

# Which factors are most predictive for live birth after in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100 prospectively recorded variables in 8,400 IVF/ICSI single-embryo transfers

Katarina Kebbon Vaegter, M.D.,<sup>a,b</sup> Tatevik Ghukasyan Lakic, M.Sc.,<sup>c</sup> Matts Olovsson, M.D., Ph.D.,<sup>b</sup> Lars Berglund, M.Sc., Ph.D.,<sup>c</sup> Thomas Brodin, M.D., Ph.D.,<sup>a,b</sup> and Jan Holte, M.D., Ph.D.<sup>a,b,d</sup>

<sup>a</sup> Carl von Linné Clinic and <sup>b</sup> Department of Women's and Children's Health, Uppsala University; <sup>c</sup> Uppsala Clinical Research Center; and <sup>d</sup> Center for Reproductive Biology in Uppsala, University of Agricultural Sciences and Uppsala University, Uppsala, Sweden

**Objective:** To construct a prediction model for live birth after in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment and single-embryo transfer (SET) after 2 days of embryo culture.

**Design:** Prospective observational cohort study.

**Setting:** University-affiliated private infertility center.

**Patient(s):** SET in 8,451 IVF/ICSI treatments in 5,699 unselected consecutive couples during 1999–2014.

**Intervention(s):** A total of 100 basal patient characteristics and treatment data were analyzed for associations with live birth after IVF/ICSI (adjusted for repeated treatments) and subsequently combined for prediction model construction.

**Main Outcome Measure(s):** Live birth rate (LBR) and performance of live birth prediction model.

**Result(s):** Embryo score, treatment history, ovarian sensitivity index (OSI; number of oocytes/total dose of FSH administered), female age, infertility cause, endometrial thickness, and female height were all independent predictors of live birth. A prediction model (training data set; n = 5,722) based on these variables showed moderate discrimination, but predicted LBR with high accuracy in sub-groups of patients, with LBR estimates ranging from <10% to >40%. Outcomes were similar in an internal validation data set (n = 2,460).

**Conclusion(s):** Based on 100 variables prospectively recorded during a 15-year period, a model for live birth prediction after strict SET was constructed and showed excellent calibration in internal validation. For the first time, female height qualified as a predictor of live birth after IVF/ICSI. (Fertil Steril® 2017;107:641–8. ©2016 by American Society for Reproductive Medicine.)

**Key Words:** IVF, prediction model, live birth rate, multiple pregnancy, single-embryo transfer

---

**Discuss:** You can discuss this article with its authors and with other ASRM members at <https://www.fertsterdialog.com/users/16110-fertility-and-sterility/posts/13857-23154>

Received September 27, 2016; revised November 9, 2016; accepted December 6, 2016; published online January 17, 2017.

K.K.V. has nothing to disclose. T.G.L. has nothing to disclose. M.O. has nothing to disclose. L.B. has nothing to disclose. T.B. has nothing to disclose. J.H. has nothing to disclose.

Reprint requests: Katarina Kebbon Vaegter, M.D., Carl von Linné Clinic, Uppsala Science Park, Uppsala S-751 83, Sweden (E-mail: [katarina.vaegter@linne.se](mailto:katarina.vaegter@linne.se)).

**I**n vitro fertilization (IVF) has become a standard method for most types of fertility problems. The high twin pregnancy rate arising from IVF has been recognized as a significant public health issue, leading to policies encouraging or mandating increased use of single-embryo transfer (SET) in many countries (1). Prediction models have been developed to improve counseling of the couples, to help tailor treatment protocols, and to provide guidance in the choice between transferring one (SET) or two (double-embryo transfer; DET) or more (2–6) embryos.

Such a model, predicting clinical pregnancy, was developed in our center in 2003, based on 2,266 IVF treatments and DET (7, 8). The model has been shown to be effective in reducing twin rates at a preserved high pregnancy rate (1, 8) and is currently in use at several clinics. SET is the standard procedure in Sweden following national legislation in 2003, with DET being performed in the minority of the treatments with a predicted low twin risk. This change in strategy has resulted in a dramatic decrease in multiple pregnancies and a concomitant improvement in perinatal morbidity and mortality (1, 9–11). Increased knowledge about the factors that determine the chance of success in assisted reproductive techniques (ART) would have an impact on the guidance for using SET or DET in individual cases.

Our aim with the present study was to construct a new model from SETs and with the use of live birth as end point, as opposed to the previous model which was derived from primarily DETs and used clinical pregnancy as end point. The strategy of evaluating only SET permits individual traceability from scoring to implantation for every embryo transferred, and because a large number of variables were scored prospectively in a very large group of patients, the results could be used as general information about what factors ultimately determine success in ART.

## MATERIALS AND METHODS

Patients undergoing IVF and intracytoplasmic sperm injection (ICSI) treatment at the Carl von Linné Clinic (Uppsala, Sweden) from January 1999 to December 2014 were enrolled. All fresh IVF/ICSI treatments leading to SET on day 2 after oocyte retrieval were included, representing 46% of all treatments during the period. The criteria leading to SET were >15% duplex risk according to the existing prediction model, earlier obstetrical or perinatal complications, and/or intercurrent disease. A total of 8,451 treatments from 5,699 couples were included (a couple could contribute with several treatments). Women's ages were 19–43 years with both median and mean of 34 years. Indications for IVF were anovulation (8.2%), male factor (25.9%), tubal factor (10.3%), endometriosis (4.8%), unexplained (44.7%), and other (6.1%). The Regional Ethics Committee at the University of Uppsala approved the study and waived the need for written informed consents (EPN Dnr 2012/036; 2012-07-05).

All data were prospectively collected before and during IVF/ICSI treatment. Obstetrical and treatment history were self-reported (and in most cases supported by medical charts), as well as smoking habits and the woman's height and weight. Weight was also measured on the day of oocyte retrieval, and

basal and actual body mass index (BMI) were calculated from these data. Data from the infertility work-up, such as duration and type of subfertility and sperm analyses, were collected. Patients underwent ovarian stimulation as previously described (12, 13) with the use of a long GnRH agonist in 88% of treatments and a GnRH antagonist in 12%, with recombinant FSH in 74% of treatments and hMG in 26%. In most cases, the down-regulation period was 2–3 weeks, and the GnRH-agonist dose was halved or abolished during the ovarian stimulation phase, also in patients with a diagnosis of endometriosis. During treatment, variables of the treatment and the resulting effects were recorded. All 100 variables that were collected are presented in *Supplemental Table 1* (available online at [www.fertstert.org](http://www.fertstert.org)).

