

REVIEW

The impact of maternal lifestyle factors on periconception outcomes: a systematic review of observational studies

BIOGRAPHY

Eline Oostingh is MD and a PhD candidate of the Periconception Epidemiology Group as part of the Department of Obstetrics and Gynecology at the Erasmus University Medical Center in Rotterdam, the Netherlands. She focuses on maternal and paternal periconception research and mHealth intervention.

Elsje C. Oostingh¹, Jennifer Hall², Maria P.H. Koster¹, Bola Grace²,
Eric Jauniaux², Régine P.M. Steegers-Theunissen^{1,*}

KEY MESSAGE

In this systematic review of observational studies, modifiable maternal lifestyle factors were found to influence several periconception outcomes. These data further support the importance of adopting healthy lifestyles of couples planning a pregnancy to improve reproductive health.

ABSTRACT

The main risk factors for important reproductive health issues such as subfertility and perinatal mortality largely originate in the periconception period. To evaluate associations between modifiable maternal lifestyle factors and periconception outcomes, a systematic search was conducted for relevant studies published from 1990 to February 2017 on Embase, Medline, Web of Science, Cochrane database, PubMed and Google Scholar. The initial search identified 6166 articles, of which 49 studies were eligible for inclusion. Fecundity (the capacity to have a live birth) showed significant inverse associations with smoking, alcohol use and poor diet. Studies regarding time to pregnancy showed a decline in fecundity ratios (the monthly conception rate among exposed relative to unexposed couples) with increasing body mass index (BMI). Furthermore, risk of first-trimester miscarriage was found to be increased in smokers, alcohol and caffeine consumers, and with increasing BMI. Vitamin supplement use showed a decrease in this risk. This review demonstrates that maternal modifiable lifestyle factors affect periconception outcomes. If couples planning a pregnancy are more aware and supported to adopt healthy lifestyles during the periconceptional 'window of opportunity', short-term reproductive health as well as health in later life and even of future generations can be further improved.

¹ Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands

² Research Department of Reproductive Health, EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London (UCL), London, United Kingdom

© 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

*Corresponding author: E-mail address: r.steegers@erasmusmc.nl (R.P.M. Steegers-Theunissen). <https://doi.org/10.1016/j.rbmo.2018.09.015> 1472-6483/© 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

Declaration: BG is an employee of 'SPD GmbH'. The remaining authors report no financial or commercial conflicts of interest.

KEY WORDS

Behaviour
Body mass index
Fecundity
Folic acid
Miscarriage
Time to pregnancy

INTRODUCTION

Ravelli *et al.* (1976) were one of the first to show increased rates of obesity as a composite determinant of poor lifestyles, in individuals who had been exposed to famine *in utero*. The link between early-life environment and adult disease was subsequently investigated in women exposed to famine in the Dutch hunger winter during the last winter of the Second World War, showing that offspring exposed to starvation *in utero* indeed had an increased risk of metabolic and cardiovascular diseases in adulthood (Stein, 1975; Painter *et al.*, 2005). In the 1980s, this concept was developed by David Barker, who reported for the first time a negative correlation between low birthweight and the rate of death from ischaemic heart disease (Barker and Osmond, 1986; Barker *et al.*, 1989). He also postulated that low birthweight in offspring, as a proxy for poor prenatal maternal nutrition, not only increases the risk of coronary heart disease in adulthood, but also of other non-communicable diseases (NCD), such as obesity and certain cancers (Barker and Osmond, 1986; Barker *et al.*, 1989; Barker *et al.*, 1993). To explain these findings, it was suggested that, due to plasticity, fetuses can adapt to the environment they expect to enter into once outside the womb. This has been the basis for the hypothesis of the Developmental Origins of Health and Disease (DOHaD) (Barker, 2004).

The DOHaD paradigm focuses mainly on exposures during pregnancy and outcomes at birth and in later life. However, many adverse pregnancy outcomes, such as subfertility, congenital malformations, low birthweight and preterm birth, originate in the periconception period, a critical window which has been neglected in both research and patient care. Therefore, based on molecular biological processes and epigenetics, we have defined the periconception period as a time span of 14 weeks before to up to 10 weeks after conception (Steegers-Theunissen *et al.*, 2013). During this critical period, fertilization, implantation and development and growth of the embryo and placenta take place (Macklon *et al.*, 2002; Steegers-Theunissen, 2010). This window is therefore pivotal to human reproduction in general and pregnancy outcome in particular.

The periconception environment is determined by maternal pre-existing medical conditions and modifiable lifestyles, including smoking, diet and body mass index (BMI) (Steegers-Theunissen and Steegers, 2015). The prevalence of poor lifestyle behaviours in the reproductive population is comparable to the prevalence in the general population (Hammiche *et al.*, 2011). There is growing evidence about the impact of lifestyle factors on fertility in women of reproductive age (Bunting *et al.*, 2013; Temel *et al.*, 2014). Being obese or overweight before conception is thought to exert a negative influence on female fertility due to dysregulation of the hypothalamic-pituitary-ovarian axis leading to ovulatory dysfunction (Broughton and Moley, 2017). Excessive gestational weight gain and obesity during pregnancy are key predictors of childhood obesity and of metabolic complications in adulthood (Gaskins *et al.*, 2014a). Children of women who are overweight or obese from the beginning of pregnancy are also at increased risk of cognitive deficits, externalizing problems (particularly attention-deficit/hyperactivity disorder), and internalizing psychopathology in childhood and adolescence (Van Lieshout, 2013). Besides BMI, smoking is another common lifestyle factor affecting both fecundity (Crawford *et al.*, 2017) and embryonic growth during the first six months of life (de Brito *et al.*, 2017). These data suggest an extension of the window of opportunity for prevention and intervention in to the earliest moments of life.

Before the advent of high-resolution ultrasound, and in particular of three-dimensional ultrasound, in-vivo data on embryonic and placental development during the first trimester of pregnancy was limited. These non-invasive techniques have now provided large databases on normal and abnormal feto-placental development, thus enabling a better understanding of the pathophysiology of the early embryonic development and its possible impact during pregnancy and after birth (Rousian *et al.*, 2010; Rousian *et al.*, 2011; van Uitert *et al.*, 2013a). This has also stimulated periconceptional prospective research on the influence of maternal lifestyle factors on the risk of first trimester abnormal outcomes, mainly miscarriage, congenital malformations and embryonic growth (van Uitert *et al.*, 2013b; Koning *et al.*, 2016; Koning *et al.*, 2017).

The awareness of the importance of the periconception period is rising, resulting in more published research on this topic. The aim of this review was to provide a systematic and detailed analysis of the literature on maternal lifestyle factors during the periconception period and their impact on fecundity and time to pregnancy, as preconception outcomes, and on miscarriage and embryonic growth as first-trimester pregnancy outcomes.

MATERIALS AND METHODS

Systematic review information sources and search strategy

The literature review was conducted using the 'Meta-analysis of Observational Studies in Epidemiology (MOOSE)' guidelines (Stroup *et al.*, 2000). Searches were carried out using the electronic databases Embase, Medline, PubMed, Web of Science, Google Scholar and Cochrane databases. The search protocol was designed a priori and registered with the PROSPERO registry (PROSPERO 2016: CRD42016046123). The search strategy consisted of MeSH terms and keywords for lifestyle exposures of interest, including diet, smoking, alcohol, folic acid/vitamin supplement use, physical activity and obesity (**Supplementary TABLE 1**). These were combined using the Boolean operator 'or'.

Systematic review eligibility criteria and used definitions

The periconception outcomes, as defined in the International glossary on infertility and fertility care, 2017 (Zegers-Hochschild *et al.*, 2017), were:

- (i) Fertility: the capacity to establish a clinical pregnancy.
- (ii) Fecundity: the capacity to have a live birth.
- (iii) Fecundability: The probability of a pregnancy, during a single menstrual cycle in a woman with adequate exposure to spermatozoa and no contraception, culminating in live birth. Frequently measured as the monthly probability.
- (iv) Fecundability ratio: the monthly conception rate among exposed relative to unexposed couples.
- (v) Time to pregnancy (TTP): the time taken to establish a pregnancy, measured in months or in numbers of menstrual cycles.
- (vi) Miscarriage: spontaneous loss of a clinical pregnancy before

22 completed weeks of gestational age. In this review; however, only first-trimester miscarriages (until the 12th week of gestation) were taken into account.

(vii) Embryonic growth: the process by which the embryo forms and develops. In this review only growth, measured by crown-rump length (CRL) was taken into account. For embryo development the Carnegie stages were used.

(viii) Yolk sac: a membranous sac attached to the embryo, formed by cells of the hypoblast adjacent to the embryonic disk. In this review the size of the yolk sac was taken into account.

It was found that the terms 'fertility', 'fecundity' and 'fecundability' were used interchangeably in the literature. Therefore, all terms in the literature search were included and papers excluded that only provided data on birth outcomes. We did not expect to find literature on congenital malformations and placental size in the first trimester, and therefore did not include those keywords in the literature search. The results of all the periconception outcome searches were combined with 'or'. The results of the separate lifestyle factors and periconception outcome searches were then combined with 'and'.

Inclusion and exclusion criteria

Observational studies of any design that investigated the relationship between maternal lifestyle factors and any of the periconception outcomes of interest were eligible for inclusion in the review. The periconception period was defined as the 14 weeks before and 10 weeks after conception (Steegers-Theunissen et al., 2013). Articles published between 1990 and February 2017 were included and the search was limited to articles published in English. Animal studies and those focused on IVF/intracytoplasmic sperm injection (ICSI)-treatment, male lifestyle factors, semen parameters, congenital anomalies or teratogenicity were excluded. Articles that only reported outcomes in the second or third trimester or later life, editorials and review articles were also excluded.

Full text review and data extraction

Title, abstracts and full-text articles were independently assessed for content, data extraction and analysis. References of included studies were also reviewed.

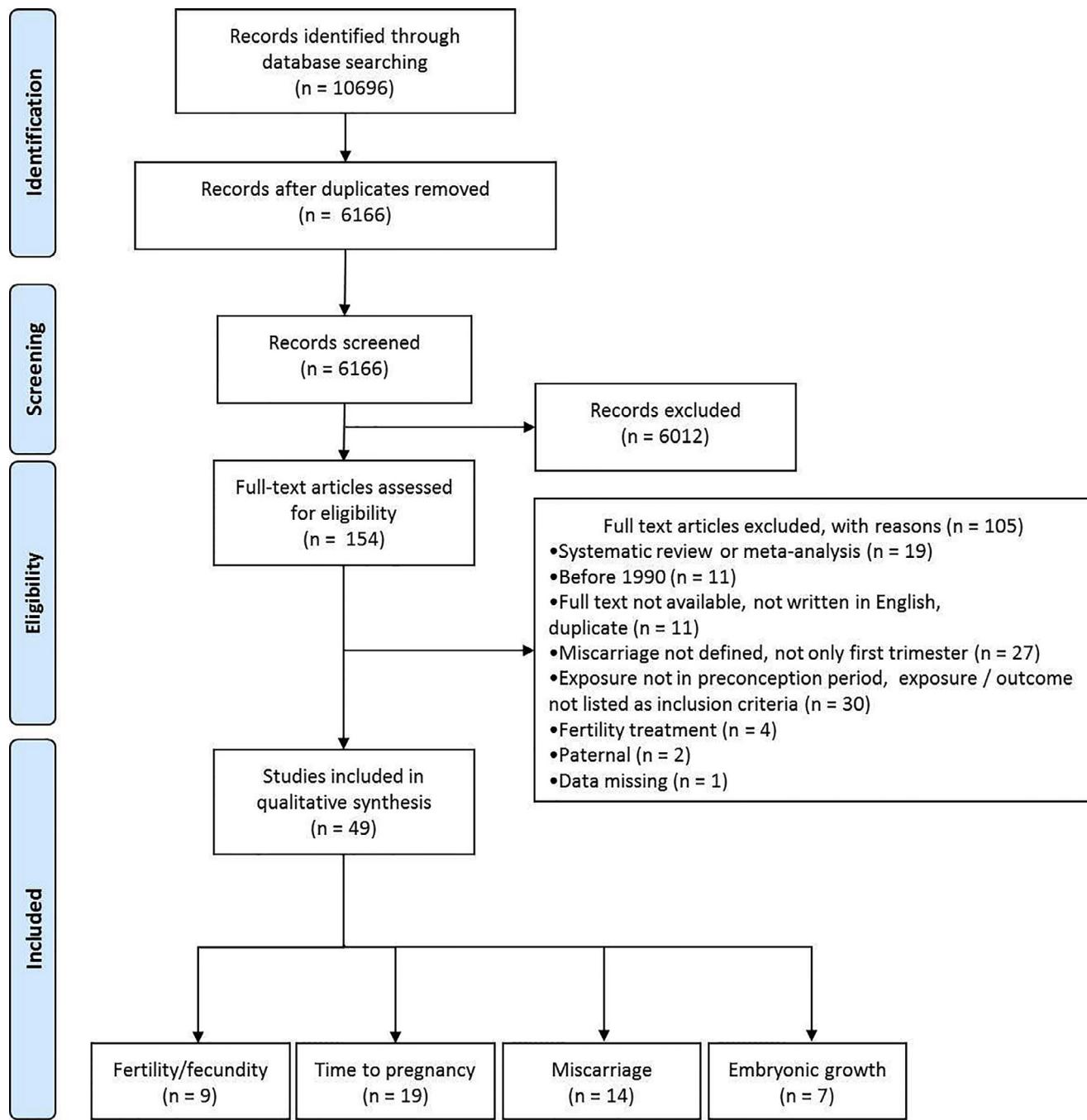
ECO reviewed the titles and abstracts and selected papers for full-text review. Full-text review and data extraction was completed by ECO, JH and BG, with all papers reviewed by at least two people. Data were inputted into a template designed specifically for this review. Differences were resolved by discussion between these three authors. Data extracted included the location, year of publication, study design, setting, study population, sample size, exposures of interest, outcome data, exclusion criteria, statistical analysis, potential confounders, results and conclusion.

