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ABSTRACT

Primordial germ cells (PGCs), the precursors of the gametes, are now claimed to segregate within the extra-embryonic tissues of three species of

placental mammals. In this brief Commentary, | raise the question of whether the so-called PGCs are not PGCs at all, but rather, progenitor cells that

build the fetal-placental interface in Placentalia.

© 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

Introduction

Biologists have long been preoccupied with the origin of the mam-
malian germ line. At present the general consensus, based on studies
in the mouse model, is that its antecedents arise within the pluripo-
tent epiblast, move to the extra-embryonic region where they segregate
from the soma, and from there, primordial germ cells (PGCs) re-
enter the embryo to migrate to the gonads via the hindgut. This
conclusion is based on over a century of description, beginning with
morphology (Simkins, 1923}, and followed by biochemical activity for
alkaline phosphatase (AlkP) (Chiquoine, 1954; Witschi, 1948). Then,
once molecular methods became available for sorting small cell popu-
lations, AlkP-positive cells were probed for genes ‘uniquely’ expressed
at the embryonic-extra-embryonic interface (Ohinata et al., 2005; Saitou
et al., 2002). At present, gene expression is the status quo by which
PGCs are identified and studied in the posterior region of Placentalia.

Despite current efforts directed toward establishing higher orders
of gene expression within AlkP-positive cells (e.g. Sasaki et al., 2016},
germ cell biologists have overlooked a fundamental principle of de-
velopmental biology: gene expression and cell lineage do not form
an obligate ancestral relationship (Beddington, 1988]. In the case
of the germ line, not a single study has demonstrated that extra-
embryonically 'segregating’ PGCs end up in the gonads (reviewed in
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Mikedis and Downs, 2014). A similar lament was published nearly a
century ago when PGCs were claimed to be recognizable by mor-
phology (Simkins, 1923):

“Many investigators have considered the problem solved in favour
of a morphological continuity of germ cells when certain cells, des-
ignated as primordial germ cells, have been followed from their
place of origin over long distances of intervening structures to the
site of the germ-gland fundament. Some workers have been so
sure that these cells were the true fore-runners of the repro-
ductive cells that they have not followed the history of them through
the critical period of gonogenesis, although such study is essen-
tial for determining whether or not these cells actually become
transformed into definitive ova and spermatozoa; it was assumed
that they were, because of certain resemblances which they bore
to the early oogonia and spermatogonia.”

In this brief Commentary, | point out that fate mapping presump-
tive PGCs from the extra-embryonic region of the mammalian conceptus
to the gonads remains elusive. Further, based on new insights into the
properties of the posterior embryonic-extra-embryonic region, where
PGCs are thought to segregate from the soma, | ask whether the so-
called extra-embryonic antecedents to the germ line are not PGCs at
all, but rather progenitor cells that build the fetal-placental interface.

1472-6483/© 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
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| conclude with current - and equally controversial - thoughts about
where mammalian germ line progenitors might originate.

Origin of the germ line

Pluripotency is expected to be a major feature of PGCs which, after
maturation into the gametes and their subsequent union, recapitu-
late the entire organism. During cleavage stages, all blastomeres
appear capable of contributing to the germ line (Tarkowski et al., 2010).
Upon formation of the blastocyst, two major cell types appear: the
inner cell mass (ICM) and the trophoblast (‘trophectoderm’ in mice).
Trophectoderm does not contribute to tissues other than the pla-
centae (Gardner et al., 1973; Papioannou, 1982; Tanaka et al., 1998),
while individual cells of the ICM are pluripotent (Gardner and Lyon,
1971). At implantation, the ICM differentiates into the epiblast and
primitive endoderm. Pluripotent epiblast cells contribute to soma, both
embryonic and extra-embryonic, and to the germ line (Gardner et al.,
1985). By contrast, primitive endoderm has not historically demon-
strated such widespread potential (Gardner, 1972; Gardner and
Rossant, 1979; Kunath et al., 2005). Thus, the germ line resides some-
where within the epiblast.

