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Many couples initially deferred attempts at pregnancy or delayed fertility care due to concerns about coronavirus disease 2019 (COVID-
19). One significant fear during the COVID-19 pandemic was the possibility of sexual transmission. Many couples have since resumed
fertility care while accepting the various uncertainties associated with severe acute respiratory syndrome coronavirus 2, including the
evolving knowledge related to male reproductive health. Significant research has been conducted exploring viral shedding, tropism,
sexual transmission, the impact of male reproductive hormones, and possible implications to semen quality. However, to date, limited
definitive evidence exists regarding many of these aspects, creating a challenging landscape for both patients and physicians to obtain
and provide the best clinical care. This review provides a comprehensive assessment of the evolving literature concerning COVID-19 and
male sexual and reproductive health, and guidance for patient counseling. (Fertil Steril� 2021;115:813–23.�2020 by American Society
for Reproductive Medicine.)
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I n December 2019, the first case of a
severe atypical pneumonia caused
by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2)
was described in Wuhan, China. To
date, nearly 45,700,000 cases of coro-
navirus disease 2019 (COVID-19) have
been reported worldwide, with nearly
1.2 million deaths (https://coronavirus.
jhu.edu/). The COVID-19 pandemic has
had significant and profound long-
lasting impacts on people’s lives.

Many couples initially deferred at-
tempts at pregnancy or delayed their
fertility care. Currently, numerous cou-
ples have resumed fertility care and
have accepted the associated remaining
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uncertainties related to the ongoing
pandemic. Nearly 70,000 peer-review
publications and 20,000 preprint com-
munications have been published in
the short period since the discovery of
SARS-CoV-2. However, for patients
and providers delivering fertility care,
there remain many unanswered ques-
tions about the impact of SARS-CoV-
2 on reproduction, specifically male
reproductive health. For infertile cou-
ples, the COVID-19 pandemic con-
tinues to have a significant impact for
their fertility treatment and family
planning.

Our understanding of other infec-
tious viruses inform the possible impact
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of systemic viral infection and inflam-
mation on male reproduction (1). In
addition, certain viruses are shed in hu-
man semen, permitting the possibility
of sexual transmission of SARS-CoV-
2. As the body of literature evaluating
the impact of SARS-CoV-2 and
COVID-19 on male reproduction de-
velops, it becomes more challenging
for patients and providers to draw
appropriate conclusions and provide
the best evidence-based clinical care.
This review provides a comprehensive
assessment of the evolving literature
surrounding SARS-CoV-2, COVID-19,
and men’s health and reproduction.
VIRAL INFECTIONS OF THE
MALE REPRODUCTIVE TRACT
Various microorganisms, including
certain bacteria and viruses, may affect
male reproductive function. As a result
of direct testicular infection, men may
have diminished sperm viability,
reduced sperm counts, and impaired
sperm motility, primarily through ef-
fects exerted on the testicles (2–4).
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VIEWS AND REVIEWS
Viruses typically reach the testicle through hematogenous
spread. Under normal circumstances, testicular immune
privilege protects the testicular germ cells from the host
inflammatory response to a systemic infection. However,
certain viruses may cross the blood-testis barrier and even
invade testicular cells, eliciting an immune response within
the testis (5). A basic understanding of viral infection physi-
ology is essential to understanding both short- and long-
term impact of SARS-CoV-2 on male reproductive function.
Figure 1 provides a broader overview of previously reported
viral infections of the male reproductive tract (2–4, 6). We
specifically review the impact of mumps, human
immunodeficiency virus (HIV), and Zika virus (viruses for
which we have a basic understanding and known impact on
male reproductive health) to frame the discussion regarding
the impact of SARS-CoV-2 on male reproduction.
Mumps

The Mumps virus is part of the Paramyxoviridae family of
single-stranded RNA viruses (4, 7). The hallmark of Mumps
is painful swelling of the parotid glands. Nearly 20%–30%
of postpubertal men with mumps develop unilateral
epididymo-orchitis (7). Bilateral orchitis occurs in �15% of
cases and can lead to testicular atrophy, reduced sperm con-
centration and motility, and even azoospermia. Reproductive
impairment due to mumps orchitis is thought to occur
secondarily to the induced host inflammatory response and
its subsequent impact on Leydig and Sertoli cell function, as
shown in in vitro mouse models (8, 9). Infection of Leydig
and Sertoli cells by the mumps virus activates the innate im-
mune response with the release of proinflammatory cytokines
such as interferon (IFN) a and tumor necrosis factor a (10).
Under these inflammatory conditions, impaired testosterone
FIGURE 1