Quality of study and risk of bias

The ErasmusAGE quality score for systematic reviews was used to assess the quality of studies included in this review (see Supplementary TABLE 2). This tool is based on previously published scoring systems (National Collaborating Centre, 2008; Carter et al., 2010) and is composed of five items covering study design, study size, method of measuring exposure and outcome, and analysis. The parameters for these items can be adapted, based on literature and discussion with experts, as relevant for each review. The parameters chosen for this review are shown in Supplementary Table 2. Each item was allocated zero, one or two points giving a total score between zero and ten, with ten representing the highest quality.

RESULTS

Results of search and description of studies


FIGURE 1 summarizes the process of literature identification and selection of studies. The initial search identified 10,696 records of which 4530 were duplicates. Of the remaining 6166 records, a total of 6012 publications were excluded because they did not fulfil the selection criteria. The full text of 154 papers were read, and 105 papers were excluded, leaving 49 articles for analysis.

The characteristics of the included studies are shown in TABLE 1. Thirty-five studies were identified as prospective (Laurent et al., 1992; Florack et al., 1994; Windham et al., 1997; Caan and C. P. Quesenberry, 1998; Hakim et al., 1998; Jensen et al., 1998; Hull et al., 2000; Kesmodel et al., 2002; Arakawa et al., 2006; Law et al., 2007; Strandberg-Larsen et al., 2008; Bakker et al., 2010;

Mook-Kanamori et al., 2010; Prabhu et al., 2010; Wise et al., 2010; Hatch et al., 2012; Mutsaerts et al., 2012; Wise et al., 2012; Bouwland-Both et al., 2013; van Uitert et al., 2013b; Wise et al., 2013; Gaskins et al., 2014b; Hahn et al., 2014; Radin et al., 2014; Van Uitert et al., 2014; Andersen et al., 2015; Hahn et al., 2015; Cueto et al., 2016; Gaskins et al., 2016; McKinnon et al., 2016; Mikkelsen et al., 2016; Sapra et al., 2016; Wesseling et al., 2016; Zhou et al., 2016; Parisi et al., 2017), six as retrospective cohort studies (Bolúmar et al., 1997; Axmon et al., 2000; Juhl et al., 2001; Juhl et al., 2003; Axmon et al., 2006; Feodor Nilsson et al., 2014) and three and five studies as prospective (Ronnenberg et al., 2002; Lopez-del Burgo et al., 2015; Somigliana et al., 2016) and retrospective case-control studies (Parazzini et al., 1991; Cnattingius et al., 2000; Ramlau-Hansen et al., 2007; Toledo et al., 2011; Xu et al., 2014), respectively. The search term 'yolk sac size' yielded no results, so this parameter is not included in the review.

Fecundity or fertility

Nine studies reported associations between maternal lifestyle factors and fecundity or fertility (Laurent et al., 1992; Caan and C. P. Quesenberry 1998; Hakim et al., 1998; Jensen et al., 1998; Axmon et al., 2000; Toledo et al., 2011; Radin et al., 2014; Lopez-del Burgo et al., 2015; Cueto et al., 2016) (TABLE 2). The impact of smoking was evaluated in three studies, all showing poorer fecundity ratios with higher levels of smoking (Laurent et al., 1992; Axmon et al., 2000; Radin et al., 2014). The association between alcohol and fecundity was evaluated in three studies (Hakim et al., 1998; Jensen et al., 1998; Lopez-del Burgo et al., 2015) and showed lower conception rates with the consumption of alcohol. There was no significant relationship between caffeine consumption and conception rates in the two studies investigating this outcome (Caan and C. P. Quesenberry, 1998; Hakim et al., 1998). The association of diet was evaluated in two studies (Axmon et al., 2000; Toledo et al., 2011). Toledo et al. (2011) found that stronger adherence to the Mediterranean dietary pattern was associated with significantly lower odds of consulting a physician because of failure to conceive. The possible negative association of consuming fish from the Baltic sea contaminated with

FIGURE 1 PRISMA flowchart of included and excluded studies.

persistent organochlorine compounds was evaluated by [Axmon et al. \(2000\)](#). This study found a significantly lower pregnancy success rate ratio in women living in the east coast of Sweden, where higher blood concentrations of persistent organochlorine compounds have been found, compared with women living in west coast. Folic acid and multivitamin supplement use were both found to be associated with increased fecundity ([Cueto et al., 2016](#)).

Time to pregnancy

The association between maternal lifestyle factors and time to pregnancy was evaluated in 19 studies ([Florack et al., 1994](#); [Bolúmar et al., 1997](#); [Hull et al., 2000](#); [Juhl et al., 2001](#); [Juhl et al., 2003](#), [Arakawa et al., 2006](#); [Axmon et al., 2006](#); [Law et al., 2007](#); [Ramlau-Hansen et al., 2007](#); [Wise et al., 2010](#); [Hatch et al., 2012](#); [Mutsaerts et al., 2012](#); [Wise et al., 2012](#); [Wise et al., 2013](#); [McKinnon et al., 2016](#); [Mikkelsen et al., 2016](#); [Sapra et al., 2016](#); [Somigliana et al.,](#)

[2016](#); [Wesselink et al., 2016](#)) ([TABLE 3](#)). Six studies evaluated the impact of smoking on time to pregnancy ([Florack et al., 1994](#); [Hull et al., 2000](#); [Axmon et al., 2006](#); [Law et al., 2007](#); [Mutsaerts et al., 2012](#); [Sapra et al., 2016](#)), all showing a prolonged time to pregnancy among smokers.

The possible association of alcohol consumption and time to pregnancy was also reported in six studies ([Florack et al., 1994](#); [Juhl et al., 2001](#); [Juhl et al.,](#)

TABLE 1 MAIN CHARACTERISTICS OF 49 INCLUDED STUDIES

Author	Year	Country	Study population	Study design	Sample size	Exposure(s)	Outcome(s)	Quality score
Andersen et al.	2015	Denmark	Odense child cohort, pregnant women January 2010–December 2012.	Prospective cohort study	1683	Vitamin use	Miscarriage	5
Arakawa et al.	2006	Japan	Women delivering from January 2002–March 2004 in two Japanese hospitals	Prospective cohort study	180	Diet	TTP	4
Axmon et al.	2000	Sweden	Fishermen's wives from Swedish east and west coast, born from 1945.	Retrospective cohort study	1335	Smoking, Diet	Fertility	5
Axmon et al.	2006	Sweden	Random sample of women from the general Swedish population, born from 1960 onwards.	Retrospective cohort study	1557	Smoking, alcohol, vitamin use, drug use	TTP	5
Bakker et al.	2010	The Netherlands	The Generation R study; Dutch women who were resident in the study area and who delivered between April 2002 and January 2006	Prospective cohort study	1310	Caffeine	Embryonic growth	6
Bolúmar et al.	1997	Spain	Random sample of women 25–44 years, five European countries (Denmark, Germany, Italy, Poland and Spain).	Retrospective cohort study	3092	Caffeine	TTP	5
Bouwland-Both et al.	2013	The Netherlands	The Generation R study; Dutch women who were resident in the study area and who delivered between April 2002 and January 2006	Prospective cohort study	847	Diet	Embryonic growth	5
Caan and Quesenberry	1998	USA	Volunteer members of the Kaiser Permanente Medical Programme who were trying to conceive (for max 3 months before entering the study).	Prospective cohort study	187	Caffeine	Fecundity	4
Cnattingius et al.	2000	Sweden	Between 1996–1998, Uppsala Sweden, women with spontaneous abortion who presented at the department at 6–12 weeks and had a positive pregnancy test	Retrospective case-control study	1448	Smoking, caffeine	Miscarriage	6
Cueto et al.	2016	Denmark	The Danish pregnancy planning study (Snart Gravid)	Prospective cohort study	3895	Folic acid, vitamin use	Fecundity	5
Feodor Nilsson et al.	2014	Denmark	Danish national birth cohort. All pregnancies with information on risk factors for miscarriage.	Retrospective cohort study	88,373	Alcohol, caffeine, physical activity	Miscarriage	6
Florack et al.	1994	The Netherlands	Between June 1987–Jan 1989, female workers 18–39 years, working in non-medical functions at Dutch Hospitals, planning pregnancy	Prospective cohort study	259	Smoking, alcohol, caffeine	TTP	5
Gaskins et al.	2014b	USA	Female nurses 24–44 years in the Nurses' Health Study II. With no history of pregnancy loss in 1991 and reported at least one pregnancy during 1992–2009	Prospective cohort study	11,072	Folic acid	Miscarriage	6
Gaskins et al.	2016	USA	Female nurses 24–44 years in the Nurses' Health Study II. With no history of pregnancy loss in 1991 and reported at least one pregnancy during 1992–2009	Prospective cohort study	27,580	Alcohol	Miscarriage	5
Hahn et al.	2015	Denmark	Snart-Gravid study; Danish women 18–40 years, resident of Denmark, stable relationship with male partner, not using fertility treatment, trying to become pregnant.	Prospective cohort study	5132	Caffeine	Miscarriage	6
Hahn et al.	2014	Denmark	Snart-Gravid study; Danish women 18–40 years, resident of Denmark, stable relationship with male partner, not using fertility treatment, trying to become pregnant.	Prospective cohort study	5132	BMI	Miscarriage	6

(continued on next page)

Table 1 – (Continued)

