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Republic of China

Objective: To investigate PPARGC1A promoter methylation and mitochondria DNA (mtDNA) content in the leukocytes of women with
polycystic ovary syndrome (PCOS) and analyze the relationship between these indices and metabolic risk for women with PCOS.

Design: Cross-sectional study.

Setting: University hospital.

Patient(s): A total of 175 women with PCOS and 127 healthy controls.
Intervention(s): None.

Main Outcome Measure(s): Women with and without PCOS classified using the typical metabolic risk criteria of the National Choles-
terol Education Program’s Adult Treatment Panel III report (ATPIII), methylation of PPARGCI1A promoter tested by methylation-
specific polymerase chain reaction, and mtDNA content confirmed by quantitative polymerase chain reaction (PCR).

Result(s): PPARGC1A promoter methylation was specifically increased, but mtDNA content was specifically decreased in women with
PCOS compared with the control women after adjustment for body mass index. Moreover, in women with PCOS who have increased
metabolic risk, the differences in PPARGC1A promoter methylation and mitochondrial content were aggravated.

Conclusion(s): In conclusion, PPARGC 1A promoter methylation and mitochondrial content were found to be potential biomarkers for the
prediction of metabolic risk in women with PCOS. (Fertil Steril® 2017;107:467-74. ©2016 The Authors. Published by Elsevier Inc. on behalf
of the American Society for Reproductive Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).)
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10% (1), is characterized by a clustering productive disorder, but it also

olycystic ~ ovary  syndrome
P (PCOS), a common and hetero-
geneous endocrine  disorder
with a prevalence ranging from 5% to

of hyperandrogenism, oligomenorrhea,
chronic anovulation, and hyperinsuli-
nemia (2). Not only is PCOS a re-
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enhances the risk of the metabolic
syndrome. Metabolic inflexibility is a
feature of women with PCOS, and the
metabolic sequelae can affect women
across their life span (3). The metabolic
complications of PCOS are increasingly
attracting attention. The National Insti-
tutes of Health Office for Disease
Prevention-Sponsored Evidence-Based
Methodology Workshop on Polycystic
Ovary Syndrome even recommended
renaming PCOS with important meta-
bolic consequences to manage it effec-
tively across the life span (4). The
pathogenesis of PCOS and related
metabolic abnormalities are not
entirely understood, but they are often
associated with some indices, including
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hyperandrogenism, obesity, insulin resistance (IR), and
inflammation.

Recent proteomic and metabolomic studies all suggest
abnormal metabolism of carbohydrates, lipids, and proteins in
women with PCOS (5-8). All these abnormal metabolisms are
involved in energy pathways. Mitochondrial function is
fundamental to maintaining metabolic and energy
homeostasis. Alterations in mitochondrial function are often
associated with peripheral IR and glucose intolerance (9, 10),
and are involved in the pathogenesis of PCOS and the
metabolic syndrome (11, 12). Mitochondrial DNA (mtDNA)
content in body fluids and tissues is a potential biomarker of
mitochondrial dysfunction (13). Reduced mtDNA content in
peripheral blood leukocytes has been associated with IR in
adolescents with features of the metabolic syndrome (14).
Moreover decreased mtDNA content in PCOS patients
independent of insulin resistance or other metabolic factors
has been reported (15). However, the pathophysiologic and
clinical significance of the finding are not entirely understood.
Therefore, it would be interesting to study the mechanistic
reason for the decreased peripheral mtDNA content in PCOS
patients and whether mtDNA copy number could be a
candidate biomarker for metabolic complications in PCOS.

The transcriptional coactivator peroxisome proliferator-
activated receptor gamma coactivator 1-« (protein PGC-1«;
gene PPARGCI1A) is an important integrator of the molecular
regulatory circuitry involved in mitochondrial function and
biogenesis (16, 17). PPARGCIA gene expression is
regulated by the methylation of its promoter. The abnormal
methylation of PPARGCIA promoter can result in change
of mtDNA content (18-20). In previous studies, PPARGCIA
promoter methylation in blood at 5 to 7 years old has been
shown to predict adiposity from 9 to 14 years old, and the
methylation measured in childhood may have utility in
predicting cardiometabolic disease risk (21). PPARGCIA
promoter methylation has also been shown to have a close
relationship to metabolic abnormality, but its role in PCOS
is still unknown.