Viruses found in the male reproductive tract. CMV¼ cytomegalovirus;
EBV ¼ Epstein-Barr virus; HBV ¼ hepatitis B virus; HCV ¼ hepatitis C
virus; HHV ¼ human herpesvirus; HIV ¼ human immunodeficiency
virus; HPV ¼ human papillomavirus; HSV ¼ herpes simplex virus;
HTLV ¼ human T-lymphotropic virus; VZV ¼ varicella zoster virus;
ZIKV¼ Zika virus.
Patel. Impact of COVID-19 on men’s health. Fertil Steril 2020.
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production and germ cell death can occur, although this
mechanism is incompletely characterized (10). Although the
mumps virus is primarily transmitted by direct contact or res-
piratory droplets, it has been isolated previously in both hu-
man urine and human semen (4).
Human Immunodeficiency Virus

HIV belongs to the Lentivirus family and includes enveloped
single-stranded RNA viruses (11). Acute HIV infection can
cause symptoms of mild systemic viral illness followed by a
period of clinical latency (11). HIV has been detected in the
semen after infection, and sexual transmission is the primary
mode of transmission (12). Large randomized trials have sug-
gested that circumcisionmay reduce HIV transmission among
heterosexual couples (13). Leukocytes are the main vectors of
HIV in the semen (12). Progression to acquired immunodefi-
ciency syndrome (AIDS) is characterized by opportunistic in-
fections and increased cancer risk due to viral
immunosuppression (11). Male patients with AIDS can
develop chronic orchitis and hypogonadism (12). HIV has
also been found in testicular germ cells, however, the mecha-
nism of viral entry remains poorly understood because the
primary HIV receptor, CD4, is not found on testicular germ
cells (12, 14). The inflammatory response, impaired testos-
terone production by Leydig cells, and HIV infection of testic-
ular germ cells can affect male reproductive and endocrine
function (12, 14).
Zika

The Zika virus is a single-stranded RNA virus that is part of
the Flaviviridae family. The most severe clinical manifesta-
tions include Guillain-Barr�e syndrome and congenital micro-
cephaly (15). Zika has been isolated in the semen and can be
sexually transmitted (15, 16). Interestingly, in men infected
with Zika, viral levels are usually much higher in the semen
than in the serum and may persist for more than 188 days
in the semen whereas the virus is cleared from the serum after
initial viral symptoms subside (16). Given the relatively recent
emergence of the Zika virus, data are limited on its long-term
impact of on human male reproductive and endocrine func-
tion. Inmousemodels, Zika infection has been shown to cause
significant epididymo-orchitis leading to decreased sperm
counts and diminished sperm motility (17). In vitro models
suggest that Zika predominantly infects Sertoli cells but
also germ cells (18).

Mumps, HIV, and Zika virus can lead to orchitis and have
been detected in the semen. This poses many questions about
the impact of SARS-CoV-2, also a single-stranded RNA virus
on male reproductive health and detection in the semen.

SARS-CoV-2 TAXONOMY
SARS-CoV-2 is a single-stranded RNA virus of the coronavi-
rus subfamily. There are seven different coronaviruses that
can infect humans (19). The first four, 229E, NL63, OC43,
and HKU1, cause mild viral symptoms (19). The other three,
SARS-CoV-1, MERS-CoV, and SARS-CoV-2, can cause
more severe respiratory symptoms (19). The SARS-CoV-2
VOL. 115 NO. 4 / APRIL 2021
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envelope has 20-nm spikes that resemble a crown under elec-
tron microscopy, whence the name coronavirus (20). SARS-
CoV-2 has the largest genome among known RNA viruses
(19). Similarly to other viruses, a nucleoprotein surrounds
the RNA genome to form a helical structure, which is sur-
rounded by the viral envelope. The matrix protein is
embedded in the viral envelope, and the spike (S) proteins
are anchored to the viral envelope. The S proteins are impor-
tant for receptor recognition, cell attachment, and fusion dur-
ing viral infection (21). The S proteins are a trimeric
glycoprotein found in all human coronaviruses and other vi-
ruses, including HIV, influenza, and Ebola (21).
MECHANISM OF SARS-CoV-2 VIRAL ENTRY
Viral entry into host cells is mediated by the viral S proteins
and the host cell receptor angiotensin-converting enzyme 2
(ACE2) (21–24). When the S protein binds to the ACE2
receptor, transmembrane protease serine 2 (TMPRSS2),
found on the host cell surface, primes the S protein as well
as other cellular protease to cleave the S protein into S1 and
S2 subunits (Fig. 2) (22). This critical step promotes viral
entry into the host, as both ACE2 and TMPRSS2 are needed
for viral entry. Once viral entry occurs, the viral RNA is
released, and the viral genome’s replication and
transcription begins.
IMMUNOPATHOGENESIS OF COVID-19
SARS-CoV-2 is primarily transmitted through respiratory
droplets from infected individuals (25, 26). The incubation
period for COVID-19 ranges from 1 to 14 days after initial
exposure, although most infected patients show symptoms
of COVID-19 by day 5 after initial exposure (27, 28). Once
the virus is transmitted to an individual, SARS-CoV-2 begins
FIGURE 2