Author	Year	Country	Study population	Study design	Sample size	Exposure(s)	Outcome(s)	Quality score
Hakim <i>et al.</i>	1998	USA	Women reproductive age, no contraceptive use, not sterilized.	Prospective cohort study	98	Alcohol, Caffeine	Fecundity	5
Hatch <i>et al.</i>	2012	Denmark	Danish, 18–40 years, male partner, trying to conceive <12 months	Prospective cohort study	3628	Caffeine	TTP	5
Hull <i>et al.</i>	2000	United Kingdom	Couples resident in the defined geographic area administered by the Avon Health Authority and if the expected date of birth was between April 1991–December 1992	Prospective cohort study	12,106	Smoking	TTP	6
Jensen <i>et al.</i>	1998	Denmark	Danish couples, 20–35 years, no children, trying to conceive for the first time	Prospective cohort study	423	Alcohol	Fecundity	4
Juhl <i>et al.</i>	2003	Denmark	Pregnant women within the first 24 weeks of pregnancy recruited to the Danish National Birth Cohort in 1997–2000.	Retrospective cohort study	29,844	Alcohol	TTP	5
Juhl <i>et al.</i>	2001	Denmark	Pregnant women within the first 24 weeks of pregnancy recruited to the Danish National Birth Cohort in 1997–2000.	Retrospective cohort study	29,844	Alcohol	TTP	5
Kesmodel <i>et al.</i>	2002	Denmark	Women attending routine antenatal care at Aarhus University Hospital Denmark from 1989–1996	Prospective cohort study	18,226	Alcohol	Miscarriage	5
Laurent <i>et al.</i>	1992	USA	20–54 years old women who were randomly selected to serve as the control group of the Cancer and Steroid Hormone Study coordinated by the Reproductive Health Division of the Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control, USA	Prospective cohort study	2714	Smoking	Fertility	5
Law <i>et al.</i>	2007	USA	Pregnant women enrolled in the Collaborative Perinatal Project at 12 study centers across the United States	Prospective cohort study	7327	Smoking, BMI	TTP	5
Lopez-del Burgo <i>et al.</i>	2015	Spain	University graduates from Spain	Prospective case-control study	1372	Alcohol	Fertility	7
McKinnon <i>et al.</i>	2016	USA and Canada	Women 21–45 years, not using contraception, no fertility treatment, stable relationship with a man, planning a pregnancy, not pregnant. PRESTO study.	Prospective cohort study	1274	BMI, physical activity	TTP	6
Mikkelsen <i>et al.</i>	2016	Denmark	Women 18–40 years, stable relationship with a man, trying to conceive, no fertility treatment. Snart Gravid.	Prospective cohort study	4210	Alcohol	TTP	6
Mook-Kanamori <i>et al.</i>	2010	The Netherlands	Generation R study, mothers enrolled 2001–2005	Prospective cohort study	1631	Smoking, alcohol, folic acid, BMI	Embryonic growth	8
Mutsaerts <i>et al.</i>	2012	The Netherlands	Pregnant women in Drenthe with the expected date of delivery between April 2006 and April 2007	Prospective cohort study	1924	Smoking, alcohol, vitamin use, BMI, physical activity	TTP	5
Parazzini <i>et al.</i>	1991	Italy	Jan 1987–1988, cases: women ≥2 unexplained miscarriages in first 3 months of gestation, without full-term pregnancies. Controls: women admitted for normal delivery.	Retrospective case-control study	270	Smoking, alcohol, caffeine, BMI	Miscarriage	5
Parisi <i>et al.</i>	2017	The Netherlands	Predict study. 2010–2014 women with singleton pregnancies.	Prospective cohort study	234	Vitamin use	Embryonic growth	5
Prabhu <i>et al.</i>	2010	United Kingdom	Mothers attending a first trimester dating ultrasound scan	Prospective cohort study	903	Smoking	Embryonic growth	7

(continued on next page)

Table 1 – (Continued)

Author	Year	Country	Study population	Study design	Sample size	Exposure(s)	Outcome(s)	Quality score
Radin et al.	2014	Denmark	Female pregnancy planners aged 18–40 years	Prospective cohort study	3298	Smoking	Fecundity	3
Ram-lau-Hansen et al.	2007	Denmark	Couples from Danish National Birth with pregnancy(ies) between 1996–2002	Retrospective case-control study	47,835	BMI	TTP	4
Ronnenberg et al.	2002	China	Female textile workers in Anqing, China	Prospective case-control study	458	Folic acid, vitamin use	Miscarriage	5
Sapra et al.	2016	USA	LIFE study 2005–2009. Couples discontinuing contraception for becoming pregnant or were off contraception for maximum 2 months. 18–40 years, cycle length 21–42 days, not received injectable contraception in the past year.	Prospective cohort study	501	Smoking	TTP	6
Somigliana et al.	2016	Italy	Pregnant women undergoing first trimester screening for aneuploidies. Cases: seeking pregnancy 12–24 months. Controls: age-matched conceiving in less than 1 year	Prospective case-control study	146	Diet	TTP	5
Strand-berg-Larsen et al.	2008	Denmark	Danish national birth cohort, women enrolled between 1996 and 2002, interview done mid-pregnancy	Prospective cohort study	89,201	Alcohol	Miscarriage	7
Toledo et al.	2011	Spain	Nested case control study selected from a prospective cohort of university graduates.	Retrospective case-control study	2154	Diet	Fertility	5
van Uitert et al.	2013b	The Netherlands	Rotterdam Predict study, an ongoing prospective periconception cohort study that is part of the preconception and antenatal care at the outpatient clinics of the Erasmus MC, University Medical Center Rotterdam. All women who were at least 18 years old with ongoing intrauterine singleton pregnancies of 6–8 weeks of gestation were eligible for participation and recruited in 2009 and 2010. Spontaneously conceived, plus intrauterine insemination	Prospective cohort study	87	Smoking, alcohol, folic acid, BMI	Embryonic growth	6
van Uitert et al.	2014	The Netherlands	Singleton pregnancies recruited in 2009–2010. Predict Study. 77 patients, 440 ultrasounds	Prospective cohort study	440	Folic acid	Embryonic growth	5
Wesselink et al.	2016	USA and Canada	Women 21–45 years, not using contraception, no fertility treatment, stable relationship with a man, planning a pregnancy, not pregnant. PRESTO study.	Prospective cohort study	1318	Caffeine	TTP	6
Windham et al.	1997	USA	Women were recruited during 1990–1991 from a large pre-paid health plan (Kaiser Permanente Medical Care Programme) in three geographical areas in California, they were informed of the study when they called to make their first antenatal appointment.	Prospective cohort study	5307	Alcohol	Miscarriage	5
Wise et al.	2010	Denmark	Women were part of the "Snart Gravid" study, an internet-based prospective cohort study of women planning a pregnancy in Denmark. Recruitment began in June 2007. Eligible women were aged 18–40, residents of Denmark, in a stable relationship with a male partner, and not receiving any type of fertility treatment.	Prospective cohort study	1410	BMI	TTP	5

(continued on next page)

Table 1 – (Continued)

Author	Year	Country	Study population	Study design	Sample size	Exposure(s)	Outcome(s)	Quality score
Wise et al.	2012	Denmark	Women were part of the "Smart Gravid" study, an internet-based prospective cohort study of women planning a pregnancy in Denmark. Recruitment began in June 2007. Eligible women were aged 18–40, residents of Denmark, in a stable relationship with a male partner, and not receiving any type of fertility treatment.	Prospective cohort study	3027	Physical activity	TTP	7
Wise et al.	2013	USA	Women were part of the Black Women's Health Survey, a prospective cohort study of 59 000 African-American women aged 21 to 69 at entry in 1995. This analysis is of the 2011 follow up, where 16462 responded	Prospective cohort study	2022	BMI	TTP	5
Xu et al.	2014	China	Cases—hospitalized in one of 3 hospitals in Zhengzhou City for an early miscarriage (<13 weeks) from Oct 2009-Dec 2012. 620 cases randomly selected from 3277, 1240 age matched controls, post 13 weeks, randomly selected from the same period from 21,491 outpatients attending routine prenatal care.	Retrospective case-control study	1860	Smoking, alcohol, diet, vitamin use, BMI, physical activity	Miscarriage	6
Zhou et al.	2016	China	2013–2014 in Anhui China. 18–40 years, residents of Anhui, married, not using fertility treatment, trying to become pregnant during the next six months.	Prospective cohort study	2940	BMI	Miscarriage	5

Note: BMI = Body mass index; TTP = Time to pregnancy.

2003; Axmon et al., 2006; Mutsaerts et al., 2012; Mikkelsen et al., 2016), but showed inconsistent results. Mutsaerts et al. (2012) reported that women consuming >7 units of alcohol per week have a significantly longer time to pregnancy compared with women consuming less units per week, the same accounts for Axmon et al. (2006), as they report a significant prolonged time to pregnancy for women consuming alcohol compared with women not consuming alcohol, whereas Juhl et al. (2001, 2003), reported a slightly shorter time to pregnancy for women consuming alcohol weekly compared with drinking no alcohol.

The association of consumption of caffeine and time to pregnancy was addressed in four studies (Florack et al., 1994; Bolúmar et al., 1997; Hatch et al., 2012; Wesselink et al., 2016). Significant increases in time to pregnancy were found for those women drinking ≥501 mg caffeine per day (Bolúmar et al., 1997). By contrast, Florack et al. (1994) showed a significant decrease when drinking 3–7 cups of caffeine drinks per day compared with drinking <3 cups.

The association of diet and vitamin supplement use was evaluated in four studies; however, none of the results were statistically significant (Arakawa et al., 2006; Axmon et al., 2006; Mutsaerts et al., 2012; Somigliana et al., 2016). Overall, there was a suggestion of shorter time to pregnancy when using vitamin supplements. By contrast, vitamin D deficiency does not seem to prolong the time to pregnancy.

Six studies reported on the association of BMI and time to pregnancy, showing consistently prolonged time to pregnancy in overweight or obese women (Law et al., 2007; Ramlau-Hansen et al., 2007; Wise et al., 2010; Mutsaerts et al., 2012; Wise et al., 2013; McKinnon et al., 2016). The association of physical activity was evaluated in three studies (Mutsaerts et al., 2012; Wise et al., 2012; McKinnon et al., 2016). In one study, vigorous physical activity was found to be associated with a prolonged time to pregnancy (Wise et al., 2012), in all other studies no association with time to pregnancy was found.

Miscarriage

Fourteen studies evaluated the association between maternal lifestyle

factors and first trimester miscarriage (Parazzini et al., 1991; Windham et al., 1997; Cnattingius et al., 2000; Kesmodel et al., 2002; Ronnenberg et al., 2002; Strandberg-Larsen et al., 2008; Feodor Nilsson et al., 2014; Gaskins et al., 2014b; Hahn et al., 2014; Xu et al., 2014; Andersen et al., 2015; Hahn et al., 2015; Gaskins et al., 2016; Zhou et al., 2016) (TABLE 4). The impact of smoking was evaluated in three studies (Parazzini et al., 1991; Cnattingius et al., 2000; Xu et al., 2014) all showing a statistically significant increase in risk of miscarriage in smokers.

