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Detection of segmental aneuploidy
and mosaicism in the human
preimplantation embryo: technical
considerations and limitations
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Whole-chromosome aneuploidy screening has become a common practice to improve outcomes and decrease embryonic transfer order
in patients undergoing treatment for infertility through in vitro fertilization. Despite implementation of this powerful technology, a
significant percentage of euploid embryos fail to result in successful deliveries. As technology has evolved, detection of subchromoso-
mal imbalances and embryonic mosaicism has become possible, and these serve as potential explanations for euploid embryo transfer
failures. Cases involving a parent with a balanced translocation provide a unique opportunity to characterize the capabilities and lim-
itations of detecting segmental imbalances with a variety chromosome screening platforms. Adaptation of these methods to de novo
imbalances now represent an ongoing challenge in the field of preimplantation genetic screening as additional factors including mosa-
icism, clinical predictive value, and distinguishing true imbalances from technical artifacts must be more carefully considered. (Fertil
Steril® 2017;107:27-31. ©2016 by American Society for Reproductive Medicine.)
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omprehensive chromosome
C screening (CCS) use has grown

considerably over the last
several years. A clear benefit to the suc-
cess of in vitro fertilization (IVF) has
been demonstrated in multiple ran-
domized controlled trials (1-3) and
subsequent meta-analysis (4).
Although not all IVF patients may
benefit to the same extent, the opportu-
nity to improve the likelihood of im-
plantation of a singleton on the first
attempt and to reduce the risk of a
failed implantation or a clinical miscar-
riage after embryo transfer is of great
interest to many patients. However,

despite these advances, a number of
morphologically normal euploid em-
bryos fail to produce a live birth. There
are many possible explanations origi-
nating from embryonic, endometrial,
or epigenetic factors, but many point
to subchromosomal abnormalities—
segmental aneuploidies—or embryonic
mosaicism as possible explanations
for the subset of embryo transfers
designated as euploid that fail to pro-
duce live births. As clinicians and sci-
entists consider the appropriate
application of new CCS methods, it is
important to understand the capabil-
ities and limitations associated with
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the ever-growing number of platforms
available.

The appearance of subchromosomal
aneuploidy and embryonic mosaicism
on laboratory reports has provided a
possible explanation for prior embryo
transfer failures as well as raised
questions about how to discuss these
findings with patients. A critical
component to this counseling is a firm
understanding of the CCS platform
used to make the diagnosis and knowl-
edge of the limitations that may exist.
There are many platforms for CCS,
many of which now claim the ability
to diagnose segmental aneuploidy and
embryonic mosaicism; each demon-
strates capabilities and possible limita-
tions. Comprehensive chromosome
screening can include the use of any of
multiple available types of amplifica-
tion, such as GenomePlex whole-
genome amplification (WGA), SurePlex
WGA, RepliG multiple displacement
amplification  (MDA)-based WGA,
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multiple annealing and looping based amplification cycles
(MALBAC)-based WGA, and custom and targeted multiplex
polymerase chain reaction (PCR). There are also multiple
downstream methods of quantitation, including single-
nucleotide polymorphism (SNP) arrays, 24sure array compar-
ative genomic hybridization (aCGH), quantitative real-time
polymerase chain reaction (QRT-PCR), MiSeq-based next-gen-
eration sequencing (NGS), and personal genome machine
(PGM)-based NGS.

The bioinformatics of these methods can vary dramati-
cally. For example, SNP array data analysis can be performed
with parental support, karyomapping, or simple copy number
analysis tools. Data from NGS can be analyzed using default
settings or custom analysis of BlueFuse software (Illumina),
with Ton Reporter software (Thermo Fisher Scientific), or
with fully customized bioinformatics. Final interpretation of
data and abnormality thresholds can also be impacted by
clinically driven data to maximize the predictive value of
the diagnosis for the actual clinical outcome.

We will discuss the capabilities and limitations associated
with the detection of segmental aneuploidy and embryonic
mosaicism in the preimplantation human embryo. Whenever
possible, publicly deposited data will be used to illustrate
some major concepts surrounding the detection of segmental
aneuploidy and embryonic mosaicism.

SEGMENTAL ANEUPLOIDY

The recent emphasis on the ability to detect segmental imbal-
ances in the embryo has stemmed from the growing amount
of data that can be obtained from new methods for CCS. Es-
timates of frequency range from 4% to 58% (Table 1). Biologic
limitations, in terms of the clinical significance of the
segmental imbalance, and technical limitations, primarily in
terms of the level of resolution of detection of the segmental
imbalance, exist. Initial evidence of the ability to detect
segmental errors derives from the application of CCS to pa-
tients who carry a balanced translocation (13-26). Embryos
derived from such patients can inherit unbalanced
chromosomes, resulting in subchromosomal copy number
changes. In this situation, the size of the imbalance depends
on where the breakpoints are located within the

chromosomes involved in the original translocation. By
evaluating data over multiple cases, each platform can be
assessed for its size-specific capability—that is, the minimum
size of a subchromosomal imbalance that is necessary for the
platform to successfully detect it.