SARS-CoV-2 viral entry in host cell. ACE2 ¼ angiotensin-converting enzym
TMPRSS2 ¼ transmembrane protease serine 2.
Patel. Impact of COVID-19 on men’s health. Fertil Steril 2020.
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replication within the airway epithelial cells. This is mediated
primarily by the interaction between host ACE2 and
TMPRSS2, as discussed above (22). Infection of the airway
epithelium can typically cause fevers, myalgia, sore throat,
and shortness of breath (29). In more severe cases, COVID-
19 is characterized by severe pneumonia, acute respiratory
distress syndrome, sepsis, septic shock, and death (29). Inter-
estingly, the down-regulation of ACE2 expression is associ-
ated with acute lung injury based on our understanding of
SARS, but this may contribute to a sex susceptibility to
COVID-19, as discussed below (30). In addition, alternative
host cells with higher ACE2 expression include enterocytes,
which can lead to the gastrointestinal symptoms of COVID-
19 such as diarrhea (29).

One of the challenges in understanding the impact of
SARS-CoV-2 infection on male reproductive health is the
variability in COVID-19 severity and the immune response
to SARS-CoV-2. It has been hypothesized that higher viral
loads in the blood lead to hematogenous spread to the
male reproductive tract and severe viral illness causing
heightening host immune response within the testicle (4).
Based on our knowledge of other viral illnesses (e.g.,
mumps), SARS-CoV-2 may affect male reproduction. Older
age (>65 years), male sex, African-American or Asian
race, diabetes, and hypertension are among many well es-
tablished risk factors for more severe symptoms and death
from COVID-19 (31–33). However, 5% of all cases of
severe COVID-19 are in younger healthy adults (32). Regard-
less of the known risk factors, men are more likely to have
more severe disease and clinical courses (33). Some hypoth-
eses, which are discussed later, relate to differential expres-
sion of ACE2/TMPRSS2 (which have higher expression
levels in the male-specific organs), an androgen-dependent
relationship with higher levels possibly conferring worse
e 2; SARS-CoV-2 ¼ severe acute respiratory syndrome coronavirus 2;
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disease, and innate immune differences in women that
portend less significant disease (34, 35).

Our understanding of the viral dynamics and the immune
response is evolving but is relatively limited. The innate im-
mune response requires recognition of SARS-CoV-2 as a
pathogen. Host macrophages identify the pathogen-
associated molecular patterns and viral RNA that activates
innate immune response through IFN-1 (36). SARS-CoV-2
may exhibit immune evasion through inhibition of IFN
signaling pathways, which may contribute to the variability
in incubation periods (37). Subsequent activation of natural
killer cells contributes to the innate immune response through
a major histocompatibility complex–independent mecha-
nism. Adaptive immunity against SARS-CoV-2 is initially
mediated by cellular immunity through helper T cells, which
release IFN-g, tumor necrosis factor a, and interleukin-2 in
response to antigen presentation by antigen presentation cells
(36). The cytokine release by helper T cells activates cytotoxic
T cells that attack and destroy virus-infected host cells (36).
Humoral immunity is another component of adaptive immu-
nity that is mediated by B cells (36). B-Cell activation leads to
the production of IgM and IgG SARS-CoV-2 S-protein anti-
bodies. There is variability in the timing of serum antibody
production after initial infection, but an increase in levels
of IgM and IgG SARS-CoV-2 S-protein antibodies is usually
noted after 10 days (38). An improved understanding of the
immune response to SARS-CoV-2 will help elucidate the
sex susceptibility to COVID-19 and identify novel
therapeutics.
SEX SUSCEPTIBILITY TO SARS-CoV-2
INFECTION AND COVID-19
Early epidemiologic studies from China suggested a signifi-
cant male gender susceptibility for the rate of severe
COVID-19 symptoms and mortality (32). Similar trends
have been seen in other countries as well (39). Initially, this
susceptibility was thought to be confounded by worse overall
health status, chronic disease, and other lifestyle factors, such
as smoking (26). However, two other theories have been pro-
posed to explain the observed sex differences in COVID-19
outcomes. First, ACE2 is located on the short arm of the X
chromosome, and therefore females have two copies. In
normal development, one of the two X chromosomes is
silenced in the late blastocyst stage of development, causing
condensation of the X chromosome into a Barr body (40).
However, some genes escape this inactivation, which is
more likely to occur on the short arm of the X chromosome
where the ACE2 gene is located (40). This may explain differ-
ences in ACE2 expression between different sexes, although
this finding has not been consistent in the literature (41).
Furthermore, ACE2 is a regulatory component of the renin-
angiotensin system, protecting against vascular compromise
and severe organ damage. It is hypothesized that increased
ACE2 expression in women is protective against more severe
COVID-19 symptoms because rapid viral saturation of ACE2
is less likely to occur (41). The second theory to explain the
sex differences in COVID-19 symptoms and outcomes is the
association between TMPRSS2 and androgen sensitivity.
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The androgen response element is a transcriptional promoter
for TMPRSS2, which was initially described in the context of
the TMPRSS2-ERG fusion gene and prostate oncogenesis (42).
It is thought that lower levels of circulating androgens in
women lead to lower cellular expression levels of TMPRSS2
and down-regulation of this host receptor. Although early
epidemiologic studies have suggested that men are at higher
risk of more severe COVID-19 and mortality, causal mecha-
nisms remain unknown and require further investigation.