The relationships between the explanatory variables and live birth rate (LBR) were explored by means of generalized estimating equations (GEE), because this method accounts for dependencies within subjects (several treatments for the same couple) (14, 15). First, univariate GEE regression models were estimated with the use of LBR as the dependent variable for all putative explanatory variables. Variables with *P* values <.1 were selected for further analysis. If the correlation between some variables chosen in the previous step was ≥0.8, these variables were tested in a bivariate GEE regression model and the covariate with the higher *P* value was excluded from further analysis. Thereafter, to prevent overfitting of the model, the data was randomly divided into two parts: 70% of all observations were used for the primary analyses (training set; *n* = 5,722) and 30% of observations were used for internal model validation (validation set; *n* = 2,460). The model was developed with the use of GEE multivariate regression by means of a forward selection method. For the final model, all pair-wise correlations as well as multicollinearity among all the predictors were examined. The model is presented with the odds ratio (OR), 95% confidence interval (CI), and *P* value for each predictor.

The performance of the model was evaluated by means of c-statistics and calibration. The c-statistic, equivalent to the area under the receiver operating characteristic curve, assesses the model's discriminative capacity. Calibration refers to the level of agreement between the estimated and the observed probabilities of a given event. Calibration was assessed by means of Hosmer-Lemeshow test. All analyses were performed with the use of the statistical software SAS (v. 9.4; SAS Institut). The standard *P*<.05 was considered to be statistically significant in all tests.

## RESULTS

Among the 100 variables collected before and during treatment, 36 variables qualified for model derivation (*Supplemental Table 2*, available online at [www.fertstert.org](http://www.fertstert.org)). The best prediction model contained seven predictors, as presented in *Table 1*. Two hundred sixty-nine cycles (3%) did not have complete data for all seven of these predictors and could therefore not be part of the final analysis. Eligible for the analysis were 8,182 treatment cycles in 5,699 couples. Seventy percent, i.e., 5,722 treatments from 4,434 couples, were

TABLE 1

The final prediction model: predictors for live birth after IVF/ICSI treatment(s) (trt) and single-embryo transfer, with their categories, odds ratios (ORs) with confidence intervals (CIs), and *P* values.

| Parameter             | Value                              | OR (95% CI)         | <i>P</i> value |
|-----------------------|------------------------------------|---------------------|----------------|
| IMC score             | <1.5                               | 1.00                |                |
|                       | 1.5–2                              | 2.81 (1.79–4.42)    | <.0001         |
|                       | 2–2.5                              | 3.64 (2.46–5.37)    | <.0001         |
|                       | >2.5                               | 4.68 (3.22–6.81)    | <.0001         |
| Treatment history     | 0 trt, 0 child; 1–6 trt, ≥1 child  | 1.00                |                |
|                       | 1–6 trt, 0 child; ≥7 trt, ≥1 child | 0.76 (0.67–0.86)    | <.0001         |
|                       | ≥7 trt, 0 child                    | 0.23 (0.08–0.62)    | .0040          |
|                       | <0.87                              | 1.00                |                |
| OSI                   | 0.87–1.85                          | 1.41 (1.17–1.70)    | .0002          |
|                       | >1.85                              | 1.56 (1.29–1.88)    | <.0001         |
|                       |                                    |                     |                |
| Female age            | ≤28 y                              | 1.00                |                |
|                       | 29–35 y                            | 0.85 (0.70–1.03)    | .0945          |
|                       | 36 y                               | 0.70 (0.54–0.91)    | .0076          |
|                       | 37–38 y                            | 0.46 (0.36–0.58)    | <.0001         |
|                       | 39–40 y                            | 0.37 (0.28–0.49)    | <.0001         |
|                       | 41 y                               | 0.22 (0.13–0.37)    | <.0001         |
|                       | 42–43 y                            | 0.14 (0.06–0.30)    | <.0001         |
| Endometrial thickness | >10 mm                             | 1.00                |                |
|                       | 7–10 mm                            | 0.86 (0.76–0.99)    | .0211          |
|                       | <7 mm                              | 0.49 (0.26–0.92)    | .0281          |
| Infertility cause     | Tubal factor                       | 1.00                |                |
|                       | Anovulation                        | 1.71 (1.28–2.27)    | .0002          |
|                       | Endometriosis                      | 1.65 (1.18–2.31)    | .0035          |
|                       | Male                               | 1.52 (1.20–1.92)    | .0004          |
|                       | Unexplained                        | 1.47 (1.18–1.83)    | .0007          |
|                       | Other                              | 1.68 (1.22–2.33)    | .0018          |
| Female height (cm)    |                                    | 1.011 (1.002–1.021) | .0227          |

Note: IMC score = integrated morphology-cleavage embryo score; OSI = ovarian sensitivity index.


Vaegter. Predicting live birth after IVF/ICSI. *Fertil Steril* 2016.

used for the training set, and 2,460 treatments from 2,217 couples were used for the validation set (Fig. 1).