During gastrulation, the embryo becomes apparent as a result of
formation of the primitive streak, or antero-posterior body axis (Corner,
1944); the embryo’s associated extra-embryonic tissues, amnion, al-
lantois, yolk sac and chorion, coalesce into two major placentae, the
chorio-allantoic placenta and the chorio-vitelline (yolk sac) pla-
centa, which collaborate to create a patterned and efficient vascular
conduit from the fetus to its mother for exchange of nutrients, wastes
and gases within the womb.

Epiblast-derived cells enter the posterior extra-embryonic space
and there, segregate from the soma: yolk sac visceral endoderm in
humans (Witschi, 1948), the base of the allantois in the mouse (Lawson
and Hage, 1994; Ozdzenski, 1967), and the amnion in a non-human
primate (Sasaki et al., 2016). Is there a pattern? Yes, it would seem
so: major tissue components of the placentae segregate PGCs.

Why would the mammalian germ line come into being at such great
distances from the eventual site of gonad formation? The most cited
rationale is that pressures of determination and differentiation in the
embryo during gastrulation threaten PGC potency that must be pre-
served (McLaren, 1992]. As a result, germ cell antecedents take refuge
in extra-embryonic tissues, segregating there and then re-entering
the embryo when the coast is clear. However, not only is a formal
demonstration of continuity between putative PGCs and the gonads
lacking, but this proposition is wholly embryo-centric: it fails to ac-
knowledge that extra-embryonic tissues have properties, too. For
example, by contrast with the epiblast, extra-embryonic tissues can
sustain higher orders of ploidy (Tarkowski et al., 1977). Thus, the extra-
embryonic environment is more tolerant than the embryonic one in
accommodating cells that accumulate changes in chromosomal
number. On that basis, an extra-embryonic site would hardly seem
the place to invite formation of the future germ line, whose chromo-
somal integrity must be upheld.

As far as concerns MclLaren’s claim that gastrulation is confined
to the embryo, this long-held belief has recently been challenged. Gas-
trulation is defined by the activity of the primitive streak (Snell and
Stevens, 1966). Contrary to prevailing notions (Downs, 2009), the mouse
primitive streak is not limited to the embryo proper (Sobotta, 1911)
but rather, extends into the allantois, where its posterior

terminus expands into a dense cellular core, defined by Brachyury,
and is provisionally named the ‘allantoic core domain’ (ACD) (Downs
et al., 2009). Fate mapping showed that this extra-embryonic ACD,
like the embryonic primitive streak (Tam and Beddington, 1987), is
a pluripotent progenitor cell pool that contributes to derivatives of
all three primary germ layers at the fetal-placental interface, both
embryonic and extra-embryonic (Mikedis and Downs, 2012). Thus, gas-
trulation encompasses the extra-embryonic region, too.

The discovery of the ACD within the base of the allantois repre-
sented a paradigm shift in understanding the biology of Mammalia,
because a primitive streak that extends into the allantois possesses
not only progenitor cells that build this vital organ, but also requi-
site spatial coordinates to organize the vascular connection between
the fetus and its placenta. Indeed, via Brachyury, the primitive streak
regulates placement of a unique but hitherto undocumented blood
vessel, the 'vessel of confluence’ (Daane et al., 2011; Downs et al.,
1998; Inman and Downs, 2006), within the allantois (Rodriguez et al.,
2017). As a result, the axially positioned vessel of confluence becomes
a fixed branchpoint that, through patterning involving the fibroblast
growth factor family, unites the umbilical, omphalomesenteric and
fetal cardiovascular systems (Rodriguez et al., 2017). Mis-patterning
the fetal-placental connection leads to severe birth defects (Rodriguez
et al., 2017; Schreiner and Hoornbeek, 1973). The vessel of conflu-
ence and dense allantoic core are conserved across all Placentalia
thus far examined, including humans (Rodriguez et al., 2017); con-
servation underscores the collective importance of these newly
unearthed features in the fetal-placental connection.