The seven studies reporting on the association between maternal alcohol consumption and miscarriage showed inconsistent results (Parazzini et al., 1991; Windham et al., 1997; Kesmodel et al., 2002; Strandberg-Larsen et al., 2008; Feodor Nilsson et al., 2014; Xu et al., 2014; Gaskins et al., 2016). The study with the highest quality reported no association between binge drinking in the first 12 weeks of pregnancy and the risk of spontaneous miscarriage (Strandberg-Larsen et al., 2008). This finding is supported by a hospital-based case-control study among Chinese

TABLE 2 DESCRIPTION AND SUMMARY OF DATA FOR NINE STUDIES THAT INVESTIGATED ASSOCIATIONS BETWEEN LIFESTYLE FACTORS AND FECUNDITY OR FERTILITY

Author	Exposure	Exposure description	Outcome definition	OR (95% CI)
Axmon et al., 2000	Diet	Consuming contaminated fish from Baltic sea	Success rate ratio	0.86 (0.75; 0.99)
	Smoking	Smoking ≥10 cigarettes/day		0.68 (0.51; 0.91)
Caan and Quesenberry, 1998	Caffeine	Intake of caffeine >106.8 mg/day	Relative Odds of becoming pregnant	1.09 (0.63; 1.89)
Cueto et al., 2016	Folic acid	Use of folic acid supplement in general	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	1.15 (1.06; 1.25)
		Use of folic acid exclusively		1.15 (1.00; 1.31)
	Vitamin use	Use of multivitamin supplements exclusively		1.20 (1.08; 1.32)
Hakim et al., 1998	Alcohol	Consuming <12 grams of alcohol/week	Relative Odds of conception	0.43 (0.25; 0.76)
		Consuming 13–90 grams of alcohol/week		0.40 (0.21; 0.77)
	Caffeine	Intake of caffeine ≥301 mg/day		0.83 (0.34; 2.01)
Jensen et al., 1998	Alcohol	Consuming 1–5 units of alcohol/week	Odds of conception	0.61 (0.40; 0.93)
		Consuming 6–10 units of alcohol/week		0.55 (0.36; 0.85)
		Consuming 11–15 units of alcohol/week		0.34 (0.22; 0.52)
Laurent et al., 1992	Smoking	Smoking ≥20 cigarettes/day	Odds of primary infertility	1.36 (1.14; 1.61)
Lopez-del Burgo et al., 2015	Alcohol	Consumption of alcohol ≥5 times/week	Odds ratio for presenting with difficulty becoming pregnant	1.04 (0.72; 1.51)
Radin et al., 2014	Smoking	Current regular smoker	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.89 (0.77; 1.03)
		Smoking for ≥10 years		0.85 (0.72; 1.00)
Toledo et al., 2011	Diet	High adherence to Mediterranean dietary pattern	Odds ratio for presenting with difficulty becoming pregnant	0.56 (0.35; 0.90)

OR (95% CI) = odds ratio 95% confidence interval.

women (Xu et al., 2014) and by Parazzini et al. (1991). In contrast, Windham et al. (1997) found a significant association for drinking >3 drinks per week and the risk of spontaneous miscarriage. A similar significant association was found by Kesmodel et al. (2002) and Feodor Nilsson et al. (2014).

The association between maternal caffeine consumption and miscarriage was evaluated by four studies (Parazzini et al., 1991; Cnattingius et al., 2000; Feodor Nilsson et al., 2014; Hahn et al., 2015). Cnattingius et al. (2000) and Feodor Nilsson et al. (2014) reported a significantly higher risk for miscarriage when consuming caffeine, but Parazzini et al. (1991) and Hahn et al. (2015) did not.

The impact of diet was evaluated in one study (Xu et al., 2014). The authors reported on the association of eating fresh fruit/vegetables on a daily basis compared with not eating fresh fruit/vegetables daily and the risk of miscarriage and they found no significant reduction in risk.

Four studies examined the association between folic acid and/or vitamin

supplement use and miscarriage (Ronnenberg et al., 2002; Gaskins et al., 2014b; Xu et al., 2014; Andersen et al., 2015). Ronnenberg et al. (2002) showed a positive trend for an increase in the relative odds of spontaneous miscarriage as plasma folate concentration decreased (*P* for trend 0.07), which was weakened after adjusting for confounders. A borderline significant increase in risk of miscarriage was seen for vitamin B6 status (*P* for trend 0.06) but this also diminished after adjustment. However, comparing vitamin B6 status between women whose pregnancies ended in a clinically recognized spontaneous miscarriage and in those with live births, showed a significantly (*P* = 0.04) lower mean pre-pregnancy plasma vitamin B6 concentration in women with miscarriage. This finding is supported by a case-control study among Chinese women showing a significant reduction in risk for miscarriage among women using multivitamin supplements compared with those without using supplements (Xu et al., 2014).

The association between BMI, physical activity and miscarriage was evaluated in five studies (Parazzini et al., 1991; Feodor Nilsson et al., 2014; Hahn et al., 2014,

Xu et al., 2014; Zhou et al., 2016). Higher BMI was shown to significantly increase the risk of miscarriage in two studies (Hahn et al., 2014; Zhou et al., 2016), whereas two other studies showed that moderate physical activity significantly decreased the risk of miscarriage (Feodor Nilsson et al., 2014; Xu et al., 2014).

Embryonic growth

The association between maternal lifestyle factors and embryonic growth was reported in seven studies (Bakker et al., 2010; Mook-Kanamori et al., 2010; Prabhu et al., 2010; Bouwland-Both et al., 2013; van Uitert et al., 2013b; Van Uitert et al., 2014; Parisi et al., 2017) (TABLE 5). Van Uitert et al. (2013b) showed that periconception smoking and periconception alcohol use were independently associated with reduced embryonic growth trajectories, measured by CRL. No associations were observed with BMI and timing of folic acid supplement use. Bakker et al. (2010) evaluated the impact of caffeine; intake of >6 units per day (>540 mg) was associated with a decline in CRL.

Evaluation of maternal red blood cell (RBC) folate concentrations in the first-trimester as a measure of nutrition and

TABLE 3 DESCRIPTION AND SUMMARY OF DATA FOR 19 STUDIES THAT INVESTIGATED ASSOCIATIONS BETWEEN LIFESTYLE FACTORS AND TIME TO PREGNANCY

Author	Exposure	Exposure description	Outcome definition	OR (95% CI)	Other
Arakawa <i>et al.</i> , 2006	Diet	Geometric means of mercury concentrations in hair	Time to pregnancy in months (0–12 months vs >12 months)	2.01 (1.95; 2.07)	2.01 µg/g vs 1.97 µg/g, P-value NS
Axmon <i>et al.</i> , 2006	Alcohol	Consumption of alcohol	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.83 (0.72; 0.95)	–
	Smoking	Smoking cigarettes daily		0.93 (0.79; 1.08)	–
	Vitamin use	Use of vitamin supplements		1.04 (0.89; 1.22)	–
Bolúmar <i>et al.</i> , 1997	Caffeine	None vs ≥5 cups of coffee/day	Waiting time to first pregnancy (ref category: 6.5 months)		8.2 months, P = 0.003
		none ≥501 mg/day			8.9 months, P = 0.001
Florack <i>et al.</i> , 1994	Alcohol	>10 units of alcohol/week	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	1.2 (0.7; 2.3)	–
	Caffeine	3–7 cups of caffeine drinks/day vs <3 cups		1.8 (1.1; 3.1)	–
	Smoking	>10 cigarettes/day		0.8 (0.5; 1.3)	–
Hatch <i>et al.</i> , 2012	Caffeine	≥300 mg caffeine/day	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	1.04 (0.90; 1.21)	–
Hull <i>et al.</i> , 2000	Smoking	15–19 cigarettes daily, conceive within 6 months	Odds ratio of taking ≥12 months to conceive	1.47 (1.15; 1.87)	–
		15–19 cigarettes daily, conceive within 12 month		1.99 (1.48; 2.69)	
Juhl <i>et al.</i> , 2001	Alcohol	7.5–14 units of alcohol/week, conceive after 5 months	Odds ratio for an increasing waiting time to pregnancy	0.84 (0.76; 0.93)	–
		7.5–14 units of alcohol/week, conceive after 12 months		0.86 (0.76; 0.98)	
Juhl <i>et al.</i> , 2003	Alcohol	>7 units of wine/week	Odds ratio for an increasing waiting time to pregnancy	0.87 (0.78; 0.99)	–
Law <i>et al.</i> , 2007	BMI	BMI ≥30.0 kg/m ²	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.72 (0.63; 0.83)	–
	Smoking	Among smokers, BMI ≤18.5 kg/m ²		0.89 (0.78; 1.01)	–
		BMI 25.0–29.9 kg/m ²		0.97 (0.85; 1.11)	–
		BMI ≥30.0 kg/m ²		0.83 (0.68; 1.02)	–
McKinnon <i>et al.</i> , 2016	BMI	BMI 40–44 kg/m ²	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.61 (0.42; 0.88)	–
		BMI ≥45 kg/m ²		0.42 (0.23; 0.76)	
	Physical activity	≥5 hrs/week vigorous activity		1.11 (0.96; 1.28)	–
Mikkelsen <i>et al.</i> , 2016	Alcohol	≥14 units of alcohol/week	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.82 (0.60; 1.12)	–
Mutsaerts <i>et al.</i> , 2012	Alcohol	>7 units of alcohol/week	Ratio of the 'hazard' of becoming pregnant	0.71 (0.53; 0.96)	–
	BMI	BMI ≥30 kg/m ²		0.87 (0.76; 1.01)	–
	Physical activity	≥4 times/week		1.04 (0.92; 1.18)	–
	Smoking	≥10 cigarettes/day		0.96 (0.84; 1.10)	–
	Vitamin use	Use of vitamin supplements		0.59 (0.86; 1.05)	–
Ramlau-Hansen <i>et al.</i> , 2007	BMI	BMI 25.0–29.9 kg/m ²	Odds ratio of taking >12 months to conceive	1.27 (1.18; 1.36)	–
		BMI ≥30 kg/m ²		1.78 (1.63; 1.95)	

(continued on next page)

Table 3 – (Continued)

Author	Exposure	Exposure description	Outcome definition	OR (95% CI)	Other
<i>Sapra et al., 2016</i>	Smoking	Use of cigarettes	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.53 (0.33; 0.85)	–
<i>Somigliana et al., 2016</i>	Diet	Concentration of 25(OH)D <20 ng/ml	Odds ratio of longer time to pregnancy	0.84 (0.42; 1.66)	–
<i>Wesselink et al., 2016</i>	Caffeine	≥300 mg caffeine/day	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	1.15 (0.90; 1.48)	–
<i>Wise et al., 2010</i>	BMI	BMI 25–29 kg/m ²	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.72 (0.58; 0.90)	–
		BMI 30–34 kg/m ²		0.60 (0.42; 0.85)	
		BMI ≥35 kg/m ²		0.48 (0.31; 0.74)	
<i>Wise et al., 2012</i>	Physical activity	≥5 hrs/week vigorous activity	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.68 (0.54; 0.85)	–
		≥5 hrs/week moderate activity		1.18 (0.98; 1.43)	
<i>Wise et al., 2013</i>	BMI	BMI ≥35 kg/m ²	Fecundability ratio; the monthly conception rate among exposed relative to unexposed	0.73 (0.61; 0.87)	–

Note: BMI = body mass index; NS = not statistically significant; OR (95% CI) = Odds ratio 95% Confidence interval.

supplement use showed an optimum use curve, in which both lower and very high concentrations are associated with reduced embryonic growth (*Van Uitert et al., 2014*). Another study showed that smoking in combination with lack of use of folic acid supplements was associated with reduced embryonic size (*Mook-Kanamori et al., 2010*). This association between smoking and embryonic size was not found by *Prabhu et al. (2010)*. Increasing adherence to an energy-rich dietary pattern is significantly associated with an increased CRL, as reported by *Bouwland-Both et al. (2013)*.

Association between embryonic morphological development according to the Carnegie stages and maternal biomarkers of the one carbon metabolism was evaluated in the study by *Parisi et al. (2017)*. Low vitamin B12 concentrations were associated with a 1.4-day delay in morphological development compared with high concentrations and high total homocysteine concentrations were associated with a 1.6-day delay in morphological development compared with low concentrations.

DISCUSSION

The results of this systematic review highlight the impact of maternal modifiable lifestyle factors including smoking, alcohol, caffeine, BMI, physical

activity, diet and vitamin supplement use on fecundity and first trimester pregnancy outcomes.

Smoking

Cigarette smoke contains about 4000 compounds belonging to a variety of chemical classes known to be toxic, including polycyclic aromatic hydrocarbons (PCH), nitrosamines, heavy metals, alkaloids, aromatic amines and so forth (*Dechanet et al., 2011*). The exact mechanism remains unclear but there is strong evidence that these constituents may affect the follicular microenvironment and alter hormone concentrations in the luteal phase (*Homan et al., 2007*). These alterations in hormone concentrations shorten the luteal phase, which results in a shorter time period of being able to become pregnant. Besides, decreased ovarian function and reduced ovarian reserve may also be possible consequences of smoking, as shown by lower anti-Müllerian hormone (AMH) concentrations in smokers compared with non-smokers (*Freour et al., 2008*). Studies included in this review confirm these hypotheses by showing statistically significant negative associations of smoking especially with fecundity parameters (*Laurent et al., 1992; Axmon et al., 2000; Radin et al., 2014*), although a significantly prolonged time to pregnancy was found in only two out of six studies included in this

review (*Hull et al., 2000; Sapra et al., 2016*).