In the present study, we investigated PPARGCIA pro-
moter methylation and the biogenesis of mitochondria in
women with PCOS. Furthermore, we analyzed the relevance
between these indices and the metabolic abnormalities of
women with PCOS defined by the National Cholesterol Educa-
tion Program’s Adult Treatment Panel III report (ATPIII). The
conclusions should provide a new biomarker to predict meta-
bolic risk in women with PCOS.

MATERIALS AND METHODS
Patients

The study was approved by the institutional review board of
Peking University Third Hospital. All participants signed an
informed consent form to participate in the study. We calcu-
lated the sample size using G*Power calculator (www.gpo
wer.hhu.de/en.html). According to our pilot study results
for mtDNA content and PPARGCIA promoter methylation,
the required size of the study population was calculated
to be 102 women per group (e« = 0.05, and the study
power = 0.90).We used a convenience sample with a total

of 302 volunteers recruited; 175 women had PCOS diag-
nosed with the Rotterdam criteria (22), and 127 were healthy
women of a similar age who constituted the control group.

The women were selected from the Division of Reproduc-
tive Medical Center, Peking University Third Hospital, from
March 2012 to May 2013. Exclusion criteria were the same
as our previous research (5). In addition, women who had
received any hormone treatment or insulin-lowering agent
during the preceding 3 months were excluded. The control
women were selected from women visiting the clinic as part-
ners for men being treated for azoospermia. All women in the
control group had regular menstrual cycles and normal
androgen levels.

Overnight fasting blood samples were collected from
women with PCOS with amenorrhoea exceeding 3 months
without hormone-induced withdrawal bleeding, and at the
early follicular phase from women with spontaneous ovula-
tion. The plasma and serum were used to obtain biochemical
measurements, and the blood cells were stored for DNA
extraction to quantify mtDNA copy number and the promoter
methylation of PPARGCI1A.

Anthropometric and Biochemical Measurements

Anthropometric variables, including waist circumferences,
hip circumferences, waist-to-hip ratio, BMI (kg/ m?), and sys-
tolic and diastolic blood pressure (SBP and DBP) were evalu-
ated in all of the women. The following biochemical
measurements were performed on the plasma samples: insu-
lin, glucose, total cholesterol, high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), and triglycerides, using standard clinical laboratory
techniques. The homeostasis model assessment (HOMA) index
was used as an estimator of IR. The cutoff point to determine
IR was defined as a HOMA Index >2.69 (5, 23).

Total testosterone (T) and sex hormone-binding globulin
(SHBG) measurements were performed on the serum samples.
Total T was measured by liquid chromatography and tandem
mass spectrometry. Serum concentrations of SHBG were
analyzed by chemiluminometric immunoassay. The free
androgen index (FAI) was calculated by total testosterone in
nanomoles per liter, multiplied by 100, divided by SHBG in
nanomoles per liter.

Bisulfite Treatment of DNA and Methylation-
specific Polymerase Chain Reaction

Peripheral blood cell DNA was extracted with the QIAamp
Tissue Kit 250 (Qiagen) according to the manufacturer’s in-
structions. The genomic DNA was treated by sodium bisulfite
using an EpiTect Bisulfite kit (Qiagen) according to the man-
ufacturer’s protocol. The promoter methylation status of the
selected CpG dinucleotides in the PPARGCIA promoter was
measured by the methylation-specific polymerase chain reac-
tion (MSPCR). The primers and method used were as described
in Sookoian et al. (24). The experiments were performed in
triplicate. The level of methylated DNA was expressed by
the ratio of the estimated amount of methylated DNA to the
unmethylated DNA levels, calculated for each sample by the
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fluorescence threshold cycle (Ct) values for an estimated effi-
ciency of 2 (25). The primer sequences are shown in
Supplemental Table 1 (available online).

Quantification of mtDNA Content

The relative amounts of nuclear DNA (nDNA) and mtDNA
were determined by real-time polymerase chain reaction
(PCR) and performed in triplicate. The mtDNA content was
quantified by primers D41 and R56. The nDNA was quantified
by gene GAPDH. Primer sequences are shown in
Supplemental Table 1.