Such fresh insights into the biology of the posterior embryonic-
extra-embryonic region highlight the principle that, in Placentalia, the
fetus does not make contact with its mother via its own devices. Rather,
embryonic and extra-embryonic regions are unified through a common
axial midline that organizes this relationship, and whose progenitor
cells contribute to the fetal-placental interface.

Gene expression, potency and placental tissues

Not only does the allantois possess a source of progenitor cells used
to build the placentae but so, too, do the amnion (Miki and Strom, 2006),
chorion (Uy et al., 2002) and allantois-associated yolk sac (Rodriguez
and Downs, 2017). All of these extra-embryonic tissues exhibit AlkP
activity (Hahnel et al., 1990; MacGregor et al., 1995) which is found
in most, if not all, stem cells (Benham et al., 1983; Bernstine et al.,
1973). Despite its preponderance in the extra-embryonic region and
throughout the epiblast, to the present day, AlkP activity is claimed
to selectively identify PGCs within the base of the allantois, associ-
ated visceral endoderm and the ventral component of the hindgut
(reviewed in Mikedis and Downs, 2014). In addition to ALkP, other
factors involved in the biology of stem cells have been found in extra-
embryonic tissues. For example, c-myc is present in the derivatives
of trophectoderm and in the base of the allantois (Downs et al., 1989)
while OCT-3/4 has been identified in the ACD and adjacent yolk sac
(Downs, 2008; Scholer et al., 1990).

Transcriptome analysis of posterior AlkP-positive cells led to the
identification of BLIMP1 (PRDM1) and STELLA (DPPA3, PGC7) (Ohinata
et al., 2005; Saitou et al., 2002), whose initial localization heralded
these proteins as unique to the germ line antecedents (Ohinata et al.,
2005; Saitou et al., 2002). Thus, on the basis of localization that was
limited to a few stages and a few tissues in whole mount analyses,
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BLIMP1 and STELLA became the gold standard, in common use, for
identifying PGCs. However, more thorough immunohistochemical
analysis in histological sections at numerous developmental timepoints
separated by 2-4 hour intervals from just before the time of appear-
ance of the allantois through hindgut formation contradicts claims
of restriction, showing rather that BLIMP1 and STELLA localize, both
alone and together, to tissues that encompass the entire posterior
embryonic-extra-embryonic interface (Mikedis and Downs, 2012, 2017).
Such widespread localization precludes calling any single cell a PGC;
further, localization is consistent with the presence of placental pro-
genitor cells that build the fetal-placental connection.

Within the PGC trajectory, at least five STELLA sub-populations
have now been documented (Wolfe et al., 2017). These include co-
localization with RUNX1, which is associated with hemangioblasts
(North et al., 1999, 2002), and with FOXa2, a protein generally asso-
ciated with endoderm (Kubo et al., 2004). Cells bearing ‘markers’
diagnostic of PGCs have been proposed as progenitors of hemato-
poietic cells (Scaldaferri et al., 2015), and STELLA facilitates
differentiation into endoderm in human cells (Wongtrakoongate et al.,
2013). Thus, STELLA is not found in a single cell type, but rather col-
laborates in distinct mesendodermal cell sub-populations at the fetal-
placental interface in the mouse gastrula. Further, fate mapping
showed that the STELLA-positive distal component of the ACD con-
tributes only to the placenta and not to the fetus (Mikedis and Downs,
2012), making it more unlikely that STELLA is a unique marker of al-
lantoic PGCs. Thus, while STELLA and BLIMP1 may be key players
of a generalized pluripotent state (Nakamura et al., 2007; Payer et al.,
2003; Surani et al., 2007), they cannot identify a segregated PGC popu-
lation at the embryonic-extra-embryonic interface.

