates an
assumption of no causal relationship.

When confounding is suspected in an observational study, it is
important to have data available for that confounding factor. In this
example, we can use data on obesity (BMI >30 kg/m2) to assess
the extent to which obesity is confounding the association between
sedentary behavior and pregnancy. Stratification on obesity, as shown
in Table II, allows us to make comparisons between groups that are
different with regard to behavior (exposure), but the same with regard
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Table II Hypothetical data on the relationship between
sedentary behavior and pregnancy, stratified by obesity.

Obese
.....................................................................................

Behavior
.........................................................
Active (n = 50) Sedentary (n = 250)

N (%) pregnant 10 (20%) 50 (20%)

Risk ratio 1.00 (Referent) 1.00
.....................................................................................

Not Obese
.....................................................................................

Behavior
.........................................................
Active (n = 250) Sedentary (n = 50)

N (%) pregnant 125 (50%) 25 (50%)

Risk ratio 1.00 (Referent) 1.00

to obesity (confounder). Analysis-phase control for confounding can
be achieved by stratification or by regression-based adjustment.

In these sample data, once comparisons are made within women in
the same BMI group, the probability of pregnancy is the same among
women who are sedentary and those who are physically active (20%
in the obese group and 50% in the not obese group, both RR = 1.00).
The association we originally found between sedentary behavior and
pregnancy was driven by the fact that obesity is related to sedentary
behavior (i.e. obese women are more likely to be sedentary), and
obesity reduces the probability of pregnancy. If we had not accounted
for this confounder (obesity), we would have come to the wrong
conclusion.

Consider two other examples at opposite extremes. First, suppose
∗all∗ of the sedentary women were obese and ∗none∗ of the physically
active women were obese. Then, physical activity and obesity would be
completely dependent, and we would not be able to tease apart the
effect of sedentary lifestyle versus obesity on pregnancy. In contrast,
suppose equal proportions of sedentary and physically active women
were obese (e.g. 50% of women in each activity group were obese).
Then, obesity could not be a confounder in the association between
sedentary behavior and pregnancy because obesity would not be
associated with the exposure of interest.

How does one identify possible confounders? One proposed simple
set of criteria suggests consideration of whether the factor is as
follows:

• a cause of the exposure of interest

• a cause of the outcome of interest, independent of exposure

• not on the causal pathway between the exposure and outcome.

More technical definitions of confounding and confounders can be
found in Rothman (1986), Greenland (2001), Rothman et al. (2008),
Vanderweele (2013) and Hernan & Robins (2019), among others.

DAGs can be useful for identifying a factor as a confounder and
discerning confounding from other ways variables can be related, as
shown in Fig. 2. Only hypothetical scenario (A) depicts confounding
based on the three criteria above—alcohol consumption is associated
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Figure 2 Example DAGs for four different scenarios.

Table III Hypothetical examples of how risk ratios can be confounded across scenarios.

(i) overestimate (ii) underestimate (iii) masked (iv) reversal
.......................................................................................................................................................................................
Unadjusted 3.00 1.50 1.00 0.50

‘Fully’ Adjusted
(Truth/Causal)

2.00 2.00 2.00 2.00

with and precedes the exposure, it is an independent predictor of the
outcome and it is not a consequence of the exposure (i.e. it is not
on the causal pathway between sedentary behavior and pregnancy).
In contrast, scenario B depicts a factor (average calories burned per
day) that is on the causal pathway (sedentary behavior affects calo-
ries burned, which in turn affects pregnancy) and is one mechanism
through which behavior affects pregnancy. In scenario C, age affects
the outcome but is not a confounder because it is not associated with
exposure; in contrast, in scenario D, sleep affects the exposure but is
not associated with the outcome, independent of exposure. In both
scenarios C and D, a lack of arrow between factors indicates the
absence of the causal associations.

Consequences of failing to control for an
important confounder
Failure to account for an important confounder can result in overes-
timates of the true effect (bias away from the null), underestimates
(bias toward the null), complete masking of the true effect or reversal
of the direction of the true effect from harmful to protective or vice
versa. Table III gives examples for how these scenarios play out in terms
of RRs.