Severe COVID-19 and mortality have been documented
in healthy young adults as well. This has led to investigations
into genetic variants that may confer a more severe COVID-19
course due to a subclinical primary immunologic defect. Van
der Made et al. reported a study of four young healthy men
(pairs of brothers) with severe COVID-19 admitted to the
intensive care unit in the Netherlands (43). Whole-genome
sequencing identified loss-of-function variants of the TLR7
gene on the X chromosome. Functional testing in primary im-
mune cells of these brothers suggested the down-regulation of
type I and type II IFN signaling. As discussed above, the IFN
pathway is important in the innate immune response and sub-
sequent activation of natural killer cells. These novel findings
suggest that genetic variants may also affect the severity of
COVID-19 and male sex susceptibility, although this warrants
further investigation.
IMPACT OF SARS-COV-2 ON MALE SEXUAL
FUNCTION
COVID-19 affects sexual function and sexual activity. Early
in the pandemic it was reported in a study from China that
sexual activity had decreased in 37% of those surveyed, and
44% reported a decrease in the number of sexual partners
(44). Interestingly a study from Bangladesh, India, and Nepal
suggested minimal change in sexual activity and perhaps
even an increase in frequency in a small subset (45). Sexual
practices during COVID-19 may be affected through social
isolation leading to changes in mood as well as fear of trans-
mission. It has also been suggested that cardiovascular dis-
ease from COVID-19 and subsequent treatment may lead to
erectile dysfunction, and neurologic manifestations from ce-
rebrovascular disease or hemorrhage may affect sexual desire
as well as erectile and ejaculatory function (46). These and
other sexual practice–related issues continue to be explored,
including self-stimulation practices and pornography use
during the pandemic (44).
IMPACT OF SARS-COV-2 INFECTION ON MALE
REPRODUCTIVE HORMONES
Several studies have also explored the impact of SARS-CoV-2
infection on male reproductive hormones. Unfortunately,
male hormones vary tremendously at baseline with acute
illness or physiologic stress, so these early results should be
interpreted with caution (47). A further limitation of these
data is the absence of long-term hormone data as well as
pre– and post–COVID-19 infection hormone levels to rein-
force an association between SARS-CoV-2 infection and
male reproductive hormone changes.
VOL. 115 NO. 4 / APRIL 2021
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Ma et al. compared male reproductive hormone levels in
119 reproductive-age men with SARS-CoV-2 infection and
273 age-matched control men (48). They found that patients
with COVID-19 had higher serum LH levels and decreased
T:LH ratio compared with control men, but there was no sta-
tistical difference in serum T levels (3.97 ng/mL in case sub-
jects vs. 4.79 ng/mL in control subjects). No differences
were seen also for E2, but there were significant increases in
PRL levels. In addition, on multivariable analyses, serum
T:LH ratio among case subjects was negatively associated
with serum white blood cell count and C-reactive protein
levels. A study by Rastrelli et al. described the association be-
tween T levels and clinical outcomes after severe COVID-19
(49). They reported on 31 male patients with SARS-CoV-2
pneumonia in a respiratory care unit where men were catego-
rized into different cohorts based on increased versus
decreased levels of care and mortality. Men who required a
higher level of care or died had lower total serum T levels
than those who recovered clinically. In addition, an increase
in mortality and intensive care unit transfer was seen in
men with total T <5 nmol/L. These data have not been repro-
duced in large-scale prospective trials.

Additional studies have explored this androgen hypothe-
sis for COVID-19. In a report on 41 men from Spain, 71% of
those admitted to hospital with COVID-19 had androgenetic
alopecia (male-pattern hair loss), which is a known
androgen-mediated phenomenon (50). Because the androgen
receptor is also composed of trinucleotide repeats, it has been
hypothesized that this may be implicated in some of the var-
iable disease courses for COVID-19 (51). To further corrobo-
rate an androgen hypothesis, data from a large Italian series
of 4,532 men demonstrated that men with prostate cancer
who received androgen-deprivation therapy (ADT) had
significantly lower risks of disease than those without ADT,
and this difference was more significant when compared
with any other malignancies (52). Although this study was
conducted in a specific subset of men, it suggests a protective
effect of ADT in COVID-19 outcomes and prompted some to
consider clinical trials of ADT.
SARS-CoV-2 TROPISM FOR THE MALE
REPRODUCTIVE TRACT
Host cell coexpression of ACE2 and TMPRSS2 for S-protein
priming is a critical component of viral entry. ACE2 converts
angiotensin II to angiotensin I and is predominantly found in
the lung, intestine, heart, and kidney (23, 24). TMPRSS2 is
found predominantly in the gastrointestinal tract, genitouri-
nary tract, and the prostate (42). It is still uncertain whether
the male reproductive system is susceptible to SARS-CoV-2
infection, primarily because coexpression of both ACE2 and
TMPRSS2 is needed by an individual host cell to facilitate
viral entry and it is unclear how frequently these are coex-
pressed (22, 53).