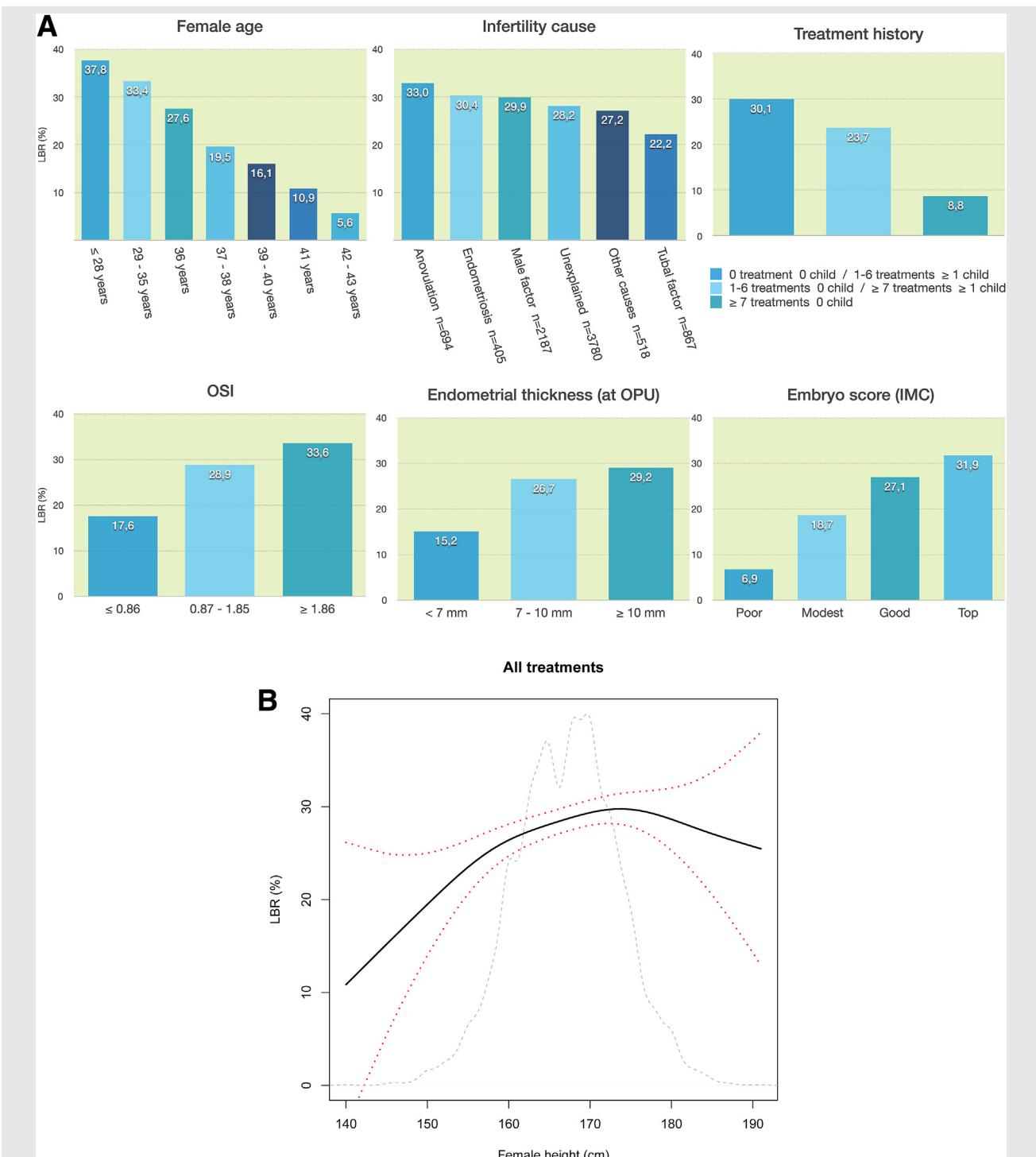
The overall LBR was 28.20%: 28.6% in the training set and 27.3% in the validation set. LBR increased during the study period, from 25.2% 1999–2004 to 29.5% 2010–2014. Adjusting the model with a time factor did not, however, change the ORs for the other variables in the model (data not presented). The results from the final model (training set), i.e., the predictive factors for LBR after IVF/ICSI, with their ORs, CIs, and *P* values, are presented in Table 1. The univariate effects of the seven predictive factors on LBR are illustrated in Figure 2. There was no significant multicollinearity among the predictors (data not shown). Some of the predictors were derived from two or more variables in the data.

Embryo score, the integrated morphology-cleavage (IMC) score (7), is an algorithm that incorporates three variables that rank the likelihood of embryo implantation (number of blastomeres, evenness of blastomere size, and the proportion of mononucleated blastomeres). The score was converted to a categorical variable with four groups to identify poor-, moderate-, good-, and top-quality embryos. The odds of success with IVF treatment for couples with top-quality embryos was 4.7 times higher than for couples with poor-quality

FIGURE 1



embryos (OR 4.68, 95% CI 3.22–6.81 [Table 1]; LBR 6.9%–31.9% [Fig. 2]).


Treatment history is a variable describing the success rate in previous fresh and frozen-thawed treatment cycles. Three groups were defined. The poorest prognosis was found for couples that had undergone more than six previous treatments without any live birth (LBR 8.8%), whereas the best prognosis was found for couples who either underwent their first treatment or had at least one child after a maximum of six embryo transfers (LBR 30.1% [Fig. 2]; OR 0.23–1 [Table 1]).

Ovarian sensitivity index (OSI) is a composite variable to measure ovarian response. It is derived with the use of the formula: OSI =  $\log(\text{number of eggs recovered} \times 1,000/\text{total dose of FSH})$  (16). Three groups were formed to identify low, medium, and high response. The odds of a live birth with IVF treatment in the high-response group was 1.6 times higher than the odds in the low-response group (OR 1.56, 95% CI 1.29–1.88 [Table 1]; LBR 17.6%–33.6% [Fig. 2]).

Regarding female age, a two-way frequency table was obtained with a decrease in live birth rates after 28 years of age, and another after 35 years of age. LBRs were almost equal for patients 37 and 38 years of age and subsequently decreased. Based on these thresholds, age was grouped into seven groups, as shown in Figure 2 (LBR 5.6%–37.8%, OR 0.14–1; Table 1).

Endometrial thickness measured on the day of oocyte retrieval showed a nonlinear relationship with both pregnancy and live birth. It was found that women with an endometrium thinner than 7 mm were less likely to have a successful treatment. LBR with an endometrium <7 mm was 15.2% compared with 29.2% with an endometrium >10 mm (Fig. 2, OR 0.49–1; Table 1).

FIGURE 2



(A) Independent predictors included in the model and their respective univariate association with live birth rate (LBR). OSI = ovarian sensitivity index; IMC embryo score = integrated morphology-cleavage embryo score; OPU = ovum pick-up. (B) Female height in cm and its univariate association with LBR. The solid black curve is linear between 157 and 175 cm, where 85% of the observations are located (dashed gray curve). In the extremes the observations are too few and confidence intervals too broad (dotted red curve) to draw conclusions.

Vaegter. Predicting live birth after IVF/ICSI. *Fertil Steril* 2016.

Infertility cause is a categorical variable with six categories. The number of observations in each category and respective LBRs are presented in Figure 2 (LBR 22.2%–

33.0%, OR 1–1.71; Table 1). Tubal factor was associated with the lowest LBRs, whereas anovulation was associated with the best outcome.