Different compounds of cigarette smoke also impair endometrial maturation, implantation and early placentation (*Dechanet et al., 2011*). Nicotine is suspected to have an adverse effect on the decidualization process and cadmium, for example, is known to impair endometrial maturation. Moreover, several studies have indicated the negative influence of benzo(a)pyrene on angiogenesis by inhibiting endothelial cell proliferation (*Dechanet et al., 2011*). These mechanisms could explain the significant increase in the risk of first trimester miscarriage found in two large studies (*Cnattingius et al., 2000; Xu et al., 2014*). These associations are dependent on the number of cigarettes smoked per day (*Xu et al., 2014*).

Alcohol

Although the evidence of associations between alcohol and reproductive performances are inconclusive, antenatal alcohol consumption is a known teratogen and several studies have reported an association with higher rates of early pregnancy failure and decreased fecundity (*Homan et al., 2007; Lassi et al., 2014*). This decrease in fecundity is supported by two studies included in this review (*Hakim et al., 1998; Jensen et al., 1998*). One of the biological explanations for these periconception complications

TABLE 4 DESCRIPTION AND SUMMARY OF DATA FOR 14 STUDIES THAT INVESTIGATED ASSOCIATIONS BETWEEN LIFESTYLE FACTORS AND FIRST-TRIMESTER MISCARRIAGE

Author	Exposure	Exposure description	Outcome definition	OR (95% CI)
Andersen <i>et al.</i> , 2015	Vitamin use	Concentration of 25(OH)D of <50 vs ≥50 nmol/l	Hazard ratio for miscarriage	2.50 (1.10; 5.69)
Cnattingius <i>et al.</i> , 2000	Caffeine	Among non-smokers; 100–299 mg of caffeine/day 300–499 mg of caffeine/day ≥500 mg of caffeine day	Odds ratios for miscarriage	1.8 (1.2; 2.7) 2.7 (1.7; 4.5) 4.1 (2.1; 8.1)
	Smoking	Smokers compared with non-smokers		1.5 (1.1; 2.1)
Feeodor Nilsson <i>et al.</i> , 2014	Alcohol	>4 alcoholic drinks per week	Hazard ratio for miscarriage	2.81 (2.25; 3.50)
	Caffeine	drinking 0.5–7.5 cups of coffee/day drinking >8 cups of coffee/day		1.28 (1.14; 1.42) 2.23 (1.79; 2.78)
	Physical activity	61–120 min/week regular physical activity 121–180 min/week 181–300 min/week >300 min/week		1.83 (1.57; 2.13) 2.06 (1.72; 2.47) 2.47 (2.07; 2.93) 3.29 (2.71; 3.99)
Gaskins <i>et al.</i> , 2014b	Folic acid	Folate supplement use ≥1000 mcg/day, fetal loss <8 wks Folate supplement use ≥1000 mcg/day, fetal loss 8–11 wks	Relative risk of miscarriage	0.79 (0.64; 0.97) 0.76 (0.63; 0.92)
Gaskins <i>et al.</i> , 2016	Alcohol	>10 grams of alcohol/day, miscarriage <8 weeks >10 grams of alcohol/day, miscarriage 8–11 weeks	Relative risk of miscarriage	1.09 (0.92; 1.30) 1.02 (0.86; 1.22)
Hahn <i>et al.</i> , 2014	BMI	BMI ≥30 kg/m ²	Hazard ratio for miscarriage	1.34 (1.01; 1.77)
Hahn <i>et al.</i> , 2015	Caffeine	>300 mg caffeine per day (preconceptionally)	Hazard ratio for miscarriage	0.93 (0.72; 1.22)
Kesmodel <i>et al.</i> , 2002	Alcohol	>5 alcoholic drinks per week	Hazard ratio for miscarriage	3.7 (2.0; 6.8)
Parazzini <i>et al.</i> , 1991	Alcohol	Alcohol consumption in pregnancy	Relative risk of recurrent miscarriage	0.9 (0.6; 1.5)
	BMI	BMI ≥22.5 kg/m ²		1.1 (0.6; 2.0)
	Caffeine	Coffee consumption in pregnancy		1.4 (0.7; 2.6)
	Smoking	Current smoking in pregnancy increasing number of cigarettes/day		1.4 (0.8; 2.9) <i>P</i> for trend 0.04
Ronnenberg <i>et al.</i> , 2002	Folic acid	Lowest quintiles of plasma folate concentration (≤ 6.60 nmol/l)	Adjusted Odds ratios for miscarriage	1.5 (0.6; 3.8)
		Increasing folate concentration		<i>P</i> for trend 0.25
	Vitamin use	Lowest quintiles of plasma vitamin B6 concentration (≤28.9 nmol/l)		2.5 (0.8; 7.8)
		Increasing vitamin B6 concentration		<i>P</i> for trend 0.13
Strandberg-Larsen <i>et al.</i> , 2008	Alcohol	Binge drinking in first 12 weeks of pregnancy	Hazard ratio for miscarriage	0.84 (0.62; 1.14)
Windham <i>et al.</i> , 1997	Alcohol	>3 alcoholic drinks per week	Odds ratios for miscarriage	2.3 (1.1; 4.5)
Xu <i>et al.</i> , 2014	Alcohol	>4 times per week alcohol consumption	Odds ratios for miscarriage	1.04 (0.79; 1.27)
	BMI	Pre-pregnancy BMI ≥30 kg/m ²		1.05 (0.89; 1.25)
	Diet	Eating fresh fruit/vegetables daily		0.86 (0.49; 1.22)
	Physical activity	>2 times per week, ≥0.5 hr		0.72 (0.51; 0.88)
	Smoking	Smoking >20 cigarettes per day during first 12 weeks of pregnancy		1.59 (1.12; 3.16)
	Vitamin use	Vitamin supplement use		0.75 (0.49; 0.91)
Zhou <i>et al.</i> , 2016	BMI	Pre-pregnancy BMI <18.5 kg/m ²	Relative risk for miscarriage	2.57 (1.35; 4.89)
		Pre-pregnancy BMI 24–27.9 kg/m ²		2.45 (1.26; 4.77)
		Pre-pregnancy BMI ≥28 kg/m ²		2.84 (2.84; 6.57)

Note: BMI = body mass index; OR (95% CI) = Odds ratio 95% Confidence interval.

TABLE 5 DESCRIPTION AND SUMMARY OF DATA FOR 7 STUDIES THAT INVESTIGATED ASSOCIATIONS BETWEEN LIFESTYLE FACTORS AND EMBRYONIC GROWTH

Author	Exposure	Exposure description	Outcome definition	Effect estimate (95% CI)
van Uitert et al., 2013b	Alcohol	Periconception alcohol use	CRL difference (mm)	-0.05 (-0.069; -0.017)
	BMI	BMI kg/m ²		0.095 (-0.11; 0.17)
	Folic acid	Moment of initiation of folic acid; post conception		0.27 (-0.311; 0.49)
	Smoking	Periconception smoking ≥10 cigarettes per day		-0.46 (-0.64; -0.077)
van Uitert et al., 2014	Folic acid	Quartile 1 (814–1223 nmol/l)	CRL difference (mm)	-0.49 (-0.66; -0.2)
		Quartile 2 (1224–1512 nmol/l)		-0.45 (-0.64; -0.14)
		Quartile 4 (1813–2936 nmol/L)		-0.54 (-0.7; -0.3)
Bakker et al., 2010	Caffeine	>6 units (>540 mg) of caffeine per day	CRL difference (mm)	-4.54 (-8.99; -0.09)
			P for trend <0.05	
Bouwland-Both et al., 2013	Diet	High adherence to an energy-rich dietary pattern	CRL difference (mm)	1.62 (0.52; 2.72)
			P for trend <0.05	
Mook-Kanamori et al., 2010	Alcohol	Alcohol consumption compared with no consumption	CRL difference (mm)	0.40 (-0.31; 1.11)
	BMI	Per 1 SD (4.08 units) increase in BMI		-0.01 (-0.35; 0.33)
	Folic acid	No use of folic acid supplement		-1.33 (-2.41; -0.24)
	Smoking	Smokers compared with non-smokers		-0.98 (-1.79; -0.16)
Parisi et al., 2017	Vitamin use	Vitamin B12 concentration of -2 SD (73.4 pmol/l)	delay in Carnegie stage (days)	1.4 (1.3; 1.4)
		Total Homocysteine concentration of +2 SD (10.4 μmol/l)		1.6 (1.5; 1.7)
Prabhu et al., 2010	Smoking	Smokers compared with non-smokers	CRL difference (mm)	0.23 (-0.23; 0.70)

Note: BMI = body mass index; 95% CI = 95% Confidence interval; CRL = crown-rump length.

is that hormonal fluctuations, including alcohol-induced increase of aromatization of testosterone leading to an increase in oestrogen concentrations, reduces follicle-stimulating hormone and suppresses both folliculogenesis and ovulation. Furthermore, alcohol may have a direct effect on the maturation of the ovum, ovulation, blastocyst development and implantation (Gill, 2000; Eggert et al., 2004). As a result, time to pregnancy may be prolonged in women who consume alcohol. In two studies included in this review, time to pregnancy was found to be increased in women who consume alcohol (Axmon et al., 2006; Mutsaerts et al., 2012). In contrast, two other studies showed a significantly shorter time to pregnancy (Juhl et al., 2001; Juhl et al., 2003). This contradiction may be due to differences in the populations studied, residual confounding or the type of alcohol consumed. For example, Juhl et al. (2003) found a shorter time to pregnancy among wine drinkers than non-wine drinkers.

Alcohol readily crosses the placenta, which can result in irreversible damage to the placenta and organs of the developing embryo (Popova et al.,

2017b). Besides adverse pregnancy outcomes such as stillbirth, preterm birth, intrauterine growth restriction and fetal alcohol syndrome (FAS) disorders, the risk of miscarriage in the first trimester is also increased. Three out of five reviewed studies indeed showed a significantly increased risk of miscarriage with higher levels of alcohol consumption (Windham et al., 1997; Kesmodel et al., 2002; Feodor Nilsson et al., 2014). One other study showed a significant association between a reduced embryonic growth and exposure to alcohol (van Uitert et al., 2013b). While many studies have demonstrated an association between alcohol and perinatal outcomes, the exact dose-response relationship and the differential effects of different types of alcohol, remain unknown and urgently require further research because of the large number of social alcohol consumers in the reproductive population.

Caffeine

It has been postulated that caffeine could affect female reproduction by increasing oestrogen production and thereby affecting ovulation (Barbieri, 2001) and corpus luteal function (Homan et al., 2007), resulting in an increase of the

time to pregnancy (Sharma et al., 2013). Caffeine is known to pass the placental barrier and may lead to vasoconstriction of the uteroplacental circulation affecting embryonic and placental growth and development (Chen et al., 2016). Furthermore, during pregnancy the rate of caffeine metabolism decreases and the half-life doubles, leading to higher exposure of the embryo (Chen et al., 2016).

A possible explanation for the heterogeneous results of the time to pregnancy in studies included in the present review (Florack et al., 1994; Bolúmar et al., 1997; Hatch et al., 2012; Wesseling et al., 2016) may be that studies did not always control for residual confounding such as smoking, which, is known to be highly correlated with caffeine consumption (Treur et al., 2016). Moreover, the rate at which caffeine is cleared from the body, which varies between individuals and is affected by environmental factors such as smoking and diet (Peck et al., 2010), may influence the biologic dose and exposure interval. Although these postulated mechanisms may explain the association found between caffeine consumption and the increased risk of miscarriage (Cnattingius

et al., 2000; Feodor Nilsson et al., 2014), reverse causation must be taken into account. It is known that pregnancy symptoms such as nausea and vomiting, which may cause women to consume less caffeine, are more common in healthy pregnancies that result in live births than when a pregnancy ends in a miscarriage (Florack et al., 1994; Bolúmar et al., 1997; Peck et al., 2010; Hatch et al., 2012).