To evaluate the immediate and long-term impact of
COVID-19 on testis and male reproduction, pathologic exam-
ination of the testes tissues from COVID-19 patients during
and after illness will be very useful. Traditional approaches
using histologic examination can provide a general under-
VOL. 115 NO. 4 / APRIL 2021
standing of how SARS-CoV-19 infection affects the testis
physiology and subsequent reproductive health. However,
more systematic approaches are also needed to explore the
impact on human testis to bring in molecular andmechanistic
insights. Single-cell RNA sequencing (scRNA-seq) can serve
as a very useful tool for such purposes. Particularly, scRNA-
seq allows obtaining unbiased transcriptional profiles of all
cell types in the human testis at single-cell resolution. There-
fore, if researchers can use scRNA-seq to generate the single-
cell transcriptomes of testis biopsies from COVID-19 patients
and make comparisons with those from healthy men who are
fertile and uninfected, we could gain a systematic under-
standing of whether and how each testicular cell type may
alter its gene expression program in response to COVID-19
infection. This knowledge, combined with physiologic exam-
ination, can provide researchers and physicians in-depth un-
derstanding of the impact of COVID-19 on male reproduction
as well as underlying mechanisms and may lead to personal-
ized treatment options.
Testes

Pan et al. found that expression levels of ACE2 and TMPRSS2
occurred at relatively low and sparse levels within different
cells of the testes, with almost no overlapping of gene expres-
sion (54). This analysis was performed with the use of
dimension-reduction (t-distributed stochastic neighbor
embedding) analysis of single-cell transcriptome data from
the testes of three healthy young men. Stanley et al. per-
formed a similar analysis of scRNA-seq data from testicular
cells and found that coexpression of both ACE2 and
TMPRSS2 occurred less than 0.05% of the time (55). Wang
et al. performed a similar analysis using scRNA-seq datasets
from the Gene Expression Omnibus and Sequence Read
Archive with three adult human testicular samples (56). Uni-
form manifold approximation and projection clustering of
adult testicular cells and marker gene analyses showed the
expression of ACE2 in two clusters: spermatogonia and Ley-
dig/Sertoli cells. Similar analyses have demonstrated that the
expression of TMPRSS2 was concentrated in spermatogonia
and spermatids (56). Liu et al. presented their analyses of
scRNA-seq data from adult testes, including seven men with
obstructive azoospermia and two healthy donors (57). That
group found that TMPRSS2 is expressed at high levels and
ACE2 at low levels in spermatogonial stem cells. They also re-
ported that Sertoli cells have higher ACE2 expression level
and lower TMPRSS2 expression level. To date, most studies
have focused on examining the gene expression levels of
ACE2 and TMPRSS2 to infer the likelihood of SARS-CoV-2
invading human testes; further studies are needed to evaluate
the protein expression patterns of ACE2 and TMPRSS2 in hu-
man testis to better reflect the potential of SARS-CoV-2
infection.

Postmortem studies have provided further insight into the
impact of COVID-19 on the male reproductive tract. Previ-
ously, postmortem examination of the testes of six men who
died of SARS suggested that SARS-CoV infection led to orchi-
tis (58). The authors found that the testes contained few sper-
matozoawithin the seminiferous tubules, significant germ cell
817
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death, and considerable inflammatory infiltrate. This was one
of the only studies assessing the impact of SARS-CoV on the
male testis. Concerning SARS-CoV-2, an early autopsy study
of two men with COVID-19 showed testicular atrophy in one
of the men (59). Two other studies on the postmortem exami-
nation of the testes frommen infected with SARS-CoV-2 have
provided additional insight. Flaifel et al. presented their find-
ings from ten autopsies who had previously tested positive for
SARS-CoV-2 according to nasopharyngeal swab at the time of
hospital admission (60). SARS-CoV-2 was found in all of the
subjects’ respiratory tracts, but it was not found in the testes
FIGURE 3