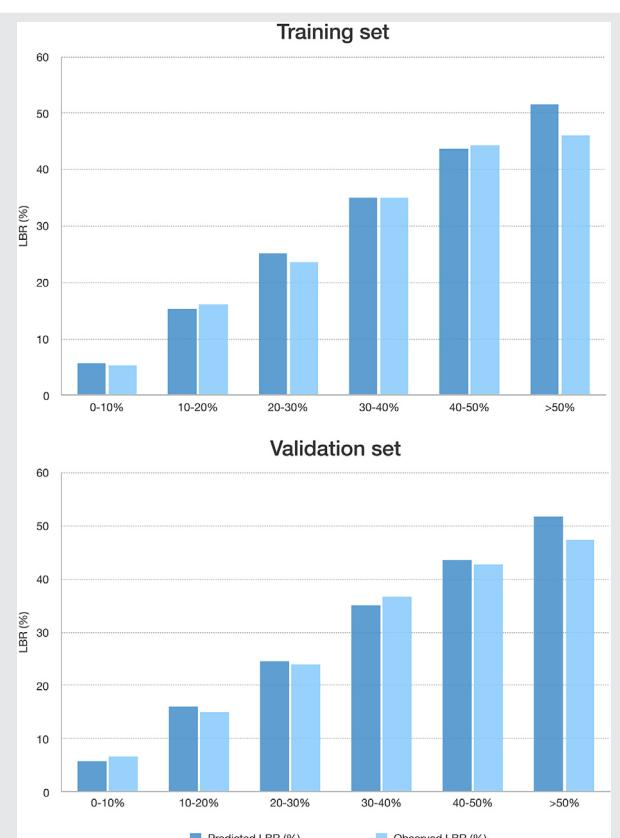
Female height is a continuous variable measured in centimeters. Female height was positively correlated with live birth. For a 1-unit increase in female height (1 cm) the odds increased by 1.1% (OR 1.011, 95% CI 1.002–1.021; Table 1).

The c-statistic, i.e., the integrated measurement of sensitivity and specificity, for the model in the training set was 0.67. The calibration, i.e., the association between predicted and observed mean live birth rates in subgroups of couples with live birth probabilities from <10% to >50%, as assessed by the Hosmer-Lemeshow test, showed a  $P$  value of 0.90. Figure 3 indicates very good model calibration.

The ORs in the validation set were similar to the corresponding ORs in the training set. The c-statistic also was similar (0.68). Again, the model calibrated well ( $P=.88$ ; Hosmer-Lemeshow test; Fig. 3).

## DISCUSSION

This prospective cohort study of 8,451 IVF/ICSI treatments is, to our knowledge, the largest study reporting on treatments performed with the use of SETs only, leading to the development of a prediction model to calculate the chances of live


birth after IVF/ICSI. The model has modest discriminating power but excellent calibration. We used data that were prospectively collected in consecutive IVF patients during a period of 15 years for the development of the model. The model was internally validated in a data set that had not been used for the model construction. Out of 100 collected variables, the best model contains seven independently significant predictors: embryo score, treatment history, ovarian response measured as OSI, female age, infertility cause, endometrial thickness, and female height. Among these variables, all have been previously shown to be associated with IVF/ICSI outcome except female height, which was a novel and unexpected finding.

An important strength of this study is that, because the data were derived from SETs only, it allows the tracing of each individual transferred embryo. Most studies on factors influencing implantation potential are based on treatments with transfers of multiple embryos, precluding traceability of the individual embryo in other than treatments leading to either no implantation or implantation of the same number of embryos as transferred (4, 8, 17–20). The IMC embryo score was earlier developed at the clinic (7, 21). From five easily scored variables, three variables were incorporated into this embryo score. It is included in the prediction model of clinical pregnancy after DET. Prospective application of that model to select for SET or DET proved that the model was highly effective as a means to reduce twin implantation rates (from 28% to 2%) at preserved pregnancy rates (1, 7, 8). Most previous studies dichotomize embryo quality into top quality and non-top quality, whereas the present study thus used an evidence-based graded scoring. The IMC score turned out to be one of the most powerful predictors of live birth.

Treatment history, i.e., the number of previous successful/failed IVF treatments (including thaw cycles) demonstrated a strong predictive value for live birth after IVF/ICSI in this study, as in several previous studies (3, 4, 19, 22). Our data analysis resulted in three levels for this composite variable, confirming previous findings for a positive effect of a previous successful treatment as well as a relatively small reduction in expected LBR per failed treatment. Of note, previous pregnancy (without treatment) and duration of infertility did not qualify for the final model, which is at variance with other reports (3, 4, 17, 22).

Ovarian response is often measured as the total number of oocytes retrieved (23–27) or as the total number of embryos derived (4, 17) in models that predict pregnancy or live birth. However, results from mild stimulation protocols have shown that women with expected high response, stimulated with a very low dose of FSH resulting in a low oocyte yield, still have high live birth rates (28). Conversely, women with reduced response to controlled ovarian hyperstimulation, who after prolonged stimulation and/or increased doses of FSH, finally have a normal number of oocytes retrieved, still exhibit reduced chances (29–31). Also, the total amount of gonadotropins used per se is highly correlated with pregnancy chance (32). Thus, measures of the resulting variable (total number of oocytes or embryos) may be too crude to fully reflect the ovarian

**FIGURE 3**



Calibration of the model. Mean predicted and mean observed live birth rate (LBR; y-axis) in subgroups defined by predicted LBR (x-axis) in training and validation sets. Test for calibration, Hosmer-Lemeshow:  $P=.90$  and  $P=.88$ , respectively.

Vaegter. Predicting live birth after IVF/ICSI. *Fertil Steril* 2016.

response. Instead, we used the OSI, which takes into account both the power of stimulus—the total dose of FSH—and the resulting effect—the number of oocytes retrieved (16). We previously showed that this ratio was log-normally distributed in a large IVF population and that it was more closely associated with LBR than oocyte yield only (16). It is well established that ovarian response is tightly associated with markers of ovarian reserve. We deliberately did not include basal markers of ovarian reserve, such as basal levels of FSH and LH, antral follicle count, and antimüllerian hormone (AMH) levels, in the data analysis (12, 13, 33, 34). The reason for this was that no single reliable measurement for ovarian reserve was used during the 15 years period of data collection. Furthermore, OSI correlated closely with different ovarian reserve tests in other studies, and OSI has proved to be as least as predictive of LBR as AMH level (16, 32, 34, 35).

Not surprisingly, female age was negatively correlated with live birth after IVF/ICSI. This is the most established predictor included in every prediction model for pregnancy or live birth after IVF/ICSI or as a standard to which a model is compared (3–5, 17, 22, 25, 26, 36). In the present study, the relation between female age and LBR was nonlinear, with marked decreases in LBR after 28, 35, and 38 years.