Subgrouping of Patients

To compare the methylation levels of the PPARGCIA gene
promoter and mtDNA content in blood with metabolic indica-
tors in women with similar metabolic statuses, we subcatego-
rized women with PCOS and healthy women according to the
presence or absence of risk factor(s) for metabolic syndromes
as defined by the ATPIII (26). We subdivided women into AT-
PIII negative (ATPII [—]) and ATPIII positive (ATPIII [+]) with
at least one of the ATPIII risk factors. The subcohorts referred
to the research of Chang et al. (27), as each of the ATPIII
criteria is known to contribute to the future development of
metabolic syndromes. The ATPII risk factors include: [1]
waist circumference >88 cm, [2] fasting plasma glucose
>5.6 mmol/L, [3] blood HDL-C level <1.29 mmol/L, [4]
triglycerides >1.7 mmol/L, and [5] blood pressure
>130/85 mm Hg (26). With this stratification, we were able
to compare the PPARGC1A gene promoter methylation levels
and the mtDNA content of women with PCOS who were free
of signs of metabolic syndromes (ATPIII [—]) with ATPIII [—]
healthy women, ATPIII [+] women with PCOS with ATPIII [+]
healthy women, ATPIII [—] women with PCOS with ATPIII [+]
women with PCOS, and ATPIIl [—] healthy women with
ATPIII [+] healthy women.

Statistical Analysis

The quantitative data, expressed as the mean + standard error
of the mean (SEM), were analyzed using a two-tailed t-test.
Analysis of covariance (ANCOVA) was used for adjustment
of the BMI. The relationships between the methylation levels
of the PPARGCIA gene promoter (or mtDNA content) and
metabolic indicators were analyzed by Pearson correlation
analysis. In addition, the associations of the methylation
levels of the PPARGC1A gene promoter (or mtDNA content)
and adverse metabolic phenotype with PCOS were measured
by logistic regression analyses. To perform these analyses,
we used SPSS 17.0 software (IBM). P< .05 was considered sta-
tistically significant.

RESULTS

Opposite Dynamic Changes between PPARGC1A
Promoter Methylation and mtDNA Content in the
PCOS Group

The clinical, metabolic, and hormone characteristics of
women with PCOS and healthy women are described in
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Table 1. As the BMI of the PCOS patients was statistically
significantly higher than the controls (25.07 + 0.35 vs
22.33 £ 0.31, P<.0001), all parameters were compared after
adjustment for BMI. The PCOS group had statistically signif-
icantly higher rates of insulin, IR, total testosterone, FAI, and
triglycerides. In addition, the overweight (BMI > 25) and in-
sulin resistant (HOMA IR > 2.69) women statistically signifi-
cantly increased in the PCOS group.

The PPARGC1A promoter methylation ratio in the PCOS
group was 36.5%, and 26.3% in the control group. Compared
with the control group, the methylated DNA/unmethylated
DNA ratio of the PPARGCIA promoter in the PCOS group
was statistically significantly higher (Fig. 1A). As a potential
biomarker of mitochondrial dysfunction, mtDNA content,
represented by the mtDNA/nDNA ratio, was statistically
significantly lower in the women with PCOS compared with
that of the healthy women (see Fig. 1B). The mtDNA/nDNA
ratio was inversely correlated with the methylation levels of
the PPARGC1A promoter in both the PCOS (see Fig. 1()
and the non-PCOS group (see Fig. 1D).

Abnormalities of the PPARGC1A Promoter
Methylation Ratio and mtDNA Content
Exacerbated in PCOS ATPIII [+] Women

To determine the relationship between mitochondrial func-
tion and metabolic abnormality, we stratified women accord-
ing to the presence or absence of risk factor(s) for metabolic
syndromes as defined by the ATPIII report. Of the 175 women
with PCOS, 41.57% (n = 71) were without any ATPIII risk fac-
tors (ATPII [—] PCOS), and risk factors were present
(ATPII [+] PCOS) in 59.43% (n = 104). Of the 127 control
women, 83.46% (n = 106) were without any ATPIII risk

TABLE 1

Clinical and biochemical characteristics of women with and without
PCOS.