Pathologic changes of the testes associatedwith severe acute respiratory syn
chromatin condensation, acidophilic alteration of the cytoplasm of sperma
[H&E], �400 magnification). (B) Accumulation of sperm and immatur
Multifocal platelet aggregation and microthrombi (H&E, �200 magnifi
testicular vessels (�200 magnification). (E) Mononuclear inflammatory infi
consistent with orchitis (H&E, �200 magnification). (F) Immunohistochem
�200 magnification). Reproduced from Flaifel et al. (60).
Patel. Impact of COVID-19 on men’s health. Fertil Steril 2020.
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(60). Microscopic findings from the testes showed sloughing
of the spermatocytes, elongation of spermatids, and swelling
and vacuolization of Sertoli cells suggestive of an acute
testicular injury (Fig. 3). In two cases, they found multifocal
microthrombi in the testicular vasculature, which has also
been shown in lung tissue after SARS-CoV-2 infection. This
may suggest that hypoxic injury may also contribute to
possible testicular damage from SARS-CoV-2. A similar study
by Yang et al. examined the testes from 12 patients who had
died of complications from COVID-19 (61). Reverse transcrip-
tase polymerase chain reaction (RT-PCR) for SARS-CoV-2
drome coronavirus 2 infection. (A) Seminiferous tubule injury including
tocytes, and swelling of the Sertoli cells (hematoxylin and eosin stain
e spermatocytes in the epididymis (H&E, �400 magnification). (C)
cation). (D) CD61 immunostain highlights platelet clusters within
ltrate in the testicular interstitium and atrophic seminiferous tubules
ical studies reveal a predominant CD8-positive T-cell infiltrate (CD8,
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found one case that was positive for virus in the testis, but the
testicular tissue sample was predominantly fibrovascular tis-
sue with very few seminiferous tubules, suggesting that viral
detection was a contaminant from the blood and not from
within testicular cells. In that same individual, there was
also significant damage to the seminiferous tubules. They
found significant interstitial edema and inflammatory infil-
tration with T cells. Sloughing of the spermatocytes was also
noted along with swelling of the Sertoli cells and reduced
number of Leydig cells. These pathologic findings correlate
with clinical findings that have been reported in previous
case reports and series. The same group examined testicular
tissue from three cases with the use of electron microscopy
and did not detect SARS-CoV-2 viral particles.

Very early in the pandemic, a patient presented with
testicular and abdominal pain, highlighting one of the first re-
ports of testicular discomfort (62). Since then, there have been
two further reports of testicular pain as the predominant
presenting symptom of SARS-CoV-2 infection in young
men (63, 64). In addition, Pan et al. and Holtmann et al. found
that 6 out of 34 (7%) and 1 out of 14 (19%) patients, respec-
tively, reported scrotal discomfort at the time of diagnosis of
COVID-19 (54, 65).
Epididymis, Seminal Vesicles, and Prostate

There is relatively limited evidence regarding SARS-CoV-2
tropism for the epididymis, seminal vesicles, and prostate. Bio-
informatics analysis from the Human Protein Atlas database
(https://www.proteinatlas.org/ENSG00000130234-ACE2/tis-
TABLE 1

SARS-CoV-2 transmission in the semen.

Study Country
Sample
size

Median time from clinical
diagnosis of COVID-19 to

semen testing, days

Li et al. (73) China 38 10.5 (range 6–16) Ac

Pan et al. (54) China 34 31 (range 8–75) Sy
Holtmann et al. (65) Germany 34 �45 (IQR �39.5–50.5) 18

Paoli et al. (69) Italy 1 8 Sy
Song et al. (68) China 12 N/A Re
Guo et al. (70) China 23 32 (IQR 27.5–33) 11

Pavone et al. (71) Italy 9 7 (range 4–13) 7 r

Ma et al. (48) China 12 78.5 (range 56–109) Re
Kayaaslan et al. (72) Turkey 16 1 (range 0–7) Ac

Note: COVID-19 ¼ coronavirus disease 2019; IQR ¼ interquartile range; SARS-CoV-2 ¼ severe acu

Patel. Impact of COVID-19 on men’s health. Fertil Steril 2020.

VOL. 115 NO. 4 / APRIL 2021
sue) suggests that ACE2 expression occurs at low levels within
the seminal vesicles and at very low levels within the epidid-
ymis and prostate. Conversely, TMPRSS2 expression has
been noted at low to medium rates in the epididymis, seminal
vesicles, and prostate within this database. Gene fusions of
TMPRSS2with ETS/ERG transcription factors have been asso-
ciated with prostate cancer in an androgen-sensitive manner
(66). TMPRSS2 expression also is androgen sensitive within
the prostate. Song et al. analyzed TMPRSS2 and ACE2 coex-
pression with the use of scRNA-seq from an existing normal
human prostate dataset (67). They found that 0.32% and
18.65% of prostate epithelial cells expressed ACE2 and
TMPRSS2, respectively, and colocalization was identified in
<1% of cells (67). Pathologic evaluation of prostate tissue in
men recovering from COVID-19 has not been explored.
DETECTION OF SARS-CoV-2 IN THE SEMEN
Recently, there have been many reports regarding the detec-
tion of SARS-CoV-2 in the semen of patients previously diag-
nosed with COVID-19. The majority of reports in the current
literature, however, suggest that SARS-CoV-2 is not detected
in the semen (48, 54, 65, 68–72). These findings are
summarized in Table 1. Li et al. are the only group to detect
SARS-CoV-2 by means of RT-PCR in 6 of 38 semen samples
(16%) from men with acute symptoms of or recovering from
COVID-19 (73). However, details regarding semen collection
and protocol for that study are not comprehensive. Compared
with other series, semen testing from the onset of clinical
symptoms of COVID-19 was shorter (median 10.5 days). A
Cohort description Key findings

utely infected and recovered
men

In total, 6/38 (15.8%) men recovering
from COVID-19 had SARS-CoV-2
detected in the semen: 4/15
(26.7%) men with acute symptoms
of COVID-19 and 2/23 (8.7%) men
recovering from COVID-19

mptomatically recovered men No viral detection in semen samples
symptomatically recovered
men, 2 acutely infectedmen,
and 14 control men