Diet

Diet is known to affect female fecundity (Homan et al., 2007; Sharma et al., 2013). In women of reproductive age, the adherence to the Mediterranean diet (characterized by high consumption of vegetables, fish, fruits, poultry, low-fat dairy products and olive oil (Toledo et al., 2011) reduces the risk of weight gain and insulin resistance (Vujkovic et al., 2010) and increases pregnancy rates by 40% in couples undergoing IVF/ICSI (Fontana and Della Torre 2016). Olive oil is an important source of linoleic acid, which is known to improve the reproductive process (Fontana and Della Torre, 2016). The energy-rich dietary pattern described by Bouwland-Both et al. (2013) is significantly associated with embryonic growth, as measured by CRL. Its high methionine content could explain this association, as this is an essential substrate for the one-carbon pathway. Folate, which is a substrate, and other vitamins, such as B6 and B12, which are co-factors for this pathway, could also play a role in biological processes implicated in growth and programming, especially in the periconception period (Steegers-Theunissen et al., 2013). Furthermore, these vitamins are also associated with increased progesterone concentrations in the luteal phase, improved menstrual cycle regularity and normalization of cycle length, which have all been associated with fecundity (Cueto et al., 2016). These findings could explain the positive association of concentration of vitamin B12 on embryonic development (Parisi et al., 2017) and on fecundity (Cueto et al., 2016).

The expected positive association of multivitamin supplement use and a reduced time to pregnancy was not seen in two studies (Axmon et al., 2006; Mutsaerts et al., 2012). A possible explanation is the low response rate in one study (Axmon et al., 2006) and the fact that the other study was designed for detection of risk factors

for childhood obesity instead of fertility measures (Mutsaerts et al., 2012). Lower miscarriage rates were found with folic acid and/or multivitamin supplement use in three of the four studies included in this review (Gaskins et al., 2014b; Xu et al., 2014; Andersen et al., 2015). Vitamin D is also an important contributor to explain some of the underlying mechanism, as it regulates the synthesis of several hormones including oestradiol, progesterone and human chorionic gonadotrophin by the villous tissue. These hormones are all essential in maintaining the regulation of utero-placental blood flow, the simulation of neovascularization, and maternal immunotolerance to the embryonic allograft (Mousa et al., 2016).

BMI and physical activity

The detrimental effect of being overweight or obese on the time to pregnancy was observed in five out of six studies included in this review (Law et al., 2007; Ramlau-Hansen et al., 2007; Wise et al., 2010; Wise et al., 2013; McKinnon et al., 2016). Only the study of Mutsaerts et al. (2012) showed non-significant results ($p = 0.26$). This is in agreement with a dysregulation of the hypothalamic-pituitary-ovarian axis resulting in abnormalities in secretion of gonadotrophin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone leading to anovulation or decreased oocyte quality and decreased endometrial receptivity in obese women (Barbieri, 2001; Talmor and Dunphy, 2015).

Associated hyperinsulinaemia is also known to disturb the hypothalamic pituitary gonadal axis. The increased concentrations of insulin and leptin lead to insulin and leptin resistance, which in the end impairs ovarian function and fertility success rate (Fontana and Della Torre, 2016). Besides the detrimental effects on fecundity, obesity is also known to increase the risk of miscarriage. It is thought that insulin resistance may be involved in several mechanisms, such as diminished endometrial production of adhesion factors and a lower serum concentration of immunosuppressive proteins (Velela et al., 2008). In this review, heterogeneous results for miscarriage in the four included studies were found (Parazzini et al., 1991; Hahn et al., 2014; Xu et al., 2014; Zhou et al., 2016). This can partly be explained by the fact that it is not always clear whether pre-pregnancy or present

BMI was used. Furthermore, only one paper obtained direct measurements of weight and height instead of obtaining this information through self-reported questionnaires (Zhou et al., 2016).

A healthy amount of physical activity can be beneficial by leading to relaxation and reducing stress. Vigorous physical activity, however, is known to be potentially harmful by exceeding the energy demand over dietary energy intake, thereby resulting in a negative energy balance which results in hypothalamic dysfunction eventually leading to menstrual abnormalities (Sharma et al., 2013). Subsequently, a prolonged time to pregnancy may occur. In this review inconclusive associations were found in studies reporting the association of physical exercise and time to pregnancy (Mutsaerts et al., 2012; Wise et al., 2012; McKinnon et al., 2016). Increasing levels of physical activity is known to be associated with an increased risk of miscarriage (Hegaard et al., 2016). The association between physical activity and risk of miscarriage was reported by two studies in this review. One study reported a decreased risk of miscarriage when performing regular exercise (Xu et al., 2014), whereas the other (Feodor Nilsson et al., 2014) showed a significant increase in the risk of miscarriage with ascending amounts of exercise in minutes per week. This may be due to the fact that the assessment of exercise and the types and intensity differed between the included studies. Furthermore, not every study has data on factors that may affect the level of exercise, for example, nausea in the first trimester.

Strengths and limitations

The present work is the first to systematically review the currently available evidence on the impact of maternal lifestyle factors on periconception outcomes. Although paternal lifestyle factors are known to influence semen quality and quantity and thereby play an important role in the aetiology of periconception outcomes (Hammie et al., 2012; Oostingh et al., 2017), literature on this matter is still scarce. Therefore, it was chosen to only include literature assessing maternal lifestyle factors.

Previous reviews have focused mainly on outcomes in the second or third trimester, birth outcomes or outcomes in childhood or adult life, thereby

ignoring the importance of fecundity, miscarriages and adverse embryonic and placental growth in first trimester. In most of the human studies, data were obtained at birth or after the end of the first trimester of pregnancy, thereby missing the periconception period where most poor perinatal outcomes originate (Macklon *et al.*, 2002; Steegers-Theunissen 2010). Other strengths of this study are that 35 out of 49 studies included in the review were large, with more than 1000 participants, increasing the power of the studies. Most studies focusing on the impact of periconceptional maternal lifestyle factors have only been performed in the subfertile population (Chavarro *et al.*, 2007; Vujkovic *et al.*, 2009; Vujkovic *et al.*, 2010), whereas in this review studies in the IVF/ICSI population were excluded, making the results more applicable for the general population. Finally, most of the included studies were prospective studies, which reduced the chances of selection bias, recall bias and reverse causation. Nonetheless, prospective studies may be affected by selection bias because they are usually limited to couples planning a pregnancy and thus excluding the large group of couples with an unplanned pregnancy. The chance of inclusion bias, however, was reduced by including studies of countries from all around the world. The retrospective studies may be at higher risk of selection bias because most of these studies were limited to women who became pregnant, thus excluding less fertile or sterile women. Moreover, it is also known that highly educated people are more often willing to complete questionnaires (Thiel 2014), giving rise to selection bias.

Despite the extensive literature search, the amount of evidence and its quality was relatively low. From the current literature, no definite conclusions on causal relationships can be drawn. There is lack of uniformity in the application of terminology in this field with terms such as 'fertility', 'fecundity' and 'fecundability' often being used interchangeably and with variations in the definition of time to pregnancy. Observational studies on the impact of alcohol usage, caffeine and smoking are often based on self-reported information, giving rise to recall and social desirability bias, and are not always supported by biological data, such as cotinine concentrations for the cigarette exposure. There was also a possible bias

of under-reporting negative issues such as smoking and alcohol use in couples trying to conceive, which should be taken into account. Finally, there was inconsistency in how exposures and outcomes were reported. For example, alcohol use was variously coded as grams of alcohol per day, drinks per week, units per week, number of days per week alcohol was consumed or frequency of binge drinking. The same is true for caffeine and smoking. Misclassification of gestational age can occur when using the first day of the last menstrual period due to variation in cycle length. Even when studies only included women with regular cycles of approximately 28 days, misclassification might still be an issue of concern since the postconceptional age is dependent on the timing of ovulation and implementation. Furthermore, miscarriage was often not divided into first- or second-trimester; instead, the whole period until a gestational age of 20 weeks is included. Within this context, we were unable to perform a meta-analysis.

CONCLUSION

This review shows that several modifiable maternal lifestyle factors are associated with fecundity and other periconception outcomes such as miscarriage, time to pregnancy and embryonic growth. Several studies have indicated that poor lifestyle factors are very common among women of childbearing age and thus remain of major concern (Inskip *et al.*, 2009). The prevalence of smoking by women of reproductive age for example, is the same as for society in general (Oskarsdottir *et al.*, 2017), even though it is well known that exposure *in utero* impairs pregnancy outcome and health in childhood and later life (Been *et al.*, 2014). The same applies to the use of alcohol. Several studies have indicated that, despite public health efforts to increase awareness of the risks associated with drinking during pregnancy, worldwide approximately 10% of pregnancies are alcohol-exposed, and in the European region this is up to 25% (Popova *et al.*, 2017a). This review makes clear that future research is needed to understand the associations between maternal lifestyle factors and periconception outcomes, and should in particular focus on unifying measurements of lifestyle factors and outcomes, thereby enabling researchers to collect data for a robust meta-analysis to calculate risk ratios. Furthermore,

causal pathways should be investigated in more detail. Moreover, the data collected in this review suggest that the target window for the investigation of the DOHaD paradigm should be expanded to include the periconception period and support the concept of preconception care accessible to every woman and couple planning a pregnancy.

Overall, the data in the current review indicate that there is urgent need to implement more effective periconception preventative and surveillance strategies. We hope that our data will stimulate a general interest in developing and funding well-designed prospective periconception intervention studies, rather than observational studies, and contribute to a more general awareness in couples planning a pregnancy and the health care professionals supporting them to adopt healthy lifestyles during this critical window of opportunity. They should also be made aware that these adaptations would also reduce subfertility, perinatal mortality and morbidity and subsequent diseases in later life and next generations.

ACKNOWLEDGEMENTS

The authors thank Wichor M. Bramer, biomedical information specialist, for his assistance in the systematic search and assessment of literature. EO was funded by the Department of Obstetrics and Gynecology of the Erasmus University Medical Centre, Rotterdam, the Netherlands and an additional grant from ZonMW; the Netherlands organization for health research and development (project number 209040003).

SUPPLEMENTARY MATERIALS

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.rbmo.2018.09.015.