Taking the second row to represent the true causal effect, one can
see that failure to adjust for a confounder can lead to an (i) overstated
effect, (ii) an understated effect, (iii) a masked effect or even (iv) a
reversal in the direction of the effect.

A study of the percentage of IVF cycles resulting in live birth by
number of embryos transferred (<3 versus ≥3) can serve as an
example of confounding resulting in a reversal of the true direction
of effect. Suppose 20% of cycles with ≥3 embryos transferred result
in live birth and 40% of cycles with <3 embryos transferred result in

.
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live birth. Examining only this crude comparison, one might conclude
that we should never transfer more than two embryos in a given
cycle, as transferring more embryos decreases the probability of
IVF success. However, clinical experience will remind many readers
that cycles in which ≥3 embryos are transferred are cycles among
women with poorer prognoses. For instance, it is likely that the cycles
with ≥3 embryos transferred tend to be from older patients with
decreased ovarian reserve or repeated prior cycle failures. Whereas
the unadjusted RR is 0.5 (indicating the probability of live birth when
≥3 embryos are transferred is half that of when <3 embryos are
transferred), an analysis that adjusts for age, estradiol level, number
of oocytes retrieved etc., could very well find that the RR is 1.5—that
is, among cycles with very similar patient and clinical characteristics,
the chance of live birth increases when more embryos are transferred.
This basic example makes it easy to recognize how confounding can
reverse an observed association. However, it is important to keep in
mind that the direction and magnitude of confounding can be complex
to understand in more nuanced and less straightforward scenarios (see
section below on Uncontrolled confounding).

When model parsimony is desired or necessary, a data-driven statis-
tical approach to determine which covariates should be included in a
final, adjusted regression model may be used (Mickey & Greenland,
1989; VanderWeele, 2019). However, such data-driven approaches
should only be used after identifying a set of possible confounders based
on careful consideration of the clinical context around the exposure–
outcome association of interest.

Consequences of an ‘everything plus the
kitchen sink’ model
Often, when researchers recognize confounding as a possible problem,
they think only of spurious associations found due to lack of account-
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Figure 3 A possible DAG to depict the association between sedentary behavior, number of embryos transferred and preterm
delivery.

ing for a confounder. An extreme response to this is to control for all
available variables as possible confounders in a single model. However,
this kitchen sink strategy can be problematic because adjusting for
variables that are not confounders can introduce bias and/or decrease
precision. Consequences of overadjustment and unnecessary adjustment
have been described in the epidemiological methods literature (Schis-
terman et al., 2009). Overadjustment has been described as control for
a variable that is on the causal pathway between the exposure and
the outcome. It can attenuate or completely obscure the estimated
association of interest (this will be discussed further in a follow-up
commentary). Unnecessary adjustment is described as control for non-
confounding variables, such as those associated with exposure but not
the outcome. Unnecessary adjustment can lead to decreased statistical
precision of the exposure–outcome association.

For example, suppose we are investigating the association between
sedentary behavior in fresh autologous IVF cycles and the risk of
adverse IVF outcomes (e.g. preterm birth), and we construct models
adjusting for maternal age, BMI, smoking status, gravidity, number of
oocytes retrieved and total embryos transferred. Number of oocytes
retrieved and total embryos transferred temporally occur after seden-
tary behavior has been defined, so these factors cannot cause seden-
tary behavior. If we assume that the number of embryos transferred
is affected by sedentary behavior and, in turn, affects risk of preterm
delivery, then a DAG depicting this scenario would be similar to B in
Fig. 2 and is shown in Fig. 3.

In this case, number of embryos transferred would be a mediator,
not a confounder, in the relationship between sedentary lifestyle and
preterm delivery.