No viral detection in semen samples

mptomatically recovered man No viral detection in semen samples
covered men No viral detection in semen samples
recovered men and 12
acutely infected men

No viral detection in semen samples

ecoveredmen and 2menwith
mild residual COVID-19
symptoms

No viral detection in semen samples

covered men No viral detection in semen samples
utely infected hospitalized
men with COVID-19

No viral detection in semen samples.
Four semen samples were provided
on the same day as a positive SARS-
CoV-2 nasopharyngeal swab and six
samples �1 day after a positive
SARS-CoV-2 nasopharyngeal swab

te respiratory syndrome coronavirus 2.
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more recent case series was unable to detect SARS-CoV-2 in
the semen of 16 men acutely infected with COVID-19, with a
median time between positive nasopharyngeal swab and
semen evaluation of 1 day (72). Although the virus may be
cleared from the semen in the acute phase of the disease,
larger-scale community-based testing for SARS-CoV-2 of
the semen in symptomatic men with a broader range of
COVID-19 severity as well as asymptomatic men is needed
before we can determine whether sexual transmission of
SARS-CoV-2 can occur.

In an alternate research approach, Zhang et al. evaluated
for the presence of SARS-CoV-2 in extraprostatic secretions
(EPSs) of men with recent COVID-19 (74). EPSs are a large
component of semen. They performed a two-glass test of
EPSs in ten men recovering from COVID-19. They did not
detect presence of SARS-CoV-2 in either pre–prostate mas-
sage urine or post–prostate massage EPS.
IMPACT OF SARS-CoV-2 INFECTION ON
SEMEN PARAMETERS
Holtmann et al. were the first to report the impact of SARS-
CoV-2 infection on semen parameters (65). They described
14 men with mild symptoms of COVID-19, 4 with moderate
symptoms of COVID-19, and 14 healthy control men. For
those with COVID-19, the median times from the resolution
of COVID-19 symptoms to semen collection were 35 days
for those with mild symptoms and 25 days for moderate
symptoms. The authors found a significant negative impact
of SARS-CoV-2 infection on sperm concentration, total
sperm count, and total progressive motility compared with
control men. Two men with moderate COVID-19 symptoms
were excluded from the analysis owing to cryptozoospermia.
For men with COVID-19 who reported fever, only total motile
sperm count was significantly lower than those without a fe-
ver. Owing to the small sample size, lack of semen analysis
before SARS-CoV-2 infection, and single semen analysis after
SARS-CoV-2 infection, only limited conclusions may be
drawn from that study regarding the impact of SARS-CoV-
2 on semen parameters. Furthermore, the authors reported
that the findings may be confounded by certain medications
used to treat symptoms of COVID-19 as well as from the
febrile illness alone.

Guo et al. described a cohort of 23 men who underwent
semen analysis following an abstinence period of 3–6 days
at a median 32 days after diagnosis of pharyngeal-swab-
positive SARS-CoV-2 infection (70). Eighteen men (78%)
had mild symptoms of COVID-19 and the remainder had
moderate symptoms (n ¼ 5; 22%). There were no patients
with severe symptoms of COVID-19. Two patients were
excluded because of low ejaculate volume. The authors
concluded that there was no impact of recent SARS-CoV-2
infection on sperm concentration, motility, and morphology.

Ma et al. described a cohort of 12 men (1 with a history of
mild symptoms related to COVID-19 and 11 with moderate
symptoms) who had semen analysis at a median 78.5 days
from the start of COVID-19 symptoms. Eight (66.7%) of the
menwerewithin the reference ranges for various semen param-
eters including volume, sperm concentration, total motile
820
spermcount,motility,morphology, and spermDNAfragmenta-
tion index (assessed by means of sperm chromatin dispersion
testing). Four of the men had low motility, and two had poor
morphology. Three of the 12 men had an initial semen analysis
before SARS-CoV-2 infection, which permitted direct compar-
ison in those individuals. Although therewas considerable vari-
ability between repeated semen analyses, even for the same
individual, one patient showed a decrease in sperm motility in
the semen analysis after SARS-CoV-2 infection compared
with before. Further prospective longitudinal studies are needed
to study the viral impacts on semen quality.