REFERENCES

Andersen, L.B., Jørgensen, J.S., Jensen, T.K., Dalgård, C., Barington, T., Nielsen, J., Beck-Nielsen, S.S., Husby, S., Abrahamsen, B., Lamont, R.F., Christesen, H.T. **Vitamin d insufficiency is associated with increased risk of firsttrimester miscarriage in the odense child cohort.** *Am J Clin Nutr* 2015; 102: 633–638

Arakawa, C., Yoshinaga, J., Okamura, K., Nakai, K., Satoh, H. **Fish consumption and time to pregnancy in japanese women.** *Int J Hyg Environ Health* 2006; 209: 337–344

Axmon, A., Rylander, L., Albin, M., Hagmar, L. **Factors affecting time to pregnancy.** *Hum Reprod* 2006; 21: 1279–1284

Axmon, A., Rylander, L., Strömberg, U., Hagmar, L. **Time to pregnancy and infertility among women with a high intake of fish contaminated with persistent organochlorine compounds.** *Scand J Work Environ Health* 2000; 26: 199–206

Bakker, R., Steegers, E.A.P., Obradov, A., Raat, H., Hofman, A., Jaddoe, V.W. **Maternal caffeine intake from coffee and tea, fetal growth, and the risks of adverse birth outcomes: The generation r study.** *American Journal of Clinical Nutrition* 2010; 91: 1691–1698

Barbieri, R.L. **The initial fertility consultation: Recommendations concerning cigarette smoking, body mass index, and alcohol and caffeine consumption.** *American Journal of Obstetrics and Gynecology*, 2001

Barker, D.J. **The developmental origins of adult disease.** *J Am Coll Nutr* 2004; 23: 588S–595S

Barker, D.J., Gluckman, P.D., Godfrey, K.M., Harding, J.E., Owens, J.A., Robinson, J.S. **Fetal nutrition and cardiovascular disease in adult life.** *Lancet* 1993; 341: 938–941

Barker, D.J., Osmond, C. **Infant mortality, childhood nutrition, and ischaemic heart disease in england and wales.** *Lancet* 1986; 1: 1077–1081

Barker, D.J., Winter, P.D., Osmond, C., Margetts, B., Simmonds, S.J. **Weight in infancy and death from ischaemic heart disease.** *Lancet* 1989; 2: 577–580

Been, J.V., Nurmatov, U.B., Cox, B., Nawrot, T.S., Van Schayck, C.P., Sheikh, A. **Effect of smoke-free legislation on perinatal and child health: A systematic review and meta-analysis.** *Lancet* 2014; 383: 1549–1560

Bolúmar, F., Olsen, J., Rebagliato, M., Bisanti, L., Juul, S., Olsen, J., Thonneau, P., Karmaus, W., Figá-Talamanca, I., Bisanti, L., Bolúmar, F. **Caffeine intake and delayed conception: A european multicenter study on infertility and subfecundity.** *AM J EPIDEMIOL* 1997; 145: 324–334

Bouwland-Both, M.I., Steegers-Theunissen, R.P., Vujkovic, M., Lesaffre, E.M., Mook-Kanamori, D.O., Hofman, A., Lindemans, J., Russcher, H., Jaddoe, V.W., Steegers, E.A. **A periconceptional energy-rich dietary pattern is associated with early fetal growth: The generation r study.** *BJOG* 2013; 120: 435–445

Broughton, D.E., Moley, K.H. **Obesity and female infertility: Potential mediators of obesity's impact.** *Fertil Steril*. 2017

Bunting, L., Tsibulsky, I., Boivin, J. **Fertility knowledge and beliefs about fertility treatment: Findings from the international fertility decision-making study.** *Hum Reprod* 2013; 28: 385–397

Caan, B., Quesenberry, C.P. **Differences in fertility associated with caffeinated beverage consumption.** *American Journal of Public Health* 1998; 88: 270–274

Carter, P., Gray, L.J., Troughton, J., Khunti, K., Davies, M.J. **Fruit and vegetable intake and incidence of type 2 diabetes mellitus: Systematic review and meta-analysis.** *BMJ* 2010; 341: c4229

Chavarro, J.E., Rich-Edwards, J.W., Rosner, B.A., Willett, W.C. **Diet and lifestyle in the prevention of ovulatory disorder infertility.** *Obstet Gynecol* 2007; 110: 1050–1058

Chen, L.W., Wu, Y., Neelakantan, N., Chong, M.F., Pan, A., Van Dam, R.M. **Maternal caffeine intake during pregnancy and risk of pregnancy loss: A categorical and dose-response meta-analysis of prospective studies.** *Public Health Nutr* 2016; 19: 1233–1244

Cnattingius, S., Signorelli, L.B., Anerén, G. **Caffeine intake and the risk of first-trimester spontaneous abortion.** *New England Journal of Medicine* 2000; 343: 1839–1845

Crawford, S., Smith, R.A., Kuwabara, S.A., Grigorescu, V. **Risks factors and treatment use related to infertility and impaired fecundity among reproductive-aged women.** *J Womens Health (Larchmt)* 2017

Cueto, H.T., Riis, A.H., Hatch, E.E., Wise, L.A., Rothman, K.J., Sorensen, H.T., Mikkelsen, E.M. **Folic acid supplementation and fecundability: A danish prospective cohort study.** *Eur J Clin Nutr* 2016; 70: 66–71

De Brito, M.L., Nunes, M., Bernardi, J.R., Bosa, V.L., Goldani, M.Z., Da Silva, C.H. **Somatic growth in the first six months of life of infants exposed to maternal smoking in pregnancy.** *BMC Pediatr* 2017; 17: 67

Dechanet, C., Anahory, T., Mathieu Daudé, J.C., Quantin, X., Reyftmann, L., Hamamah, S., Hedon, B., Dechaud, H. **Effects of cigarette smoking on reproduction.** *Hum Reprod Update* 2011; 17: 76–95

Eggert, J., Theobald, H., Engfeldt, P. **Effects of alcohol consumption on female fertility during an 18-year period.** *Fertil Steril* 2004; 81: 379–383

Feodor Nilsson, S., Andersen, P.K., Strandberg-Larsen, K., Nybo Andersen, A.M. **Risk factors for miscarriage from a prevention perspective: A nationwide follow-up study.** *BJOG Int J Obstet Gynaecol* 2014; 121: 1375–1384

Florack, E.I.M., Zielhuis, G.A., Rolland, R. **Cigarette smoking, alcohol consumption, and caffeine intake and fecundability.** *Preventive Medicine*. 1994

Fontana, R., Della Torre, S. **The deep correlation between energy metabolism and reproduction: A view on the effects of nutrition for women fertility.** *Nutrients* 2016; 8: 87

Freour, T., Masson, D., Mirallie, S., Jean, M., Bach, K., Dejoie, T., Barriere, P. **Active smoking compromises ivf outcome and affects ovarian reserve.** *Reprod BioMed Online* 2008; 16: 96–102

Gaskins, A.J., Rich-Edwards, J.W., Colaci, D.S., Afeiche, M.C., Toth, T.L., Gillman, M.W., Missmer, S.A., Chavarro, J.E. **Prepregnancy and early adulthood body mass index and adult weight change in relation to fetal loss.** *Obstet Gynecol* 2014; 124: 662–669

Gaskins, A.J., Rich-Edwards, J.W., Hauser, R., Williams, P.L., Gillman, M.W., Ginsburg, E.S., Missmer, S.A., Chavarro, J.E. **Maternal prepregnancy folate intake and risk of spontaneous abortion and stillbirth.** *Obstet Gynecol* 2014; 124: 23–31

Gaskins, A.J., Rich-Edwards, J.W., Williams, P.L., Toth, T.L., Missmer, S.A., Chavarro, J.E. **Prepregnancy low to moderate alcohol intake is not associated with risk of spontaneous abortion or stillbirth.** *J Nutr* 2016; 146: 799–805

Gill, J. **The effects of moderate alcohol consumption on female hormone levels and reproductive function.** *Alcohol Alcohol* 2000; 35: 417–423

Hahn, K.A., Hatch, E.E., Rothman, K.J., Mikkelsen, E.M., Brogly, S.B., Sørensen, H.T., Riis, A.H., Wise, L.A. **Body size and risk of spontaneous abortion among danish pregnancy planners.** *Paediatr Perinat Epidemiol* 2014; 28: 412–423

Hahn, K.A., Wise, L.A., Rothman, K.J., Mikkelsen, E.M., Brogly, S.B., Sørensen, H.T., Riis, A.H., Hatch, E.E. **Caffeine and caffeinated beverage consumption and risk of spontaneous abortion.** *Hum Reprod* 2015; 30: 1246–1255

Hakim, R.B., Gray, R.H., Zacur, H. **Alcohol and caffeine consumption and decreased fertility.** *Fertility and Sterility*. 1998

Hammiche, F., Laven, J.S., Twigt, J.M., Boellaard, W.P., Steegers, E.A., Steegers-Theunissen, R.P. **Body mass index and central adiposity are associated with sperm quality in men of subfertile couples.** *Hum Reprod* 2012; 27: 2365–2372

Hammiche, F., Laven, J.S., Van Mil, N., De Cock, M., De Vries, J.H., Lindemans, J., Steegers, E.A., Steegers-Theunissen, R.P. **Tailored preconceptional dietary and lifestyle counselling in a tertiary outpatient clinic in the netherlands.** *Hum Reprod* 2011; 26: 2432–2441

Hatch, E.E., Wise, L.A., Mikkelsen, E.M., Christensen, T., Riis, A.H., Sørensen, H.T., Rothman, K.J. **Caffeinated beverage and soda consumption and time to pregnancy.** *Epidemiology* 2012; 23: 393–401

Hegaard, H.K., Ersbøll, A.S., Damm, P. **Exercise in pregnancy: First trimester risks.** *Clin Obstet Gynecol* 2016; 59: 559–567

Homan, G.F., Davies, M., Norman, R. **The impact of lifestyle factors on reproductive performance in the general population and those undergoing infertility treatment: A review.** *Hum Reprod Update* 2007; 13: 209–223

Hull, M.G., North, K., Taylor, H., Farrow, A., Ford, W.C. **Delayed conception and active and passive smoking. The avon longitudinal study of pregnancy and childhood study team.** *Fertil Steril* 2000; 74: 725–733

Inskip, H.M., Crozier, S.R., Godfrey, K.M., Borland, S.E., Cooper, C., Robinson, S.M. **Women's compliance with nutrition and lifestyle recommendations before pregnancy: General population cohort study.** *British Medical Journal*. 2009: 338

Jensen, T.K., Hjollund, N.H.I., Henriksen, T.B., Scheike, T. **Does moderate alcohol consumption affect fertility? Follow up study among couples planning first pregnancy.** *BMJ* 1998

Juhl, M., Andersen, A.M.N., Grønbæk, M., Olsen, J. **Moderate alcohol consumption and waiting time to pregnancy.** *Hum Reprod* 2001; 16: 2705–2709

Juhl, M., Olsen, J., Andersen, A.M.N., Grønbæk, M. **Intake of wine, beer and spirits and waiting time to pregnancy.** *Hum Reprod* 2003; 18: 1967-1971

Kesmodel, U., Wisborg, K., Olsen, S.F., Henriksen, T.B., Secher, N.J. **Moderate alcohol intake in pregnancy and the risk of spontaneous abortion.** *Alcohol Alcohol* 2002; 37: 87-92

Koning, I.V., Baken, L., Groenenberg, I.A., Husen, S.C., Dudink, J., Willemsen, S.P., Gijtenbeek, M., Koning, A.H., Reiss, I.K., Steegers, E.A., Steegers-Theunissen, R.P. **Growth trajectories of the human embryonic head and periconceptional maternal conditions.** *Hum Reprod* 2016; 31: 968-976

Koning, I.V., Dudink, J., Groenenberg, I.A.L., Willemsen, S.P., Reiss, I.K.M., Steegers-Theunissen, R.P.M. **Prenatal cerebellar growth trajectories and the impact of periconceptional maternal and fetal factors.** *Hum Reprod* 2017; 32: 1230-1237

Lassi, Z.S., Imam, A.M., Dean, S.V., Bhutta, Z.A. **Preconception care: Caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure.** *Reprod Health* 2014; 11: S6

Laurent, S.L., Thompson, S.J., Addy, C., Garrison, C.Z., Moore, E.E. **An epidemiologic study of smoking and primary infertility in women.** *FERTIL STERIL* 1992; 57: 565-572

Law, D.C.G., Maclehose, R.F., Longnecker, M.P. **Obesity and time to pregnancy.** *Human Reproduction*. 2007

Lopez-Del Burgo, C., Gea, A., De Irala, J., Martínez-González, M.A., Chavarro, J.E., Toledo, E. **Alcohol and difficulty conceiving in the sun cohort: A nested case-control study.** *Nutrients* 2015; 7: 6167-6178

Macklon, N.S., Geraedts, J.P., Fauser, B.C. **Conception to ongoing pregnancy: The 'black box' of early pregnancy loss.** *Hum Reprod Update* 2002; 8: 333-343

Mckinnon, C.J., Hatch, E.E., Rothman, K.J., Mikkelsen, E.M., Wesselink, A.K., Hahn, K.A., Wise, L.A. **Body mass index, physical activity and fecundability in a north american preconception cohort study.** *Fertil Steril* 2016; 106: 451-459

Mikkelsen, E.M., Riis, A.H., Wise, L.A., Hatch, E.E., Rothman, K.J., Cueto, H.T., Sørensen, H.T. **Alcohol consumption and fecundability: Prospective danish cohort study.** *BMJ (Online)* 2016; 354