As in earlier studies, infertility cause qualified as an independent predictor, which was mainly because of the low success rates associated with tubal subfertility. This finding corroborates most (23, 26, 37, 38), but not all (25), previous reports. Anovulation, including mainly women with polycystic ovary syndrome, proved to be the most favorable diagnosis, again in line with several previous reports (13, 31, 34). Endometriosis was not associated with a reduced prognosis, in accordance with some (17, 23, 26, 39–41), but not all (4), previous studies. It should be underscored that no prolonged down-regulation was performed in women with a diagnosis of endometriosis, including those with a visible endometrioma.

Male-related factors were nonsignificant as predictors, even in univariate analysis. This is in line with other prediction models for pregnancy or live birth after IVF/ICSI (3, 19, 42). The probable explanation for this is that ICSI provides an effective treatment of male infertility.

Women with a thin endometrium at the time of ovum pick-up, i.e., <7 mm, constituted a small subgroup of the cohort with significantly lower LBR, whereas women with an endometrium >10 mm exhibited the best outcome. A thin endometrium is known to be negatively associated with reproductive outcome, but it occurs infrequently. Endometrial thickness as a tool to decide on cycle cancellation can not be justified with the current knowledge (43, 44).

A strength of the present study is that the population is large and that the model is developed from a high number of variables recorded prospectively within a single clinic. It is interesting that with this approach, an unexpected variable stands out as a new predictor. To our knowledge, female height has not previously been proposed as a predictor for IVF/ICSI outcome. Some prediction models include BMI (5, 18, 45, 46). BMI was univariately negatively associated with LBR in the present study, but not after multivariate

analysis. In our own previous prediction model (8), female height, like BMI, correlated univariately with clinical pregnancy rate after IVF/ICSI, but not after multiple regression modeling. The fact that the outcome studied in the present model was live birth may have had an influence on this. Associations have previously been described between female height and dizygotic twinning, both spontaneously and after IVF (positively), and between female height and risk of premature birth (negatively) (47–56). Human height has steadily increased over the past centuries, which has been interpreted as a consequence of improvements of health and nutrition (57). It could be speculated that growth factors involved in procreation might also be involved in body growth. This new finding of an association between female height and live birth after IVF/ICSI has to be confirmed and studied further in future studies.

The discriminative capacity of the model was modest, as is usually the case for prediction models in reproductive medicine. Previous prediction models for probability of pregnancy after IVF have presented c-statistics of 0.5–0.68 (2, 4, 5). More importantly, the test for calibration in the present study was excellent, with a high *P* value in the Hosmer-Lemeshow test, both in the training set and in the validation set. The interpretation of this finding is that there is a good correspondence between the predicted chance of success and the observed success rate in all subgroups of couples, covering the entire range of probabilities. The model thus has a high capacity to distinguish between couples with poor, moderate, or high chances of success. This makes it useful in the daily clinical practice, enabling more detailed and individualized counseling to the couple. The information could also be used in the development of a model to decide which patients are best served by SET and which patients need DET when aiming at low multiple birth rates with preserved pregnancy rates. Not least, the high performance of the model to predict treatment outcome in patient subgroups makes it an excellent tool for physicians to refine and tailor treatment protocols. Knowing the expected outcome, the effect of a change in treatment strategy can easily be evaluated. The same applies for different protocols for subgroups of patients or even the occurrence of an unexpected event. Data can be fed back to the model continuously, creating a data-driven refinement of treatment strategies.

Because this prediction model was developed in a single clinic, to be applicable to other IVF centers it needs to be validated externally. It is also restricted to fresh day 2 embryo transfers. With the increasing use of prolonged culture, a useful modern prediction model for LBR after IVF should include embryo scores up to the blastocyst stage. Ideally, a prediction model in ART should predict the cumulative LBR and include frozen-thawed embryo transfers. These limitations of the present study are aims of ongoing studies at our center.

In conclusion, in this large prospective study of 8,451 SETs, we constructed a prediction model for live birth, with modest discrimination but excellent calibration. The model confirms embryo score, treatment history, ovarian sensitivity, female age, endometrial thickness, and infertility cause as independent predictors. In addition, for the first time, female

height appears as an independent predictor of live birth after IVF/ICSI. It is suggested that prediction models like this are used to improve patient counseling before and during IVF, to give guidance in the choice of SET or DET, and as a tool for data-driven refinement of treatment strategies.

**Acknowledgments:** The authors express special thanks to senior lecturer Inger Persson, Ph.D., for help with the study design.