IMPLICATIONS FOR CHILDREN BORN TO MEN
RECOVERED FROM COVID-19
At this time, data are limited on the implications for children
born to men who were infected with COVID-19. Current evi-
dence from the Society for Maternal-Fetal Medicine suggests
minimal risk of vertical transmission from mother to
newborn, but there is concern for respiratory transmission
to a new fetus (75). In the few cases of vertical transmission,
discussion has occurred regarding the nature of transmission,
i.e., transplacentally or transcervically (76). Longitudinal
studies are needed to further assess the long-term impacts
of children born to parents with histories of COVID-19
infection.

ADDITIONAL GUIDANCE FOR DELIVERY OF
FERTILITY CARE
Many reproductive care centers have resumed fertility care de-
livery after both risk assessment andmitigation, consideration
for resource availability, and careful counseling. Beginning in
March 2020, the American Society of Reproductive Medicine
has released monthly updates on patient management and
clinical recommendations during the COVID-19 pandemic
(77), and the Society for Assisted Reproductive Technology,
Society for Reproductive Biologists and Technologists, and
College of Reproductive Biology have issued a joint statement
on laboratory guidance during COVID-19 pandemic (78). We
recommend referring to these guidelines and guidance from
the Centers for Disease Control (CDC), about the delivery of
fertility care during the COVID-19 pandemic. Furthermore,
owing to restrictions during the pandemic, many clinicians
treating patients with infertility adopted telemedicine to
continue to provide care to these patients. This has been sup-
ported by the Society for Male Reproductive Medicine and
Urology (79). These guidelines do, however, reinforce the
importance of physical examination for patient assessment
and the use of adjunctive tests when required.

One of the most significant considerations regarding
SARS-CoV-2 and male reproductive health is collection,
handling, and preservation of semen samples. There is
currently limited evidence suggesting that SARS-CoV-2 can
be isolated from the semen of a recovered male or asymptom-
atic male with SARS-CoV-2 infection. Efforts should be made
to screen patients for possible signs and symptoms of COVID-
19 or recent exposures to someone diagnosed with COVID-19
before on-site semen sample collection. In previously symp-
tomatic patients who recovered from COVID-19, the CDC
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recommends discontinuation of isolation after at least 10
days have passed since symptom onset, at least 24 hours
have passed since the resolution of fever, and other COVID-
19 symptoms are improved (80). In patients infected with
SARS-CoV-2 who did not demonstrate any COVID-19 symp-
toms, isolation may be discontinued 10 days after their first
positive RT-PCR test. Every effort should be made to protect
the health of all patients, staff members, and health care pro-
viders by strict adherence to infection prevention and control
measures such as hand hygiene, social distancing, environ-
mental infection control, and appropriate use of personal pro-
tective equipment. Semen collection laboratories may
consider off-site semen collection if feasible, including at-
home collection following standard protocols.

Furthermore, appropriate risk assessment and mitigation
strategies should be used by the reproductive care center to
handle semen samples from patients. Currently, the CDC rec-
ommends using eye protection or face shield, medical-grade
gloves, and medical-grade mask in the handling of all body
fluids, including semen, by staff members (81). Although
the primary potential risk to staff would be through semen
samples splashing, every effort should be made to prevent
aerosol formation during the procedure, such as during pipet-
ting, centrifugation, and mixing. If possible, a physically
separate space and dedicated instruments and equipment
should be used for semen samples from patients recovered
from COVID-19. Another consideration includes the cryo-
preservation of semen or testicular samples from recovered
COVID-19 patients and use for assisted reproductive technol-
ogies (ART). Currently, there is no indication for routine
testing of semen samples for SARS-CoV-2 by means of RT-
PCR before cryopreservation or ART. There is no evidence
for any specific microbicide or processing protocol to protect
against possible viral transmission from a recovered patient.
However, published protocols for handling semen samples
and performing ART from individuals infected with HIV or
hepatitis B or C virus may be used as an additional precaution,
but this practice may vary between laboratories (82).
Although viral cross-contamination between different pre-
served samples has never been reported, use of high-
security straws and segregated cryovessels should be consid-
ered, if possible, for semen samples or testicular tissue from
recovered COVID-19 patients.
CONCLUSION
Many questions remain unanswered regarding the short- and
long-term impacts of SARS-CoV-2 on male reproductive
health. Based on the current evidence, the likelihood of
SARS-CoV-2 transmission through the seminal fluid is very
low. Although there have been many reports regarding viral
tropism for the male reproductive tract, an important consid-
eration for viral entry is coexpression of both ACE2 and
TMPRSS2 at sufficient levels. There are very limited data to
characterize the impact of SARS-CoV-2 infection on male
reproductive hormones and semen parameters. Larger-scale
community-based evaluation for SARS-CoV-2 in semen sam-
ples and longitudinally collected hormone profiles and semen
analyses from recovered men are needed before we can better
VOL. 115 NO. 4 / APRIL 2021
understand the impact of SARS-CoV-2 on male reproduction.
As many reproductive care centers resume fertility care deliv-
ery globally, men and their partners must be appropriately
counseled regarding what is known and remains unknown
about SARS-CoV-2 and male reproductive health.
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