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Approximately 80% of miscarriages happen within the first 12 weeks of gestation. More than half of early losses result from genetic
defects, usually presenting as abnormal chromosome numbers or gene rearrangements in the embryo. However, the impact of genetics
on pregnancy loss goes well beyond embryonic aneuploidy. For example, the use of big data has recently led to the discovery of specific
gene mutations that may be implicated in sporadic and recurrent miscarriages. Further, emerging data suggest that genetic factors play
a role in conditions for which there is a causative association with recurrent pregnancy loss. Here, we summarize the evidence on the
genetics of miscarriage and provide an overview of the diagnosis and prevention of genetic causes associated with sporadic and recur-
rent pregnancy loss. (Fertil Steril� 2023;120:940–4. �2023 by American Society for Reproductive Medicine.)
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GENETICS: A PRIMARY
CONTRIBUTOR TO
MISCARRIAGE
Chromosomal abnormalities are diag-
nosed in over 50% of first-trimester
miscarriages, becoming less prevalent
in second- and third-trimester losses.
On karyotyping, most chromosomal
abnormalities are numerical (termed
aneuploidy, usually because of chromo-
somal nondisjunction during meiosis),
including autosomal trisomies (30%–

60%), triploidy (11%–13%), monosomy
X (10%–15%), and tetraploidy (9%),
whereas only a minority result from
structural chromosome rearrangements
(2%–6%) and mosaicism (8%) (1–5).

Most chromosome anomalies in
sporadic miscarriages appear to arise
de novo. During gametogenesis,
abnormalities may occur because of
nondisjunction, translocations, dele-
tions, duplications, or insertions of a
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chromosomal segment. These lead to
numerical or structural chromosomal
imbalances in either the oocyte or
sperm, resulting in chromosomally
abnormal embryos that are more likely
to miscarry. It is important to note,
however, that a plethora of embryonic
chromosomal imbalances remain
compatible with life, including some
aneuploidies (e.g., trisomy 21 and
monosomy X) and structural transloca-
tions (e.g., balanced translocations) (6).

In addition to chromosome abnor-
malities, defects in individual or
multiple genes involved in meiosis
regulation, DNA repair, and cell
proliferation may impair gamete as
well as embryonic development. Such
changes may result directly from the
expression of abnormal genes,
rendering the fetus nonviable, or stem
from epigenetic modifications that alter
the regulatory mechanisms involved in
gene expression. Furthermore, there is
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evidence suggesting that imprinting
disorders arising during gametogenesis
may be associated with miscarriage (7).

A systematic review of 19 studies
investigating cytogenetic findings of
pregnancy tissue after miscarriage iden-
tified that the pooled prevalence of fetal
chromosomal anomalies in women with
recurrent pregnancy loss (39%, 95% CI
29%–50%, 6 studies) was comparable
to that found in sporadic miscarriages
(45%, 95% CI 38%–52%, 13 studies)
(5). This suggests that as the number of
successive pregnancy losses increases,
factors other than embryonic genetic
anomalies must be at play in recurrent
miscarriage by rendering the
endometrium inhospitable (8). These
nonembryonic factors include uterine
malformations, endocrine disorders,
and heightened localized or systemic
immunity secondary to inflammation
or infection (9, 10). However, in 2%–

5% of cases of recurrent miscarriage,
there are underlying parental chromo-
somal rearrangements increasing the
risk of further pregnancy loss (11–13).

Although chromosomal imbal-
ances are a well-documented cause of
miscarriage, there is a paucity of data
on specific parental and fetal gene
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mutations that may increase the risk of pregnancy loss. In
2017, a systematic review of 428 case-control studies identi-
fied an association between unexplained recurrent miscar-
riage and 21 variants in parental genes involved in immune
response, coagulation, metabolism, and angiogenesis,
although the evidence was mostly of low certainty (14).
More recently, however, large datasets of pregnant women
have allowed for the identification of one locus on chromo-
some 13 associated with sporadic miscarriage (rs146350366)
and 3 loci for recurrent pregnancy loss on chromosomes 9
(rs7859844), 11 (rs143445068), and 21 (rs183453668) (15).
The Impact of Parental Age on Genetic Anomalies

Female age is by far the strongest risk factor for miscarriage,
with the probability of pregnancy loss being highest at the
extremes of women’s reproductive lives (i.e., <20 years and
R40 years) (16, 17). Although it is thought that the increased
risk of miscarriage in teenage pregnancies may be associated
with a plethora of contributing factors, including substance
abuse (18), because female age advances beyond 40 years,
the frequency of genetic abnormalities in the oocyte and
embryo rapidly becomes the leading cause of pregnancy
loss, resulting in an exponential rise in sporadic and recurrent
miscarriage rates (16, 19).