PCOS Control
Characteristic (n = 175) (n = 127) Pvalue®
Age (y) 2857 £0.20 28.28 £0.31 A1
BMI (kg/mz) 25.07 £0.35 22.334+0.31 <.0001
BMI >25 85 (48.57%) 27 (21.26%) <.0001
SBP (mm Hg) 11553+ 1.12 114.12 + 1.03 13
DBP (mm Hg) 69.53 +£0.76 68.62 4+ 0.68 24
Waist circumference (cm) 88.43 +£0.81 78944+0.84 .19

Waist-hip ratio 0.903 £+ 0.004 0.841 £0.005 .25

Glucose (mmol/L) 4.82 +0.04 479 +0.03 .63
Insulin (mU/L) 11.64 £ 0.51 9.26 £0.26 .0032
HOMA-IR 2.54 +£0.12 1.98 £+ 0.06 .0054
HOMA-IR >2.69 54 (30.86%) 11(8.66%) <.0001
Total testosterone (nmol/L) 1.22 & 0.05 0.81 & 0.05 <.0001
SHBG (nmol/L) 52.33+4.22 59.22 +3.89 .078
FAI 4.02 + 0.46 2.29 +£0.32 .001
HDL-C (mmol/L) 1.32 £ 0.02 1.30 £ 0.02 .69
LDL-C (mmol/L) 2.79 £ 0.05 2.48 £+ 0.05 .28
Triglyceride (mmol/L) 1.68 £+ 0.07 1.09 £ 0.05 <.002
Total cholesterol (mmol/L)  4.67 & 0.05 424 +0.05 .53

Note: BMI = body mass index; DBP = diastolic blood pressure; FAl = free androgen index;
HDL-C = high-density lipoprotein cholesterol; HOMA-IR = homeostatic model assessment
of insulin resistance; LDL-C = low-density lipoprotein cholesterol; PCOS = polycystic ovary
syndrome; SBP = systolic blood pressure; SHBG = sex hormone-binding globulin.

2 Pvalues were calculated after adjustment for BMI.
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Expression and correlation analysis of PPARGCTA promoter methylation and mitochondrial DNA (mtDNA) content between polycystic ovary
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factors (ATPII [—] healthy), and risk factors were present
(ATPII [+] healthy) in 16.54% (n = 21).

Compared with ATPIII [—] women with PCOS, ATPIII [+]
women with PCOS exhibited statistically significantly more
severe metabolic problems, manifested as higher BMI, SBP,
and DBP; larger waist circumference and waist-hip ratio;
higher rates of insulin, IR, LDL-C, triglycerides, and total
cholesterol; and lower HDL-C (Supplemental Table 2, avail-
able online). ATPIII [+] women with PCOS had a statistically
significantly higher PPARGC1A promoter methylation ratio
and a lower level of mtDNA content compared with ATPIII
[-] women with PCOS and ATPII [+] healthy women
(Fig. 2A-D). These results suggest PPARGCIA promoter
methylation and mtDNA to be potential biomarkers for severe
metabolic syndrome in women with PCOS.

Moreover, the ATPIII [—] women with PCOS and the AT-
PIII [—] healthy women shared some similar anthropometric
and metabolic characteristics, except a larger waist circum-
ference, waist-hip ratio, total testosterone, FAI, total choles-
terol and lower HDL-C (Supplemental Table 3, available
online). However, the PPARGC1A promoter methylation ratio
and the level of mtDNA content were statistically signifi-
cantly different between the ATPIIl [—] PCOS and ATPIII
[—] non-PCOS subcohorts (see Fig. 2E-H).

In the non-PCOS groups, the PPARGCIA promoter
methylation ratio and the level of mtDNA content
(P=.6261, P=.0539) were not statistically significantly
different between the ATPIII [+] healthy women and ATPIII
[—] healthy women (see Fig. 2I and J).

Correlation of PPARGC1A Promoter Methylation
Ratio and mtDNA Content with Clinical
Parameters

To determine whether there was an association between the
PPARGCIA promoter methylation ratio, mtDNA content,
and certain clinical biochemical traits, we performed a Pear-
son correlation analysis. As shown in Supplemental Table 4
(available online), a statistically significant correlation was
found between the PPARGC1A promoter methylation ratio
and BMI, waist circumference, waist-hip ratio, and rates of
insulin and IR in both the PCOS and non-PCOS groups. The
PPARGCI1A promoter methylation ratio statistically signifi-
cantly correlated with FAI and triglyceride levels in the
PCOS group. The mtDNA content statistically significantly
correlated with rates of insulin and IR in both the PCOS and
non-PCOS groups. In addition, mtDNA content statistically
significantly correlated with BMI, waist circumference,
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waist-hip ratio, FAIL, and triglyceride in the PCOS group
(Supplemental Table 5, available online).