Mook-Kanamori, D.O., Steegers, E.a.P., Eilers, P.H., Raat, H., Hofman, A., Jaddoe, V.W.V. **Risk factors and outcomes associated with first-trimester fetal growth restriction.** *Jama-Journal of the American Medical Association* 2010; 303: 527-534

Mousa, A., Abell, S., Scragg, R., De Courten, B. **Vitamin d in reproductive health and pregnancy.** *Semin Reprod Med* 2016; 34: e1-13

Mutsaerts, M.a.Q., Groen, H., Huiting, H.G., Kuchenbecker, W.K.H., Sauer, P.J.J., Land, J.A., Stolk, R.P., Hoek, A. **The influence of maternal and paternal factors on time to pregnancy-a dutch population-based birth-cohort study: The gecko drenthe study.** *Hum Reprod* 2012; 27: 583-593

National Collaborating Centre. Quality assessment tool for quantitative studies. 2008McMaster UniversityHamilton, ON

Oostingh, E.C., Steegers-Theunissen, R.P., De Vries, J.H., Laven, J.S., Koster, M.P. **Strong adherence to a healthy dietary pattern is associated with better semen quality, especially in men with poor semen quality.** *Fertil Steril* 2017; 107: 916-923

Oskarsdottir, G.N., Sigurdsson, H., Gudmundsson, K.G. **Smoking during pregnancy: A population-based study.** *Scand J Public Health* 2017; 45: 10-15

Painter, R.C., Roseboom, T.J., Bleker, O.P. **Prenatal exposure to the dutch famine and disease in later life: An overview.** *Reprod Toxicol* 2005; 20: 345-352

Parazzini, Bocciolone, Fedele **Risk factors for spontaneous abortion.** *International Journal of Epidemiology* 1991; 20: 157-161

Parisi, F., Rousian, M., Koning, A.H., Willemsen, S.P., Cetin, I., Steegers-Theunissen, R.P. **Periconceptional maternal one-carbon biomarkers are associated with embryonic development according to the carnegie stages.** *Human reproduction (Oxford, England)* 2017; 32: 523-530

Peck, J.D., Leviton, A., Cowan, L.D. **A review of the epidemiologic evidence concerning the reproductive health effects of caffeine consumption: A 2000-2009 update.** *Food Chem Toxicol* 2010; 48: 2549-2576

Popova, S., Lange, S., Probst, C., Gimel, G., Rehm, J. **Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis.** *Lancet Glob Health* 2017; 5: e290-e299

Popova, S., Lange, S., Probst, C., Parunashvili, N., Rehm, J. **Prevalence of alcohol consumption during pregnancy and fetal alcohol spectrum disorders among the general and aboriginal populations in canada and the united states.** *Eur J Med Genet* 2017; 60: 32-48

Prabhu, N., Smith, N., Campbell, D., Craig, L.C., Seaton, A., Helms, P.J., Devereux, G., Turner, S.W. **First trimester maternal tobacco smoking habits and fetal growth.** *Thorax* 2010; 65: 235-240

Radin, R.G., Hatch, E.E., Rothman, K.J., Mikkelsen, E.M., Sørensen, H.T., Riis, A.H., Wise, L.A. **Active and passive smoking and fecundability in danish pregnancy planners.** *Fertil Steril* 2014; 102: 183-191

Ramlau-Hansen, C.H., Thulstrup, A.M., Nohr, E.A., Bonde, J.P., Sørensen, T.I.A., Olsen, J. **Subfecundity in overweight and obese couples.** *Hum Reprod* 2007; 22: 1634-1637

Ravelli, G.P., Stein, Z.A., Susser, M.W. **Obesity in young men after famine exposure in utero and early infancy.** *N Engl J Med* 1976; 295: 349-353

Ronnenberg, A.G., Goldman, M.B., Chen, D., Aitken, I.W., Willett, W.C., Selhub, J., Xu, X. **Preconception folate and vitamin b(6) status and clinical spontaneous abortion in chinese women.** *Obstet Gynecol* 2002; 100: 107-113

Rousian, M., Koning, A.H., Van Oppenraaij, R.H., Hop, W.C., Verwoerd-Dikkeboom, C.M., Van Der Spek, P.J., Exalto, N., Steegers, E.A. **An innovative virtual reality technique for automated human embryonic volume measurements.** *Hum Reprod* 2010; 25: 2210-2216

Rousian, M., Verwoerd-Dikkeboom, C.M., Koning, A.H., Hop, W.C., Van Der Spek, P.J., Steegers, E.A., Exalto, N. **First trimester umbilical cord and vitelline duct measurements using virtual reality.** *Early Hum Dev* 2011; 87: 77-82

Sapra, K.J., Barr, D.B., Maisog, J.M., Sundaram, R., Buck Louis, G.M. **Time-to-pregnancy associated with couples' use of tobacco products.** *Nicotine Tob Res* 2016; 18: 2154-2161

Sharma, R., Biedenharn, K.R., Fedor, J.M., Agarwal, A. **Lifestyle factors and reproductive health: Taking control of your fertility.** *Reprod Biol Endocrinol* 2013; 11: 66

Somigliana, E., Paffoni, A., Lattuada, D., Colciaghi, B., Filippi, F., La Vecchia, I., Tirelli, A., Baffero, G.M., Persico, N., Viganò, P., Bolis, G., Fedele, L. **Serum levels of 25-hydroxyvitamin d and time to natural pregnancy.** *Gynecol Obstet Invest* 2016; 81: 468-471

Steegers-Theunissen, R.P. 2010. **Nieuw leven in een veranderende omgeving.**

Steegers-Theunissen, R.P., Steegers, E.A. **Embryonic health: New insights, mhealth and personalised patient care.** *Reprod Fertil Dev* 2015; 27: 712-715

Steegers-Theunissen, R.P., Twigt, J., Pestinger, V., Sinclair, K.D. **The periconceptional period, reproduction and long-term health of offspring: The importance of one-carbon metabolism.** *Hum Reprod Update* 2013; 19: 640-655

Stein, Z.A. **Famine and human development: Dutch hunger winter of 1944-45.** 1975Oxford University Press

Strandberg-Larsen, K., Nielsen, N.R., Grønbæk, M., Andersen, P.K., Olsen, J., Andersen, A.M.N. **Binge drinking in pregnancy and risk of fetal death.** *Obstet Gynecol* 2008; 111: 602-609

Stroup, D.F., Berlin, J.A., Morton, S.C., Olkin, I., Williamson, G.D., Rennie, D., Moher, D., Becker, B.J., Sipe, T.A., Thackeray, S.B. **Meta-analysis of observational studies in epidemiology: A proposal for reporting.** *Meta-analysis of observational studies in epidemiology (moose) group.* *JAMA*. 2000; 283: 2008-2012

Talmor, A., Dunphy, B. **Female obesity and infertility.** *Best Pract Res Clin Obstet Gynaecol* 2015; 29: 498-506

Temel, S., Van Voorst, S.F., Jack, B.W., Denktaş, S., Steegers, E.A. **Evidence-based preconceptional lifestyle interventions.** *Epidemiol Rev* 2014; 36: 19-30

Thiel, S.V. **Research methods in public administration and public management.** Routledge 2014

Toledo, E., Lopez-Del Burgo, C., Ruiz-Zambrana, A., Donazar, M., Navarro-Blasco, I., Martinez-Gonzalez, M.A., De Irala, J. **Dietary patterns and difficulty conceiving: A nested case-control study.** *Fertility and Sterility* 2011; 96: 1149-1153

Treut, J.L., Taylor, A.E., Ware, J.J., McMahon, G., Hottenga, J.J., Baselmans, B.M., Willemsen, G., Boomsma, D.I., Munafò, M.R., Vink, J.M. **Associations between smoking and caffeine consumption in two european cohorts.** *Addiction* 2016; 111: 1059-1068

Van Lieshout, R.J. **Role of maternal adiposity prior to and during pregnancy in cognitive and psychiatric problems in offspring.** *Nutr Rev* 2013; 71: S95-101

Van Uitert, E.M., Exalto, N., Burton, G.J., Willemsen, S.P., Koning, A.H., Eilers, P.H., Laven, J.S., Steegers, E., Steegers-Theunissen, R.P. **Human embryonic growth trajectories and associations with fetal growth and birthweight.** *Hum Reprod* 2013; 28: 1753-1761

Van Uitert, E.M., Van Der Elst-Otte, N., Wilbers, J.J., Exalto, N., Willemsen, S.P., Eilers, P.H., Koning, A.H., Steegers, E.A., Steegers-Theunissen, R.P. **Periconception maternal**

characteristics and embryonic growth trajectories: The rotterdam predict study. Hum Reprod 2013; 28: 3188–3196

Van Uitert, E.M., Van Ginkel, S., Willemsen, S.P., Lindemans, J., Koning, A.H.J., Eilers, P.H.C., Exalto, N., Laven, J.S.E., Steegers, E.a.P., Steegers-Theunissen, R.P.M. **An optimal periconception maternal folate status for embryonic size: The rotterdam predict study.** BJOG Int J Obstet Gynaecol 2014; 121: 821–829

Veleva, Z., Tiitinen, A., Vilska, S., Hyden-Granskog, C., Tomas, C., Martikainen, H., Tapanainen, J.S. **High and low bmi increase the risk of miscarriage after ivf/icsi and fet.** Hum Reprod 2008; 23: 878–884

Vujkovic, M., De Vries, J.H., Dohle, G.R., Bonsel, G.J., Lindemans, J., Macklon, N.S., Van Der Spek, P.J., Steegers, E.A., Steegers-Theunissen, R.P. **Associations between dietary patterns and semen quality in men undergoing ivf/icsi treatment.** Hum Reprod 2009; 24: 1304–1312

Vujkovic, M., De Vries, J.H., Lindemans, J., Macklon, N.S., Van Der Spek, P.J., Steegers, E.A., Steegers-Theunissen, R.P. **The preconception mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy.** Fertil Steril 2010; 94: 2096–2101

Wesselink, A.K., Wise, L.A., Rothman, K.J., Hahn, K.A., Mikkelsen, E.M., Mahalingaah, S., Hatch, E.E. **Caffeine and caffeinated beverage consumption and fecundability in a preconception cohort.** Reprod Toxicol 2016; 62: 39–45

Windham, G.C., Von Behren, J., Fenster, L., Schaefer, C., Swan, S.H. **Moderate maternal alcohol consumption and risk of spontaneous abortion.** EPIDEMIOLOGY 1997; 8: 509–514

Wise, L.A., Palmer, J.R., Rosenberg, L. **Body size and time-to-pregnancy in black women.** Hum Reprod 2013; 28: 2856–2864

Wise, L.A., Rothman, K.J., Mikkelsen, E.M., Sørensen, H.T., Riis, A., Hatch, E.E. **An internet-based prospective study of body size and time-to-pregnancy.** Hum Reprod 2010; 25: 253–264

Wise, L.A., Rothman, K.J., Mikkelsen, E.M., Sørensen, H.T., Riis, A.H., Hatch, E.E. **A prospective cohort study of physical activity and time to pregnancy.** Fertil Steril 2012; 97: 1136–1142

Xu, G.L., Wu, Y.M., Yang, L.M., Yuan, L., Guo, H.F., Zhang, F.Q., Guan, Y.C., Yao, W. **Risk factors for early miscarriage among chinese: A hospital-based case-control study.** Fertility and Sterility 2014; 101: 1663–1670

Zegers-Hochschild, F., Adamson, G.D., Dyer, S., Racowsky, C., De Mouzon, J., Sokol, R., Rienzi, L., Sunde, A., Schmidt, L., Cooke, I.D., Simpson, J.L., Van Der Poel, S. **The international glossary on infertility and fertility care, 2017.** Hum Reprod 2017; 32: 1786–1801

Zhou, H., Liu, Y., Liu, L., Zhang, M., Chen, X., Qi, Y. **Maternal pre-pregnancy risk factors for miscarriage from a prevention perspective: A cohort study in china.** Eur J Obstet Gynecol Reprod Biol 2016; 206: 57–63

Received 6 December 2017; received in revised form 31 August 2018; accepted 4 September 2018.