The effect of paternal age on the risk of miscarriage
appears to increase with time, and male partners aged R40
years exhibit on average 69% higher odds of miscarriage
compared with those aged 20–29 years (odds ratio 1.69,
95% CI 1.18–2.43) (17). This results partly from an overall
decline in reproductive function, including lower testicular
activity and altered reproductive hormone secretion as men
age. However, male age also has a crucial effect on sperm
chromosome number and structure (20, 21), DNA integrity
(22, 23), gene mutation rates (24), and epigenetic defects
(21). Although the mechanisms underlying these associations
remain incompletely elucidated, data suggest a putative role
for increased reactive oxygen species compounded by
impaired antioxidant and DNA repair mechanisms as age
advances (23, 25).
GENETIC LINKS TO ESTABLISHED CAUSES OF
RECURRENT MISCARRIAGE
There is a strong association between recurrent pregnancy
loss and underlying maternal conditions thought to render
the decidua inhospitable to the implanting embryo. Such
hostility to the blastocyst may result from local anomalies
in the endometrial immune-endocrine environment or from
a generalized state of heightened systemic immunity.
Examples of chronic disorders associated with recurrent
miscarriage include inherited and acquired thrombophilia,
subclinical hypothyroidism, thyroid autoimmunity,
polycystic ovary syndrome (PCOS), and prolactin disorders
(13). This section examines the genetic mechanisms
underpinning the etiology of these conditions in the context
of miscarriage.
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Inherited Thrombophilia

Inherited thrombophilia includes Factor V Leiden mutations,
protein C and S deficiencies, antithrombin deficiency, and
prothrombin gene mutations, all of which exhibit an
autosomal dominant inheritance pattern (26, 27). Collec-
tively, this group of conditions affects approximately 5% of
the general population (26). Although the mechanisms
through which inherited thrombophilia may increase the
risk of miscarriage remain understudied, it is thought that
an underlying hypercoagulable state exerts a prothrombotic
effect on the placental microvasculature, leading to placental
failure (28). However, the evidence of this association is
stronger for second-trimester losses than for those occurring
before 12 weeks of gestation (13, 28). In addition, heparin
treatment has not been shown to decrease the risk of
miscarriage in women with inherited thrombophilia (28).
Acquired Thrombophilia

Antiphospholipid syndrome (APS), an acquired
thrombophilia marked by the presence of autoimmune
antiphospholipid antibodies, has no recognized pattern of
inheritance. Yet, despite not being directly passed on from
parents to their progeny, there is evidence to suggest a genetic
predisposition for APS. This includes, for example, the
existence of familial clusters of APS cases, affected
monozygotic twins, and an increased prevalence of antiphos-
pholipid antibodies in family members of people with APS
(29). Associations between specific genes and recurrent
miscarriage in the context of APS remain elusive, however,
and difficult to tease out in diseases of multifactorial etiology.
Yet, recent data suggest a causative role for the human
leukocyte antigen system, located on the short arm of
chromosome 6, as well as genes involved in hemostasis, the
immune response, apoptosis, and thyroid function (29–32).
Thyroid Dysfunction And Autoimmunity

Subclinical hypothyroidism and the presence of thyroid
autoantibodies have well-established associations with
recurrent pregnancy loss (13, 33). However, there is an overall
lack of data on the genetic mechanisms predisposing women
to thyroid dysfunction concurrently with recurrent
miscarriage. Recent evidence suggests that women with
moderately high thyroid-stimulating hormone levels
(>2.5 mIU/L) combined with low plasma mannose-binding
lectin levels and HLA-DRB1*03 positivity may be associated
with increased odds of positivity for at least one thyroid
autoantibody and spontaneous miscarriage, but such an
association has not been identified in recurrent pregnancy
loss (34).
Polycystic Ovary Syndrome

A recent systematic review showed a 59% average increase in
the odds of miscarriage in women with PCOS compared with
women without PCOS (odds ratio 1.59, 95% CI 1.11–2.28)
(35). The etiology of PCOS is thought to be multifactorial
and closely associated with that of obesity,
941
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hyperandrogenism, hyperinsulinemia, and endometrial
cancer (36). Data suggest genetic predispositions to PCOS
that are highly heritable, but there is a paucity of research
on specific genes involved in the etiology of miscarriage in
the context of PCOS (37, 38). Importantly, miscarried fetuses
of women with PCOS appear to exhibit a higher rate of
chromosomal anomalies compared with non-PCOS controls
(61.3% vs. 52.7%, respectively), although the mechanisms
underlying this association remain unclear (39).
Prolactin Disorders