Although it may seem unlikely that sedentary behavior would directly
affect the number of embryos transferred (Fig. 3), sedentariness affects
BMI, which in turn affects fertility potential, which may affect number of
oocytes retrieved and thus number of embryos available for transfer.
Adjusting for number of embryos transferred would be an example
of overadjustment—control for a factor that is on the causal pathway
between exposure and outcome, described as a mediator or causal
intermediate. Such a factor cannot be a confounder (as it is a direct
consequence of the exposure), and inclusion of a mediator in a model
causes bias to estimates of the total effect of an exposure on an
outcome. Occasionally, investigators may be interested in using analysis
to evaluate mechanisms, through use of mediation analysis. Mediation
will be discussed in detail in a follow-up commentary. Briefly, if the
exposure’s effect on the outcome works partially or entirely via a
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mechanism through the mediator, then adjusting for the mediator may
attenuate or eliminate the total association between the exposure and
outcome. One may conclude that there is no association between the
exposure and outcome, when, in reality, there is a strong association
between the two.

A second caution against the kitchen sink approach is that unnec-
essary adjustment for non-confounding variables can reduce precision
of the effect estimate of interest. Non-confounding variables include
those unrelated to exposure or outcome, those related only to expo-
sure and those that affect outcome risk but are not related to exposure
(Schisterman et al., 2009). For instance, suppose neighborhood green
space is not associated with miscarriage, but we adjust for it in a model
assessing the association between sedentary behavior and miscarriage
(Fig. 4). The effect estimate of interest (e.g. RR, odds ratio) will not be
affected, but the SE for the effect estimate and its corresponding CI
could be inflated.

Uncontrolled confounding
The direction of confounding depends upon the direction of the con-
founder–exposure association and the direction of the confounder–
outcome association. The magnitude of confounding depends upon
the magnitude of the confounder–exposure association, the magnitude
of the confounder–outcome association and the prevalence of the
confounder in the study population, with the strongest confounding
when the confounder reaches a prevalence of 50% (Walker, 1991).

A standard limitation to any observational study is that even with
adjustment for known confounders, there is potential for uncontrolled
confounding by variables that have not been identified, or those that
are known but unmeasured in a given study. In studies where data
on certain confounders are not available, it can be useful to conduct
sensitivity analyses to characterize the potential effect on the observed
association (Greenland, 1996; Lin et al., 1998; Groenworld et al., 2016).
The E-value has been proposed as one way to assess how strong of an
association the confounder would need to have with the exposure and
the outcome in order to meaningfully change the overall result (Ding &
VanderWeele, 2016; VanderWeele, 2017; Haneause et al., 2019). The
E-value can be computed (at no cost and without coding) for a variety
of study designs and outcome types (RRs, hazard ratios, continuous
outcomes) at the following website: https://www.evalue-calculator.
com/ (Mathur et al., 2018). There are limitations to the E-value;
however, and some have expressed concern about the potential for

Figure 4 A possible DAG to depict the association between sedentary behavior, neighborhood green space and miscarriage.
Neighborhood green space is not a confounder because it is not predictive of miscarriage. Adjusting for it in the model could reduce precision of the
effect estimate for the association between sedentariness and miscarriage.
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the E-value to be misinterpreted (Ioannidis et al., 2019; Blum et al.,
2020). Regardless, researchers need to be aware of the potential for
uncontrolled confounding, consider what consequences uncontrolled
confounding may have in their study regarding direction and magnitude
of the quantified effect estimates and include a thorough discussion of
those consequences when reporting and interpreting results.

What is effect measure
modification, and why should I
care?
Effect measure modification occurs when the association between
two variables differs based on the level of another factor (known
as the effect modifier). For instance, consider the data presented in
Table IV. In these data, the effect of sedentary behavior on conception
probability depends upon whether women are of normal BMI or are
obese. Among non-obese women, sedentary behavior has no effect
on pregnancy (50% in both the active and sedentary groups became
pregnant). However, among women who are obese, sedentary behav-
ior does have an association with pregnancy (50% of women who are
physically active but only 20% of sedentary women conceived). When
the causal effect of an exposure depends upon some other variable,
proper handling of effect measure modification (also called statistical
interaction) in analysis is critical to counseling patients appropriately.
In the example data, sedentary behavior will not harm your chances
of pregnancy if you are not obese, but sedentary behavior coupled
with obesity can severely decrease your chance of pregnancy. Further,
when presenting the data, not stratifying by obesity would lead to the
conclusion that sedentary behavior is bad for everyone, given that 50%
of all physically active women became pregnant versus only 25% of all
sedentary women.

