

LETTER

Vaginal microbiota and IVF outcomes: poor diagnosis results in flawed conclusions

To the Editor

We read with interest a recent publication in this journal investigating the vaginal microbiota of oocyte recipients at the time of single blastocyst transfer (Vergaro *et al.*, 2018). This study might be considered ideal to investigate the potential impact of the vaginal microbiota on reproductive outcomes. Unfortunately, the study suffers from many important methodological shortcomings, as follows. (i) The use of non-validated and arbitrary cut-off levels to stratify normal and abnormal vaginal microbiota based on a pilot study ($n=32$) investigating low biomass endometrial specimens by next generation sequencing rather than by quantitative polymerase chain reaction (qPCR) as was used in Vergaro *et al.* (Moreno *et al.*, 2016). (ii) This arbitrary cut-off does not sufficiently take into account the alpha diversity within *Lactobacillus* (*L.*)-dominated samples (Haahr *et al.*, 2018). For example, *L. iners* has a 15-fold higher concentration than *L. crispatus* (Haahr *et al.*, 2018), rendering especially the *L. iners* group reported by Vergaro *et al.* subject to misclassification due to 'contamination' with large numbers of bacterial vaginosis-associated bacteria (BVAB). (iii) The authors failed to compare using the gold standard for vaginal dysbiosis, the Nugent score, as was done by others (Haahr *et al.*, 2016). (iv) Raw outcome data was not reported. (v) DNA normalization was performed in several (some redundant) steps. For example, in the case of normalization according to human DNA, BVAB DNA would be heavily underestimated in patients with vaginal leukocytosis, who have high amounts of human DNA.

Despite these shortcomings, and in contrast to the conclusions of the authors (Vergaro *et al.*, 2018), *L. crispatus*-dominated vaginal microbiota was actually associated with a significantly higher live birth rate in the study. In conclusion, we urge researchers in genital tract microbiota to thoroughly validate diagnostics and to share the underlying raw data when reporting reproductive outcome results.

Thor Haahr^{1,*}, Jørgen Skov Jensen², Peter Humaidan¹

REFERENCES

Haahr, T., Humaidan, P., Elbaek, H.O., Alsberg, B., Laursen, R.J., Rygaard, K., Johannessen, T.B., Andersen, P.S., Ng, K.L., Jensen, J.S. **Vaginal microbiota and IVF outcomes: development of a simple diagnostic tool to predict patients at risk of a poor reproductive outcome.** *J. Infect. Dis.* 2018 <https://doi.org/10.1093/infdis/jiy744>

Haahr, T., Jensen, J.S., Thomsen, L., Duus, L., Rygaard, K., Humaidan, P. **Abnormal vaginal**

microbiota may be associated with poor reproductive outcomes: a prospective study in IVF patients. *Hum. Reprod.* 2016; 31: 795–803 <https://doi.org/10.1093/humrep/dew026>

Moreno, I., Codoner, F.M., Vilella, F., Valbuena, D., Martínez-Blanch, J.F., Jiménez-Almazán, J., Alonso, R., Alama, P., Remohí, J., Pellicer, A., Ramón, D., Simón, C. **Evidence that the endometrial microbiota has an effect on implantation success or failure.** *Am. J. Obstet. Gynecol.* 2016 <https://doi.org/10.1016/j.ajog.2016.09.075>

Vergaro, P., Tiscornia, G., Barragán, M., García, D., Rodríguez, A., Santaló, J., Vassena, R. **Vaginal microbiota profile at the time of embryo transfer does not affect live birth rate in IVF cycles with donated oocytes.** *Reprod. Biomed. Obstet. Gynecol.* 2016 <https://doi.org/10.1016/j.rbmo.2016.12.019>

Received 1 April 2019; accepted 8 April 2019.

¹ Department of Clinical Medicine, Aarhus University, Denmark and the Fertility Clinic Skive, Skive Regional Hospital, Denmark

² Statens Serum Institut, Microbiology and Infection Control, Copenhagen, Denmark