## REFERENCES

- Karlstrom PO, Bergh C. Reducing the number of embryos transferred in Sweden—impact on delivery and multiple birth rates. *Hum Reprod* 2007; 22:2202–7.
- Leushuis E, van der Steeg JW, Steures P, Bossuyt PM, Eijkemans MJ, van der Veen F, et al. Prediction models in reproductive medicine: a critical appraisal. *Hum Reprod Update* 2009;15:537–52.
- Nelson SM, Lawlor DA. Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilisation: a prospective study of 144,018 treatment cycles. *PLoS Med* 2011;8:e1000386.
- van Loendersloot LL, van Wely M, Repping S, Bossuyt PM, van der Veen F. Individualized decision-making in IVF: calculating the chances of pregnancy. *Hum Reprod* 2013;28:2972–80.
- Choi B, Bosch E, Lannon BM, Leveille MC, Wong WH, Leader A, et al. Personalized prediction of first-cycle in vitro fertilization success. *Fertil Steril* 2013;99:1905–11.
- Smith AD, Tilling K, Lawlor DA, Nelson SM. External validation and calibration of IVFpredict: a national prospective cohort study of 130,960 in vitro fertilisation cycles. *PLoS One* 2015;10:e0121357.
- Holte J, Berglund L, Milton K, Garello C, Gennarelli G, Revelli A, et al. Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. *Hum Reprod* 2007;22:548–57.
- Holte J, Berglund L, Hadziosmanovic N, Tilly J, Pettersson H, Bergh T. The construction and validation of a prediction model to minimize twin rates at preserved live birth rates in ART. *Hum Reprod* 2011;26(suppl 1):i61–3.
- Finnstrom O, Kallen B, Lindam A, Nilsson E, Nygren KG, Olausson PO. Maternal and child outcome after in vitro fertilization—a review of 25 years of population-based data from Sweden. *Acta Obstet Gynecol Scand* 2011; 90:494–500.
- Kallen AJ, Finnstrom OO, Lindam AP, Nilsson EM, Nygren KG, Olausson PM. Cerebral palsy in children born after in vitro fertilization. Is the risk decreasing? *Eur J Paediatr Neurol* 2010;14:526–30.
- Sazonova A, Kallen K, Thulin-Kjellberg A, Wennerholm UB, Bergh C. Factors affecting obstetric outcome of singletons born after IVF. *Hum Reprod* 2011; 26:2878–86.
- Brodin T, Bergh T, Berglund L, Hadziosmanovic N, Holte J. Menstrual cycle length is an age-independent marker of female fertility: results from 6271 treatment cycles of in vitro fertilization. *Fertil Steril* 2008;90:1656–61.
- Brodin T, Hadziosmanovic N, Berglund L, Olovsson M, Holte J. Antimullerian hormone levels are strongly associated with live-birth rates after assisted reproduction. *J Clin Endocrinol Metab* 2013;98:1107–14.
- Ballinger G. Using generalized estimating equations for longitudinal data analysis. *Organ Res Methods* 2004;7:127–50.
- Hosmer D, Lemeshow S. Applied logistic regression. 2nd ed. New York: John Wiley and Sons; 2000.
- Huber M, Hadziosmanovic N, Berglund L, Holte J. Using the ovarian sensitivity index to define poor, normal, and high response after controlled ovarian hyperstimulation in the long gonadotropin-releasing hormone-agonist protocol: suggestions for a new principle to solve an old problem. *Fertil Steril* 2013;100:1270–6.
- Cai QF, Wan F, Huang R, Zhang HW. Factors predicting the cumulative outcome of IVF/ICSI treatment: a multivariable analysis of 2450 patients. *Hum Reprod* 2011;26:2532–40.
- Lannon BM, Choi B, Hacker MR, Dodge LE, Malizia BA, Barrett CB, et al. Predicting personalized multiple birth risks after in vitro fertilization–double embryo transfer. *Fertil Steril* 2012;98:69–76.
- Porcu G, Lehert P, Colella C, Giorgetti C. Predicting live birth chances for women with multiple consecutive failing IVF cycles: a simple and accurate prediction for routine medical practice. *Reprod Biol Endocrinol* 2013;11:1.
- van Loendersloot L, van Wely M, van der Veen F, Bossuyt P, Repping S. Selection of embryos for transfer in IVF: ranking embryos based on their implantation potential using morphological scoring. *Reprod Biomed Online* 2014;29:222–30.
- Rhenman A, Berglund L, Brodin T, Olovsson M, Milton K, Hadziosmanovic N, et al. Which set of embryo variables is most predictive for live birth? A prospective study in 6252 single embryo transfers to construct an embryo score for the ranking and selection of embryos. *Hum Reprod* 2015;30:28–36.
- Templeton A, Morris JK, Parslow W. Factors that affect outcome of in-vitro fertilisation treatment. *Lancet* 1996;348:1402–6.
- Strandell A, Bergh C, Lundin K. Selection of patients suitable for one-embryo transfer may reduce the rate of multiple births by half without impairment of overall birth rates. *Hum Reprod* 2000;15:2520–5.
- Hart R, Khalaf Y, Yeong CT, Seed P, Taylor A, Braude P. A prospective controlled study of the effect of intramural uterine fibroids on the outcome of assisted conception. *Hum Reprod* 2001;16:2411–7.
- Hunault CC, Eijkemans MJ, Pieters MH, te Velde ER, Habbema JD, Fauser BC, et al. A prediction model for selecting patients undergoing in vitro fertilization for elective single embryo transfer. *Fertil Steril* 2002;77:725–32.
- Ottosen LD, Kesmodel U, Hindkjaer J, Ingerslev HJ. Pregnancy prediction models and eSET criteria for IVF patients—do we need more information? *J Assist Reprod Genet* 2007;24:29–36.
- Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. *Hum Reprod* 2011;26:1768–74.
- Verberg MF, Eijkemans MJ, Macklon NS, Heijnen EM, Baart EB, Hohmann FP, et al. The clinical significance of the retrieval of a low number of oocytes following mild ovarian stimulation for IVF: a meta-analysis. *Hum Reprod Update* 2009;15:5–12.
- Ferraretti AP, Gianaroli L, Magli MC, Bafaro G, Colacurci N. Female poor responders. *Mol Cell Endocrinol* 2000;161:59–66.
- Saldeen P, Kallen K, Sundstrom P. The probability of successful IVF outcome after poor ovarian response. *Acta Obstet Gynecol Scand* 2007;86:457–61.
- Holte J, Brodin T, Berglund L, Hadziosmanovic N, Olovsson M, Bergh T. Antral follicle counts are strongly associated with live-birth rates after assisted reproduction, with superior treatment outcome in women with polycystic ovaries. *Fertil Steril* 2011;96:594–9.
- Li HW, Lee VC, Ho PC, Ng EH. Ovarian sensitivity index is a better measure of ovarian responsiveness to gonadotrophin stimulation than the number of oocytes during in-vitro fertilization treatment. *J Assist Reprod Genet* 2014; 31:199–203.
- Brodin T, Bergh T, Berglund L, Hadziosmanovic N, Holte J. High basal LH levels in combination with low basal FSH levels are associated with high success rates at assisted reproduction. *Hum Reprod* 2009;24:2755–9.
- Brodin T, Hadziosmanovic N, Berglund L, Olovsson M, Holte J. Comparing four ovarian reserve markers—associations with ovarian response and live births after assisted reproduction. *Acta Obstet Gynecol Scand* 2015.
- Biasoni V, Patriarca A, Dalmasso P, Bertagna A, Manieri C, Benedetto C, et al. Ovarian sensitivity index is strongly related to circulating AMH and may be used to predict ovarian response to exogenous gonadotropins in IVF. *Reprod Biol Endocrinol* 2011;9:112.
- Collins JA, Burrows EA, Wilan AR. The prognosis for live birth among untreated infertile couples. *Fertil Steril* 1995;64:22–8.
- Bancsi LF, Huijs AM, den Ouden CT, Broekmans FJ, Looman CW, Blankenstein MA, et al. Basal follicle-stimulating hormone levels are of limited value in predicting ongoing pregnancy rates after in vitro fertilization. *Fertil Steril* 2000;73:552–7.
- Luke B, Brown MB, Wantman E, Stern JE, Baker VL, Widra E, et al. A prediction model for live birth and multiple births within the first three cycles of assisted reproductive technology. *Fertil Steril* 2014;102:744–52.