To predict the metabolic risk for PCOS, we performed a
multiple logistic regression analysis. As Table 2 shows, the
corresponding odds ratios (95% confidence interval [CI]) for
ATPIII [+] PCOS by PPARGC1A promoter methylation ratio,
mtDNA content, and HOMA-IR were 3.33 (1.39-6.22), 0.16
(0.05-0.53), and 4.16 (1.49-11.56), respectively, after adjust-

ment for BMI. This implies that PPARGC1A promoter methyl-
ation and mtDNA content are metabolic risk factors of PCOS.

DISCUSSION

This study revealed that women with PCOS have an overtly
higher PPARGC1A promoter methylation ratio and lower
mtDNA content compared with healthy women, even after

TABLE 2

0Odds ratios and 95% confidence intervals for ATPIII [+] PCOS with PPARGC1A promoter methylation ratio, mtDNA content and metabolic

factors.

Model 1*

Odds ratio (95% CI)
2.02 (1.25-3.89)

Variable

PPARGCTA promoter

methylation ratio
mtDNA content 0.34 (0.23-0.79)
HOMA-IR 2.32(1.13-5.22)
FAI 1.21(0.73-1.36)

Model 2°
Pvalue 0Odds ratio (95% CI) Pvalue
.0456 3.33(1.39-6.22) .0102
0123 0.16 (0.05-0.53) .0096
.0298 4.16 (1.49-11.56) .0083
36 1.21(0.73-1.36) .36

Note: ATPIIl = National Cholesterol Education Program's Adult Treatment Panel Ill report; FAI = free androgen index; HOMA-IR = homeostatic model assessment of insulin resistance;
mtDNA = mitochondrial DNA; PCOS = polycystic ovary syndrome; SBP = systolic blood pressure; SHBG = sex hormone-binding globulin.

2 Model 1: unadjusted.
® Model 2: adjusted for body mass index.

Zhao. Epigenetic biomarker in PCOS. Fertil Steril 2016.
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controlling for confounding factors such as ATPIII metabolic
syndrome risk factors or BMI. We found that PCOS was asso-
ciated with an abnormal PPARGCIA promoter methylation
ratio and lower mtDNA content. A positive correlation was
found between the PPARGCIA promoter methylation ratio
and the FAI in the PCOS group, but the correlation of mtDNA
content and the FAI was negative. In addition, PPARGCIA
promoter methylation and mtDNA content had associations
with ATPII [4] PCOS. All these findings suggest that
PPARGCI1A promoter methylation ratios and mtDNA content
may be part of one of the putative links between PCOS and its
metabolic abnormalities.

The mechanistic reason for PPARGCIA promoter hyper-
methylation in the PCOS group is still unknown. Polycystic
ovary syndrome is a heterogeneous disease with many
different phenotypes and metabolic aspects. There is no clear
consensus on the diagnosis and pathogenesis of PCOS, but
hyperandrogenism is considered to be one key factor (28).
The relationship of hyperandrogenism and PPARGCIA pro-
moter hypermethylation in the PCOS group is manifested by
our Pearson correlation analysis, but the causal relationship
was not clear.

Androgens could induce epigenetic alterations in the
genome and may induce PPARGCIA promoter hypermethy-
lation (29, 30). On the other hand, PGC-1«, a protein encoded
by PPARGCI1A, may affect the synthesis of androgens. PGC-
la can up-regulate the expression of uncoupling protein 2,
which can also increase the production of testosterone (31,
32). Moreover in the analysis of clinical parameters of
PPARGCIA promoter methylation and mitochondrial
content, we found a specific correlation between the two
indices and lipid profiles (FAI and triglyceride). Sex
hormone-binding globulin and triglycerides can be regulated
by androgens. Women with PCOS commonly have elevated
triglycerides, and it is the most common metabolic abnormal-
ity in young women with PCOS (33). Therefore, PPARGC1A
promoter methylation and mitochondrial content may be
used to predict the lipid metabolism status of women with
PCOS. Androgen disorder usually results in an abnormal
metabolic status in women with PCOS (34).