For the data in Table IV, obesity is an effect measure modifier on
the multiplicative scale because the effect of sedentary behavior on
pregnancy differs by obesity status.

In contrast, the association between sedentary behavior, obesity
and pregnancy, as displayed in Table II, exemplifies a scenario where
there is no effect modification. In Table II, we see that pregnancy is less
likely among obese women, but the association between obesity and
pregnancy is the same within the two activity groups—the difference
in the probability of pregnancy between women who are obese and
women who are not obese is 30% (20% versus 50%) both among active
and sedentary women. Likewise, the difference in the probability of
pregnancy between active and sedentary women is the same regardless
of obesity. Thus, in Table II, there is no effect measure modification (or
interaction) present, and there is no need to stratify the sedentariness–
pregnancy association by obesity.

Effect measure modification may be present in the following
scenarios:

• The effect of gonadotrophin dose on ovarian response depends
on female BMI.

• The effect of double IUIs on the probability of pregnancy
depends on whether the sperm was fresh or frozen.

• The effect of smoking on birthweight depends on maternal age.

In each of these instances, stratifying by the effect modifier is
important. Failure to stratify on an effect modifier assigns the same
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Table IV Hypothetical data on the association between
sedentary behavior and pregnancy, by obesity.

Obese
.....................................................................................

Behavior
.........................................................
Active (n = 50) Sedentary (n = 250)

N (%) Pregnant 25 (50%) 50 (20%)

Risk Ratio 1.00 (Referent) 0.40
....................................................................................

Not Obese
....................................................................................

Behavior
.........................................................
Active (n = 250) Sedentary (n = 50)

N (%) Pregnant 125 (50%) 25 (50%)

Risk Ratio 1.00 (Referent) 1.00
....................................................................................

Overall
....................................................................................

Behavior
.........................................................
Active (n = 300) Sedentary (n = 300)

N (%) Pregnant 150 (50%) 75 (25%)

Risk Ratio 1.00 (Referent) 0.50

effect estimate to groups with heterogeneous risk. This can lead to
incorrect conclusions and flawed recommendations (e.g. encourage
all women to be more physically active) and/or miss something
important (e.g. the opportunity to further probe why the relationship
between gonadotrophin dose and ovarian response differs among
obese women, and then to identify that the i.m. injections often fail to
penetrate the muscle in obese women) (Shah et al., 2014).

Whereas confounding represents a potential bias to try to eliminate,
effect measure modification has implications for how results are pre-
sented and interpreted. When the effect of an exposure depends upon
another factor (i.e. the effect modifier), then the associations should be
reported separately for each level of the effect modifier.

Concluding remarks
There are no two ways about it: observational research is critical
to reproductive medicine because of the many limitations of RCTs.
Because of our reliance on observational studies to inform clinical
practice and patient counseling, correct inference from these studies
requires thinking critically and carefully about potential confounders
and effect modifiers (Stocking et al., 2019). We have presented exam-
ples illustrating how failing to adjust for a confounder leads to invalid
conclusions, as well as examples where adjusting for a factor that is
not a confounder also leads to invalid or imprecise conclusions. Careful
consideration of which factors may act as confounders in the associ-
ation of interest is critical to conducting sound research, particularly
with complex observational studies in reproductive medicine. It is not
sufficient to compare an array of variables by exposure of interest
and adjust for those with a P-value less than some pre-specified value
(see Farland et al., 2016 for further explanation). Clinical context and
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temporal sequence need to be considered thoroughly to ensure high-
quality research.
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