39. Bongianni F, Revelli A, Gennarelli G, Guidetti D, Delle Piane LD, Holte J. Ovarian endometriomas and IVF: a retrospective case-control study. *Reprod Biol Endocrinol* 2011;9:81.

40. Lintsen AM, Eijkemans MJ, Hunault CC, Bouwmans CA, Hakkaart L, Habbema JD, et al. Predicting ongoing pregnancy chances after IVF and ICSI: a national prospective study. *Hum Reprod* 2007;22:2455–62.

41. Senapati S, Sammel MD, Morse C, Barnhart KT. Impact of endometriosis on in vitro fertilization outcomes: an evaluation of the Society for Assisted Reproductive Technologies Database. *Fertil Steril* 2016;106:164–71.e1.

42. van Loendersloot L, Repping S, Bossuyt PM, van der Veen F, van Wely M. Prediction models in in vitro fertilization; where are we? A mini review. *J Adv Res* 2014;5:295–301.

43. Lebovitz O, Orvieto R. Treating patients with “thin” endometrium—an ongoing challenge. *Gynecol Endocrinol* 2014;30:409–14.

44. Kasiur A, Smit JG, Torrance HL, Eijkemans MJ, Mol BW, Opmeer BC, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. *Hum Reprod Update* 2014;20:530–41.

45. Verberg MF, Eijkemans MJ, Macklon NS, Heijnen EM, Fauser BC, Broekmans FJ. Predictors of ongoing pregnancy after single-embryo transfer following mild ovarian stimulation for IVF. *Fertil Steril* 2008;89:1159–65.

46. Ferlitsch K, Sator MO, Gruber DM, Rucklinger E, Gruber CJ, Huber JC. Body mass index, follicle-stimulating hormone and their predictive value in in vitro fertilization. *J Assist Reprod Genet* 2004;21:431–6.

47. Corney G, Seedburgh D, Thompson B, Campbell DM, MacGillivray I, Timlin D. Maternal height and twinning. *Ann Hum Genet* 1979;43:55–9.

48. Dickey RP, Xiong X, Gee RE, Pridjian G. Effect of maternal height and weight on risk of preterm birth in singleton and twin births resulting from in vitro fertilization: a retrospective cohort study using the Society for Assisted Reproductive Technology Clinic Outcome Reporting System. *Fertil Steril* 2012;97:349–54.

49. Doherty JD. Height of women, twinning and breast cancer: epidemiological evidence of a relationship. *Acta Genet Med Gemellol (Roma)* 1988;37:263–75.

50. Groeneveld E, Lambers MJ, Stakelbeek ME, Mooij TM, van den Belt-Dusebout AW, Heymans MW, et al. Factors associated with dizygotic twinning after IVF treatment with double embryo transfer. *Hum Reprod* 2012;27:2966–70.

51. Hemon D, Berger C, Lazar P. The etiology of human dizygotic twinning with special reference to spontaneous abortions. *Acta Genet Med Gemellol (Roma)* 1979;28:253–8.

52. Martin NG, El Beaini JL, Olsen ME, Bhatnagar AS, Macourt D. Gonadotropin levels in mothers who have had two sets of DZ twins. *Acta Genet Med Gemellol (Roma)* 1984;33:131–9.

53. Nylander PP. The factors that influence twinning rates. *Acta Genet Med Gemellol (Roma)* 1981;30:189–202.

54. Reddy UM, Branum AM, Klebanoff MA. Relationship of maternal body mass index and height to twinning. *Obstet Gynecol* 2005;105:593–7.

55. Steinman G. Mechanisms of twinning: VIII. Maternal height, insulinlike growth factor and twinning rate. *J Reprod Med* 2006;51:694–8.

56. Wyshak G. Health characteristics of mothers of twins. *Acta Genet Med Gemellol (Roma)* 1984;33:141–5.

57. Roser M. Human height. Our world in data. 2016. Available at: <https://ourworldindata.org/human-height>. Last accessed December 28, 2016.

## SUPPLEMENTAL TABLE 1

**The 100 variables prospectively recorded before and during IVF/ICSI treatment, with *P* values for their respective associations with live birth rate.**

| Variable name                                     | P value |
|---------------------------------------------------|---------|
| Infertility duration                              | .0043   |
| Infertility cause                                 | <.0001  |
| Number of pregnancies                             | <.0001  |
| Parity                                            | .4875   |
| Number of spontaneous abortions                   | .0081   |
| Number of legal abortions                         | .0071   |
| Number of ectopic pregnancies                     | .0019   |
| Number of pregnancies in the couple               | .0007   |
| Number of children in the couple                  | .0536   |
| Number of IUIs                                    | .7043   |
| Number of IUI pregnancies                         | .7836   |
| Number of IUI children                            | .9081   |
| Number of IVF treatments                          | <.0001  |
| Number of IVF pregnancies                         | .5194   |
| Number of IVF children                            | .0396   |
| Number of frozen/thawed treatments                | .1478   |
| Number of frozen/thawed pregnancies               | .5702   |
| Number of frozen/thawed children                  | .6596   |
| Treatment history <sup>a</sup>                    | <.0001  |
| Female age (at OPU)                               | <.0001  |
| Age group                                         | <.0001  |
| Female height                                     | .0031   |
| Female weight (at OPU)                            | .0851   |
| Female BMI (at OPU)                               | .0018   |
| Smoking woman (yes/no)                            | .0832   |
| Smoking man (yes/no)                              | .0527   |
| Dipping/chewing tobacco man (yes/no)              | .6582   |
| Stimulation type (agonist/antagonist)             | .0089   |
| Stimulation drug (FSH/hMG)                        | <.0001  |
| Antagonist drug                                   | .0140   |
| Altered GnRH-dose at injection start              | .0008   |
| Total dose of FSH/hMG                             | <.0001  |
| Days of FSH/hMG stimulation                       | .0220   |
| Mean daily dose of FSH/hMG                        | <.0001  |
| Maximum dose of FSH/hMG                           | <.0001  |
| Days of stimulation and coasting                  | .0149   |
| Total dose of antagonist drug                     | .6491   |
| OPU number of order at OPU day                    | .3796   |
| Number of follicles >20 mm (at OPU)               | <.0001  |
| Number of follicles 15–20 mm (at OPU)             | <.0001  |
| Number of follicles <15 mm (at OPU)               | <.0001  |
| Total number of follicles                         | <.0001  |
| Size of largest follicle (at OPU)                 | .1011   |
| Free fluid at OPU                                 | .0099   |
| Uterus anteflexion/retroflexion (at OPU)          | .8993   |
| Endometrium type at OPU (hypo/iso/hyperechogenic) | .0101   |
| Endometrium thickness (at OPU)                    | .0060   |
| Endometrial thickness group                       | <.0001  |
| Total number of eggs                              | <.0001  |
| Ovarian sensitivity index                         | <.0001  |
| Number of eggs to IVF                             | .0128   |
| Number of eggs to ICSI                            | .0022   |
| Number of eggs injected (ICSI)                    | <.0001  |
| Total sperm count before preparation              | .1855   |
| Total sperm count after preparation               | .0909   |
| Time from OPU to insemination                     | .8707   |
| Time point of OPU                                 | .9589   |
| Time point of insemination                        | .5926   |
| Method (IVF/ICSI/combined)                        | .1829   |
| Sperm fresh/frozen                                | .4118   |
| Number of embryos cleaved on day 2 after IVF      | .0001   |
| Percentage of embryos cleaved on day 2 after IVF  | <.0001  |
| Number of embryos cleaved on day 2 after ICSI     | <.0001  |
| Percentage of embryos cleaved on day 2 after ICSI | .0036   |
| Total number of cleaved embryos on day 2          | <.0001  |