In this study, metabolic risk was assessed following AT-
PIII criteria. Both these standards have indicated metabolic
risk factors in studies related to type I diabetes and cardiovas-
cular disease (35, 36). ATPIII [+] women with PCOS have a
higher PPARGC1A promoter methylation ratio and lower
mtDNA content. The results imply that the PPARGCIA
promoter methylation ratio and mtDNA content may be
new biomarkers for PCOS metabolic risk assessment.
PPARGCIA promoter methylation measured in childhood
may have utility in predicting cardiometabolic disease risk
(21). The long-term metabolic risk prediction value of
PPARGCIA promoter methylation in PCOS needs further
exploration by longitudinal studies.

In the results of the correlation analysis of PPARGCIA
promoter methylation, mtDNA content, and clinical parame-
ters, we found that PPARGCIA promoter methylation and
mtDNA content all statistically significantly correlated with
insulin and IR levels not only in PCOS but also in non-
PCOS groups. This finding was consistent with recent
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observations of epigenetic regulation of insulin resistance in
the metabolic syndrome (20, 24, 37). Evidence has showed
that insulin resistance plays a central role in the
pathogenesis of PCOS and obesity, and their associated
metabolic complications (38). OQur multivariate model shows
the association between metabolic abnormality with PCOS
and PPARGCIA promoter methylation and mtDNA content.
All those results provide further evidence that PPARGCIA
promoter methylation and mtDNA content may have utility
in predicting metabolic risk of PCOS.

PPARGCIA has displayed a key role in regulating phys-
iological processes, including blood pressure and cellular
cholesterol homoeostasis, and can also reflect the clinical
phenotypes, including obesity, type II diabetes, and nonalco-
holic fatty liver (24, 39). Moreover, some genes that regulate
energy and substance metabolism, thermogenesis, and even
fatty cell differentiation are orchestrated by PPARGCIA
(40). The relationship of PPARGC1A promoter methylation,
mtDNA content, and PCOS may also imply the role of it in
the pathogenesis of PCOS and its associated metabolic
abnormalities. More importantly, PPARGCIA promoter
methylation and mtDNA content was worse in women with
PCOS with increased metabolic risk, so they may act as a
potential biomarker for an adverse metabolic phenotype in
PCOS.

The present results were derived from the whole blood of
women with PCOS, but not from organs related to reproduc-
tive or metabolic function. Whole blood is easier to obtain in
the clinic, and some biomarkers for some diseases have been
screened from it; evidence has suggested there were statisti-
cally significant associations between individual CpG loci in
human cells from different embryonic tissue lineages (41, 42).
In consideration of dynamic epigenetic modification in
different organs, the study of local PPARGC1A methylation
levels should be discussed in future.

The PPARGCI1A promoter methylation ratio was associ-
ated with hyperandrogenism and IR, two main factors associ-
ated with the pathogenesis of PCOS. PPARGCIA promoter
hypermethylation in blood may be involved in the pathogen-
esis of PCOS and could be a new biomarker for an adverse
metabolic phenotype in women with PCOS. More impor-
tantly, PPARGC1A promoter methylation is a dynamic and
flexible process. It not only may be involved in the regulation
of conditions associated with IR but can also be reverted by
pharmacologic or lifestyle interventions. Further research
needs to be undertaken to explore the possible biologic mech-
anisms of PPARGCIA promoter methylation in the patho-
genesis of PCOS. This study may also bring a more
integrated understanding of this pathogenesis and possibly
contribute to the development of new therapeutic opportu-
nities for women with PCOS and its associated metabolic
abnormalities.
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SUPPLEMENTAL TABLE 1

Primer sets used for methylation-specific PCR and quantification of mtDNA copy number.

Gene Primer sets (5’ to 3') Product size (bp)
Methylation-specific PCR
PPARGC1A-M Forward: ATTTTTTATTGTTATGGGGGTAGTC 143
Reverse: AAAAATATTTAAAAACGCAAACGAA
PPARGC1TA-U Forward: TTTTATTGTTATGGGGGTAGTTGA 141

Reverse: AAAAAATATTTAAAAACACAAACAAA
mtDNAand nDNA amplification

mtDNA D41: CGAAAGGACAAGAGAAATAAGG 158
D56: CTGTAAAGTTTTAAGTTTTATGCG
GAPDH Forward: CCACCATGGAGAAGGCTGGGGC 286

Reverse: AGTGATGGCATGGACTGTGGTC
Note: PCR = polymerase chain reaction; M = methylated-specific; mtDNA = mitochondrial DNA; nDNA = nuclear DNA; U = unmethylated-specific.
Zhao. Epigenetic biomarker in PCOS. Fertil Steril 2016.
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SUPPLEMENTAL TABLE 2

Clinical and biochemical characteristics of ATPIII [+]1and ATPIII [—] PCOS patients.