Abnormal serum prolactin levels have been implicated in
recurrent miscarriage (13). Although there is a growing
body of evidence investigating the genetics of prolactin
disorders (40), we did not find studies focusing specifically
on the genetics of miscarriage in the context of
hyperprolactinemia.
DIAGNOSING GENETIC CAUSES OF
MISCARRIAGE
Genetic tests enable the identification of chromosomal and
subchromosomal genetic anomalies responsible for
pregnancy loss. Historically, karyotyping has been the most
commonly used genetic test for the identification of
chromosomal imbalances resulting in miscarriage. It involves
obtaining parental blood or pregnancy tissue, culturing cells,
and analyzing their chromosomes in the metaphase stage of
mitosis. In the context of recurrent miscarriage, karyotyping
of pregnancy tissue yields inconclusive results in up to
20%–40% of cases because of the absence of fetal tissue or
contamination with maternal cells. In addition, karyotyping
for cytogenetic testing of pregnancy tissue after the loss of
euploid female fetuses can lead to false-negative results in
up to 22%–33% of samples (4, 13, 41).

Chromosomal microarray analysis (CMA) diagnoses
submicroscopic genetic abnormalities that remain undetected
using karyotyping. It can be performed using array
comparative genomic hybridization or single nucleotide
polymorphism genotyping. Compared with karyotyping,
CMA offers improved resolution, detecting molecular gains
or losses of DNA down to 10 kilobases within the genome.
It is also less likely to yield inconclusive or false-negative
results. In a systematic review of 9 studies comparing
conventional karyotyping and CMA, the investigators
identified a 13% increase in the detection rate of chromosome
abnormalities using CMA (42). These reasons have led the
European Society of Human Reproduction and Embryology
to recommend array comparative genomic hybridization as
the preferred method for cytogenetic testing of fetal tissue
(12).

In recent years, cytogenetic testing has evolved to include
next-generation sequencing, whole genome screening, and
whole exome screening, featuring enhanced resolution to
identify single nucleotides in small amounts of tissue using
high-throughput assays. This yields large volumes of data
that are often difficult to interpret. Such tests are also
942
expensive, and their applicability to cytogenetics of miscar-
riage has not been fully elucidated (12).
Fetal Genetic Testing

Cytogenetic analysis of fetal tissue should be offered to
individuals sustaining their third and subsequent
miscarriages. This often yields a merely explanatory result
that warrants no further action when the risk of recurrence
in future pregnancies is low (e.g., trisomy). Where unbalanced
translocations are identified on fetal cytogenetics, however,
parental karyotyping should be undertaken to rule out
balanced chromosome rearrangements, which increase the
risk of further losses (13).
Parental Genetic Testing

Parental chromosome rearrangements are involved in
approximately 2%–5% of recurrent miscarriage cases, of
which most are balanced translocations (12, 13). The
cost-effectiveness of parental karyotyping in the absence of
fetal cytogenetics is unclear because the odds of having a
subsequent healthy child without assisted conception remain
favorable (43). However, where fetal cytogenetic testing
renders inconclusive results or is impossible because of a
lack of suitable tissue, guidance recommends parental
karyotyping. In addition, couples found to have a genetic
abnormality should be referred for genetic counseling for
discussion of the risks of future pregnancy and management
options, including preimplantation genetic testing (PGT),
prenatal testing (e.g., amniocentesis, chorionic villi sampling,
and noninvasive testing), gamete donation, adoption,
fostering, or remaining childless (12, 13).

CAN WE ELIMINATE GENETIC FACTORS IN
MISCARRIAGE?
There is no known intervention to prevent embryonic genetic
defects. In the context of medically assisted reproduction,
however, it is possible to perform PGT before deciding which
embryos to transfer. This usually involves a biopsy of cells
taken at the blastocyst stage in the laboratory, followed by
embryo cryopreservation while awaiting PGT results. In the
context of unexplained recurrent pregnancy loss, the
evidence suggests that performing PGT for aneuploidies
does not accrue any clinical improvement in live birth and
is not cost effective (44). In addition, studies report a rate of
embryo mosaicism ranging between 4% and 90%, raising
uncertainties about discarding possibly normal embryos (19).