Vaegter. Predicting live birth after IVF/ICSI. *Fertil Steril* 2016.

## SUPPLEMENTAL TABLE 1

**Continued.**

| Variable name                                                | P value |
|--------------------------------------------------------------|---------|
| Average fragmentation on day 2 after IVF                     | .0627   |
| Average fragmentation on day 2 after ICSI                    | .8701   |
| Average fragmentation on day 2, total                        | .2419   |
| Number of embryos frozen                                     | .0851   |
| Number of blastomeres (embryo transferred)                   | <.0001  |
| Degree of fragmentation (embryo transferred)                 | <.0001  |
| Evenness of size of blastomeres (embryo transferred)         | <.0001  |
| Symmetry of cleavage (embryo transferred)                    | .0029   |
| Proportion of mononucleated blastomeres (embryo transferred) | <.0001  |
| IVF/ICSI (embryo transferred)                                | .4077   |
| Doctor performing transfer                                   | .0173   |
| Time point of embryo transfer                                | .2656   |
| Change of catheter at embryo transfer (yes/no)               | .0002   |
| Elective single-embryo transfer (yes/no)                     | <.0001  |
| Time from fertilization check to day 2 embryo check          | .2504   |
| Time from fertilization check to ET                          | .3827   |
| Time from day 2 embryo check to ET                           | .9729   |
| Time from hCG to fertilization check                         | .9109   |
| Time from hCG to day 2 embryo check                          | .9488   |
| Time from hCG to ET                                          | .7752   |
| Time from hCG to insemination                                | .9450   |
| Time from hCG to OPU                                         | .3544   |
| Time from hCG to sperm ejaculation                           | .8972   |
| Time from insemination to fertilization check                | .1943   |
| Time from insemination to day 2 embryo check                 | .9051   |
| Time from insemination to ET                                 | .3850   |
| Time from OPU to fertilization check                         | .2283   |
| Time from OPU to day 2 embryo check                          | .5989   |
| Time from OPU to ET                                          | .2850   |
| Time from sperm ejaculation to OPU                           | .7185   |
| Time from sperm ejaculation to ET                            | .1680   |
| Time from sperm ejaculation to fertilization check           | .5760   |
| Time from sperm ejaculation to day 2 embryo check            | .1663   |
| IMC embryo score 1–10 points                                 | <.0001  |
| IMC embryo score (poor/modest/good/top quality)              | <.0001  |

Note: BMI = body mass index; ET = embryo transfer; IMC = integrated morphology-cleavage; ICSI = intracytoplasmic sperm injection; IUI = intrauterine insemination; IVF = in vitro fertilization; OPU = ovum pick-up.

<sup>a</sup> Treatment history: success rate in previous fresh and frozen/thawed treatments expressed as three groups: 0 treatment (trt) and 0 child, or 1–6 trt and ≥1 child; 1–6 trt and 0 child, or ≥7 trt and ≥1 child; and ≥7 trt and 0 child.

Vaegter. Predicting live birth after IVF/ICSI. *Fertil Steril* 2016.

## SUPPLEMENTAL TABLE 2

**The 36 variables included in multivariable regression analysis.**

Infertility duration  
 Infertility cause  
 Number of pregnancies  
 Number of spontaneous abortions  
 Number of legal abortions  
 Number of ectopic abortions  
 Number of pregnancies in the couple  
 Number of children in the couple  
 Number of IVF treatments  
 Number of IVF children  
 Treatment history<sup>a</sup>  
 Female age  
 Age group  
 Female height  
 Female weight  
 Female body mass index  
 Smoking woman (yes/no)  
 Smoking man (yes/no)  
 Stimulation type (agonist/antagonist)  
 Stimulation drug (FSH/hMG)  
 Antagonist drug  
 Altered GnRH dose at injection start  
 Total dose of FSH/hMG  
 Days of FSH/hMG stimulation  
 Days of FSH/hMG stimulation and coasting  
 Total number of follicles  
 Free fluid at OPU  
 Endometrium type at OPU (hypo/iso/hyperechogenic)  
 Endometrium thickness (at OPU)  
 Endometrial thickness group  
 Total number of eggs  
 Ovarian sensitivity index<sup>b</sup>  
 Total number of embryos cleaved on day 2  
 Change of catheter at embryo transfer (yes/no)  
 Elective single-embryo transfer (yes/no)  
 IMC embryo score (poor/modest/good/top quality)

*Note:* IMC = integrated morphology-cleavage; IVF = in vitro fertilization; OPU = ovum pick-up.

<sup>a</sup> Treatment history: success rate in previous fresh and frozen/thawed treatments expressed as three groups: 0 treatment (trt) and 0 child, or 1–6 trt and ≥1 child; 1–6 trt and 0 child, or ≥7 trt and ≥1 child; and ≥7 trt and 0 child.

<sup>b</sup> OSI = log(number of retrieved oocytes × 1,000/total dose FSH).

Vaegter. Predicting live birth after IVF/ICSI. *Fertil Steril* 2016.