PGCs and the hindgut

From their site of segregation in extra-embryonic tissues, the PGCs
translocate into the hindgut (Chiquoine, 1954; Clarke and Eddy, 1975;
Lawson and Hage, 1994). Given the lack of fate mapping, this claim
may be based on observations that ALkP activity is attenuated in the
base of the allantois at the same time that it goes up in the hindgut
(Chiquoine, 1954). However, as shown by results of more recent
studies, this period of ALlkP down/up-regulation coincides with dif-
ferentiation of the allantois into the nascent umbilical cord and the
appearance of the hindgut. Specifically, as the allantois fuses with
the chorion (Downs and Gardner, 1995), its mitotic index decreases
(Downs and Bertler, 2000), and prospective allantoic angioblasts dif-
ferentiate into patent blood vessels (Downs et al., 1998). The ACD down-
regulates Brachyury, retracting toward the presumptive hindgut
(Downs et al., 2009).

Fate mapping the ACD revealed that some of its descendant cells
colonized the hindgut (Mikedis and Downs, 2012) where both STELLA
and BLIMP1 have been identified (Mikedis and Downs, 2012, 2017).
While there appears to be developmental continuity between the al-
lantois and hindgut, are any of the ACD-derived hindgut cells really
PGCs? Perhaps they are progenitor populations for building the gut.
Without being able to trace hindgut ‘PGCs’ to the gonads, there is no
proof for or against. To add further ambiguity to this question, the
gut is composed, in part, of extra-embryonic visceral endoderm (Kwon
et al., 2008) which also exhibits STELLA, BLIMP1 and OCT-3/4 (Downs,
2008; Mikedis and Downs, 2012, 2017). Visceral endoderm might be
a progenitor population that contributes to the dazzling array of gut

cell types, or to the enteric nervous system, whose origin is almost
wholly obscure (Mikedis and Downs, 2017). Gene expression cannot
tell us this. Only fate mapping can.

Induction of PGCs in vitro

As a counterpoint to the thesis presented here, mouse cells bearing
the BLIMP1 and STELLA molecular signature have been induced in
vitro to become eggs (Hayashi et al., 2012) and/or sperm (Hayashi et al.,
2011). However, even peripheral blood can be transformed into the
germ line of mice (Kamimura et al., 2013). As differentiation is op-
erationally defined (Gardner, 1993), investigators should have
introduced induced PGCs into the base of the mouse allantois, and
tracked them as far as the limitations of whole embryo culture would
allow. If, according to conventional wisdom, they were functionally
segregated PGCs, they should have been restricted to the early PGC
trajectory, i.e. the base of the allantois, visceral endoderm and hindgut
over time. Unfortunately, this experiment, which had the potential to
provide support for an extragonadal origin of PGCs at the posterior
interface, while feasible, was not performed. Thus, whether ‘induced’
PGCs are really functionally segregated germ line antecedents remains
to be seen.