Characteristic ATPIII [+]1PCOS (n = 104)
Age (y) 28.88 +0.24
BMI (kg/m?) 27.27 + 0.41
SBP (mm Hg) 116.63 + 1.23
DBP (mm Hg) 70.02 £ 0.63
Waist circumference (cm) 94.07 + 0.89
Waist-hip ratio 0.93 + 0.004
Glucose (mmol/L) 4.83 4+ 0.06
Insulin (mU/L) 13.64 + 0.73
HOMA-IR 2.98 £0.18
Total testosterone (nmol/L) 1.24 £0.08
SHBG (nmol/L) 48.19 + 3.56
FAI 4.23 +0.48
HDL-C (mmol/L) 1.22 +0.03
LDL-C (mmol/L) 2.96 £+ 0.06
Triglyceride (mmol/L) 2.13 £0.08
Total cholesterol (mmol/L) 4.79 £+ 0.07

ATPII[—-]1PCOS (n = 71) P value
28.11 £0.33 .06
21.84 + 0.36 <.0001

113.92 + 1.05 .0011
68.81 £0.72 .0022
80.15 4+ 0.80 <.0001

0.87 £ 0.006 <.0001
4.81 4+ 0.05 .85
8.72 £ 0.51 <.0001
1.88 £0.12 <.0001
1.19+0.12 .56
58.39 4 3.89 .064
2.49 £ 0.37 .046
1.46 +0.03 <.0001
2.55 £ 0.07 <.0001
1.01 £0.05 <.0001
4.49 4 0.08 .0069

Note: ATPIIl = National Cholesterol Education Program's Adult Treatment Panel Il report; BMI = body mass index; DBP = diastolic blood pressure; FAI = free androgen index; HDL-C = high-density
lipoprotein cholesterol; HOMA-IR = homeostatic model assessment of insulin resistance; LDL-C = low-density lipoprotein cholesterol; PCOS = polycystic ovary syndrome; SBP = systolic blood

pressure; SHBG = sex hormone-binding globulin.
Zhao. Epigenetic biomarker in PCOS. Fertil Steril 2016.
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SUPPLEMENTAL TABLE 3

Clinical and biochemical characteristics of ATPIII [—] women with PCOS and ATPIII [—] healthy women.
ATPIII [—] control

Characteristic ATPII [—]PCOS (n = 71) (n = 106) P value
Age (y) 28.11 £0.33 28.07 £0.34 93
BMI (kg/mz) 21.84 +£0.36 21.49 £ 0.28 43
SBP (mm Hg) 113.92 £+ 1.05 114.12 £+ 1.03 .49
DBP (mm Hg) 68.81 £0.72 68.62 + 0.68 67
Waist circumference (cm) 80.15 4+ 0.80 76.57 +0.75 .0018
Waist-hip ratio 0.87 £+ 0.006 0.83 £ 0.005 <.0001
Glucose (mmol/L) 4.81 £ 0.05 477 £0.03 47
Insulin (mU/L) 8.72 + 0.51 8.67 +0.21 91
HOMA-IR 1.88 £0.12 1.84 £ 0.05 73
Total testosterone (nmol/L) 1.19£0.12 0.79 £ 0,08 .0032
SHBG (nmol/L) 58.39 + 3.89 59.47 + 3.53 .087
FAI 2.49 £ 0.37 1.95 4+ 0.58 .037
HDL-C (mmol/L) 1.32 £ 0.02 1.46 £+ 0.03 .0003
LDL-C (mmol/L) 2.55+0.07 2.42 +£0.05 .15
Triglyceride (mmol/L) 1.01 +£ 0.05 0.94 £+ 0.03 18
Total cholesterol (mmol/L) 4.49 + 0.08 4.19 £ 0.05 .0014