Preimplantation genetic testing for monogenic disorders
(PGT-M) or PGT for chromosomal structural rearrangements
(PGT-SR) is an option for couples with genetic defects linked
to an increase in the risk of miscarriage. The use of PGT-M
virtually eliminates the chance of having children affected
by the condition for which the embryos are tested. For
PGT-SR rearrangements, questions of cost-effectiveness
remain unanswered, although the evidence suggests a reduc-
tion in miscarriage rates (12). In England, the National Health
Service funds up to 3 cycles of in vitro fertilization with PGT-
M and PGT-SR in couples carrying genetic abnormalities,
VOL. 120 NO. 5 / NOVEMBER 2023
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provided the female partner’s age is lower than 40 years, even
in the absence of an absolute cause of infertility. Those with
previously affected children remain eligible for state-funded
treatment (45).

THE FUTURE OF MISCARRIAGE GENETICS
The past 3 decades have witnessed rapid improvements in the
diagnosis and prevention of genetic defects causing
miscarriage. Current technology for genetic testing of
embryos relies largely on invasive procedures. Recent
evidence has identified embryonic DNA in the culture media
of blastocysts, leading to rising interest in noninvasive PGT
techniques. These require validation in future trials, but it is
possible that by eliminating the need for embryo biopsy,
noninvasive PGT may in time prove a cheaper and safer
alternative (46).

In addition to molecular-based techniques, artificial
intelligence models on the basis of large morphokinetic
datasets have been tested to determine their accuracy in the
prediction of embryo ploidy status and miscarriage risk.
However, there is heterogeneity between artificial intelligence
models owing to the use of a variety of databases and
annotation systems between clinics. This makes external
validation studies difficult to perform, and to date,
noninvasive ploidy prediction models remain experimental,
with results requiring confirmation by invasive techniques
in clinical practice (47).

In the future, it is likely that gene-disease association
studies will continue to unveil causal pathways through
which genetic defects may contribute to disease phenotypes
in which miscarriage is included, in isolation or alongside
other manifestations (e.g., preeclampsia and thrombotic
disease) (48). Furthermore, as the impact of different genetic
variants becomes clearer, it may be possible to use polygenic
risk scores to screen for individuals’ risk of sustaining miscar-
riage, whether sporadic or recurrent, although the use of such
tools remains controversial (49).

Although to date there has been no such thing as a
‘‘miscarriage gene,’’ the discovery of causal associations
between genetic aberrations and pregnancy loss may
ultimately allow for the correction of these anomalies through
gene therapy, although presently such aspirations remain
merely speculative.

BALANCING HOPE AND ETHICAL
CONSIDERATIONS IN GENETIC TESTING FOR
MISCARRIAGE PREVENTION
The use of genetic testing in reproductive medicine raises
important ethical considerations. In a time of ever-growing
reproductive inequalities, access to healthcare remains un-
even across the world and often within nations. Few countries
offer state-funded PGT-M and PGT-SR, and where this is
available, stringent eligibility criteria exist (45). Unequal ac-
cess to medically assisted procreation to prevent miscarriage
for preventable genetic conditions may further exacerbate so-
cial and reproductive inequalities (17).

In addition, the line between embryo selection to prevent
aneuploidy and using genetic testing to select the ‘‘best’’
VOL. 120 NO. 5 / NOVEMBER 2023
possible child may be difficult to navigate, often bringing
into conflict the principles of autonomy, beneficence, and
nonmaleficence. This is apparent in cases where genetic
conditions affect male and female children differently
(e.g., Lynch syndrome). When, after PGT-M, all embryos
test positive for the condition, parents may be tempted to
request sex selection of the available embryos on the basis
of their perception of how severe the phenotype may be in
each sex. Although some defend that the precedence in
such cases should be given to the principle of procreative
beneficence, whereby parents could select an embryo that
will give them the best chance of having a child who is ex-
pected to have the least probability of complications, the as-
sembly of ethics committees by regulatory bodies is often
necessary to guide clinical decision-making in these complex
cases (49, 50).
CONCLUSION
Miscarriage is caused most commonly by genetic
abnormalities. In recent decades, the scientific knowledge of
the genetic pathways underpinning pregnancy loss has
increased, as has our ability to diagnose and prevent
genetically linked miscarriages. Yet, there remains an urgent
need for additional research into gene-disease associations,
which may pave the way for targeted interventions in the
future.
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