The germinal epithelium as a source of PGCs

In both vertebrate amniotes and anamniotes, male and female gonads
differentiate from indifferent genital ridges during embryogenesis
(Grier et al., 2016). As discussed in this Commentary, it is believed
that the PGCs migrate toward the genital ridges through the hindgut
after which they enter its dorsal mesentery. Then, together with the
coelom-derived somatic epithelial cells, PGCs form a ‘germinal epi-
thelium” at the nascent gonadal surface. Depending upon hormonal
activity dictated by the sex chromosomes, the PGCs will become the
spermatogonia of the testis and the oogonia of the ovary, while the
somatic epithelial cells will become the supporting Sertoli cells in
the testes and the follicular cells in the ovaries. Although the ger-
minal epithelium produces the supporting somatic cells in both sexes,
and males produce spermatogonia throughout their lifetime ('life-
time indeterminate fecundity’), a long-standing but controversial view
is that the ovarian germinal epithelium does not produce new oogonia
throughout the female’s lifetime (lifetime determinate fecundity’) (re-
viewed in Tilly et al., 2009). This view goes back to the latter part of
the 19th century (Waldeyer, 1870). Despite an array of subsequent chal-
lenges, beginning in 1923 and continuing to the present (Adsell, 1964;
Allen, 1923; Allen and Creadick, 1937; Bukovsky et al., 2004, 2005;
Butcher, 1927; Duke, 1941, 1944; Hargitt, 1930; Johnson et al., 2004;
Latta and Pederson, 1944; Nikura et al., 2009; Pliske, 1938; Risley,
1934; White et al., 2012), Waldeyer’s view has predominated. However,
in recent years, the possibility that both male and female germ cells
arise from a common origin in the germinal epithelia has finally gained
traction (Grier et al., 2016; Tilly et al., 2009). Moreover, across the
vertebrate kingdom, the germinal epithelium has maintained a con-
stant form and function throughout 500 million years of vertebrate
evolution (Grier et al., 2016). By contrast, the South American plains
vizcacha, Lagostomus maximus, a rodent and close relative of the
guinea pig, shows no signs of the ‘classical’ molecular PGC network
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in the posterior region (Leopardo and Vitullo, 2017); likewise, the rabbit
and the pig show no similarity to the mouse (Hassan and Viebahn,
2017). Given broad conservation of the germinal epithelium across
vertebrate species, formation of germ cells at the actual site of gonad
formation makes more biological - indeed parsimonious - sense than
the status quo of extra-embryonic segregation from the soma based
on indiscriminate morphology and gene expression and a long spa-
tiotemporal voyage to the gonads.

Conclusions

An extra-embryonic origin of the germ line ignores the obvious and
far simpler possibility that PGCs are not segregated germ cells, but
rather, extra-embryonic progenitor cells that build the fetal-placental
interface. To exhort an old phrase: if it smells like an extra-embryonic
placental progenitor cell, then perhaps it is a placental progenitor
cell. The possibility that ‘PGCs’ are placental progenitor cells is en-
tirely consistent with current data. Moreover, loss of so-called ‘PGC
markers’, including AlkP (MacGregor et al., 1995), does not cause in-
fertility, suggesting either that ‘PGC’ proteins carry out redundant roles
in germ cell antecedents or they are not truly required for PGC for-
mation (Mikedis and Downs, 2014). While BLIMP1 has been claimed
to reduce the population of PGCs (Ohinata et al., 2005; Vincent et al.,
2005), the readout for this conclusion was AlkP activity.

Evoking PGCs time and again as a specified and segregated popu-
lation bearing a particular molecular signature goes against
fundamental principles of embryology, and further ignores the prop-
erties of extra-embryonic tissues. Over time, good science should be
self-correcting: in the presence of new data, even cherished beliefs
deserve to be questioned. As long as scientists, editors and peer re-
viewers accept that gene expression is equivalent to cell lineage, and
fail to acknowledge new evidence concerning the nature of the fetal-
placental interface, progress in germ cell biology and indeed,
mammalian development as a whole, will continue, at best, to be pain-
fully slow, and at worst, misleading and wasteful of valuable funds.

Given the lack of evidence for germ line continuity between extra-
embryonic tissues and the gonads, the field is ripe for new theories
or, as described in the previous section, serious reconsideration of
old ones. In addition, an earlier challenge that the mammalian germ
line is set aside during pre-implantation development (Soriano and
Jaenisch, 1986) might be revisited. While this conclusion was dis-
counted in its day on the grounds that the extra-embryonic tissues
had not been examined (Gardner and Beddington, 1988) (although
based on arguments in this Commentary, the objection may be moot),
as presented here, there is no bona fide support for segregation of
PGCs within extra-embryonic tissues. With increasing evidence that
antero-posterior patterning occurs in advance of streak formation
(Gardner, 2010), a similarly heretical theory, the possibility that the
mammalian germ line segregates during pre-implantation stages,
becomes less remote.
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