Note: ATPIIl = National Cholesterol Education Program's Adult Treatment Panel Il report; BMI = body mass index; DBP = diastolic blood pressure; FAI = free androgen index; HDL-C = high-density
lipoprotein cholesterol; HOMA-IR = homeostatic model assessment of insulin resistance; LDL-C = low-density lipoprotein cholesterol; PCOS = polycystic ovary syndrome; SBP = systolic blood
pressure; SHBG = sex hormone-binding globulin.
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ORIGINAL ARTICLE: GENETICS

SUPPLEMENTAL TABLE 4

Partial Pearson's correlation coefficients of the methylation ration of
PPARGC 1A promoter (the methylated DNA/unmethylated DNA ratio
of the PPARGC 1A promoter) and participant characteristics.

Non-PCOS PCOS
Variable r Pvalue r Pvalue
Age (y) —0.0629 4822 0.0870 2525
BMI(kg/m?) 0.2387 .0069 0.2918 <.0001
SBP (mm Hg) 0.1045 .1456 0.1156 .1498
DBP (mm Hg) 0.1327 .0781 0.1372 0724
Waist circumference (cm) 0.2291 .0096 0.3238 <.0001
Waist-hip ratio 0.2283 .0098 0.2123 .0048
Glucose (mmol/L) —0.0015 .9866 0.1137  .1342
Insulin (mU/L) 0.3331 .0001 0.4145 <.0001
HOMA-IR 0.3134 .0003 0.4 <.0001
Total testosterone (nmol/L)  0.0320 .7234 0.0967  .1517
SHBG (nmol/L) 0.0346 .5123 0.0546 4236
FAI 0.0722 .3821 0.3024 .0039
HDL-C (mmol/L) —0.0028 9748 —-0.1448 .0560
LDL-C (mmol/L) 0.0548 .5408 0.0632 4061
Triglyceride (mmol/L) 0.0010 .9907 0.1637  .0304

Total cholesterol (mmol/L) 0.1305 .1436 0.0349 .6470

Note: BMI = body mass index; DBP = diastolic blood pressure; FAl = free androgen index;
HDL-C = high-density lipoprotein cholesterol; HOMA-IR = homeostatic model assessment
of insulin resistance; LDL-C = low-density lipoprotein cholesterol; PCOS = polycystic ovary
syndrome; SBP = systolic blood pressure; SHBG = sex hormone-binding globulin.
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SUPPLEMENTAL TABLE 5

Partial Pearson's correlation coefficients of mtDNA content (mtDNA/
nDNA ration) and participant characteristics.

Non-PCOS
Variable r P value
Age (y) —-0.1088  .2234
BMI (kg/mz) 0.1387 1199
SBP (mm Hg) 0.1267  .1357
DBP (mm Hg) 0.1044 2181
Waist circumference (cm) —0.1226  .1698
Waist-hip ratio —0.0865 .3334
Glucose (mmol/L) 0.0759 .3966
Insulin (mU/L) —0.3311 .0001
HOMA-IR —0.3193  .0003
Total testosterone (nmol/L)  0.0043 9261
SHBG (nmol/—) 0.0046  .8923
FAI —0.0623  .4926
HDL-C (mmol/L) —0.0058 9486
LDL-C (mmol/L) —0.0620  .4888
Triglyceride (mmol/L) —0.0550 .5392
Total cholesterol (mmol/L) —0.1118  .2109

PCOS

r P value
0.0245 7480
—0.2531 .0007
—0.1174  .0995
0.1202 2524
—0.3049 <.0001
—0.2926 <.0001
—0.1291 .0886
—0.3019 <.0001
—0.3034 <.0001
0.0346 .6966
0.0496 .6254
—0.3822 <.0001
0.0880 2471
-0.0512 5014
—-0.2611 .0005
—0.0616 4719

Note: BMI = body mass index; DBP = diastolic blood pressure; FAl = free androgen index;
HDL-C = high-density lipoprotein cholesterol; HOMA-IR = homeostatic model assessment
of insulin resistance; LDL-C = low-density lipoprotein cholesterol; mtDNA = mitochondrial
DNA; nDNA = nuclear DNA; PCOS = polycystic ovary syndrome; SBP = systolic blood pres-

sure; SHBG = sex hormone-binding globulin.
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