Although these data are important to understand the
CCS platform’s size-specific capability of detecting
segmental aneuploidies, there are important limitations
that need to be considered. For example, because the origin
of the imbalances from these particular cases is meiosis dur-
ing the formation of the gamete from the translocation car-
rier, the errors can be expected to be uniformly present in the
resulting embryo. This may not always be the case when a de
novo segmental imbalance develops in an embryo. If the er-
ror occurs during mitotic cell division, the resulting embryo
will possess mosaicism of the segmental error. That is, some
cells may be chromosomally normal, and others may have a
segmental gain or segmental loss of chromosomal material.
A recent study demonstrated that this does in fact occur by
providing evidence of reciprocal segmental errors in multiple
blastomeres from the same embryo (Fig. 1) (27). Similar ob-
servations have been made with other platforms including
aCGH (29).

Given that much of the field has moved toward anal-
ysis of the blastocyst trophectoderm biopsy for preim-
plantation genetic screening (PGS), the ability to detect
mosaic levels of segmental errors within the biopsy
must also be considered. Mixture models of a mosaic tro-
phectoderm biopsy have been useful to establish the
detection limits of various CCS platforms for whole-
chromosome mosaic aneuploidy (28), which we discuss
further later. However, similar data for detecting de
novo mosaic segmental aneuploidy have yet to be pub-
lished for any platform currently in clinical use. One of
the more commonly used methods of NGS-based testing
called VeriSeq PGS (Illumina) has been used to predict
segmental aneuploidy by a number of reputable PGS
reference laboratories. In each case, these laboratories
have established their own criteria for reporting
segmental aneuploidy based on the size of the
imbalance and the copy number assignment within the
segment.

TABLE 1

Selection of studies with data on the frequency of segmental aneuploidy at either the blastocyst stage or cleavage stage of embryo development.

Study

Fiorentino et al. (5)
Fiorentino et al. (5)
Fragouli et al. (6)
Greco et al. (7)

Tan et al. (8)

Fragouli et al. (6)
Rabinowitz et al. (9)
Rodrigo et al. (10)
Mertzanidou et al. (11)
Vanneste et al. (12)

Platform(s)

SurePlex WGA, aCGH, NGS
SurePlex WGA, aCGH, NGS
SurePlex WGA, aCGH

SurePlex WGA, aCGH

GenomePlex WGA, NGS, SNP array
SurePlex WGA, aCGH

SurePlex or MDA WGA, SNP array
SurePlex WGA, aCGH

MDA WGA, custom aCGH

MDA WGA, aCGH, SNP array

Frequency, % (blastocysts

Detection limits positive/total tested embryos)

5 Mb 17 (33/192)
Not defined 5(18/208)
Not defined 7 (73/608)
Not defined 11 (2/18)
Not defined 18(21/119)
Not defined 15 (115/754)
15% of chromosome length 15 (41/274)
10 Mb 4 (unclear)
18 consecutive probes 57 (8/14)
Not defined 58 (7/12)

Note: aCGH = array comparative genomic hybridization; MDA = multiple displacement amplification; SNP = single-nucleotide polymorphism; WGA = whole-genome amplification.
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FIGURE 1
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(A) An example of single-nucleotide polymorphism (SNP) array results from three blastomeres from the same embryo with multiple reciprocal
segmental aneuploidies (chromosomes 2 and 8) indicative of an error originating during mitosis and illustrating the potential importance of
developing methods that can detect mosaic segmental aneuploidy within a trophectoderm biopsy. Data obtained from Kort et al. (27), NCBI
GEO accession number GSE72150. (B) SNP array results from Vanneste et al. (12) that indicate numerous false-positive predictions from cell
lines with known karyotypes (indicated within each plot), illustrating the possibility for technical artifacts introduced by whole-genome
amplification (WGA). Data from Vanneste et al. (12), NCBI GEO accession number GSE11663. (C) VeriSeq data that indicate a false-positive
segmental aneuploidy within a cell line mixture model, illustrating WGA-based artifacts with next-generation sequencing (NGS) technology.
Data from Goodrich et al. (28).
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Still, there has yet to be a study demonstrating that an
observation within one biopsy of an embryo is predictive of
the remaining embryo. This illustrates the importance of
evaluating the specificity of segmental aneuploidy predic-
tion from a trophectoderm biopsy, as WGA is expected to
introduce artifacts that may be misinterpreted as true
segmental imbalance. Unfortunately, the errors introduced
by WGA have been largely overlooked in studies to charac-
terize the performance of NGS-based segmental aneuploidy
detection. For example, both Fiorentino et al. (30) and
Vera-Rodriguez et al. (31) compared profiles generated by
VeriSeq PGS to profiles from aCGH using the same WGA
DNA. Both studies reported highly concordant data
(~100%) between the two downstream methods, but it re-
mains unclear whether the segmental aneuploidies
observed were real or simply a result of the same WGA arti-
fact (see Fig. 1).

Another source of error, as described by Van Der Aa et al.
(32), involves S-phase artifacts, where single-cell DNA repli-
cation domains can result in copy number changes that may
appear like segmental aneuploidy. Although it is less likely
that an entire trophectoderm biopsy would have all cells in
the same phase of DNA replication, even a few cells in the
replication phase may appear as a mosaic segmental
aneuploidy.

EMBRYONIC MOSAICISM

Embryonic mosaicism, the presence of more than one chro-
mosome complement within a single embryo or embryo bi-
opsy, is another prominent explanation put forth for failed
euploid embryo transfer. This is quite plausible as the preva-
lence has been noted to be high throughout embryonic devel-
opment, with an incidence as high as 70% noted (11). Many
reproductive genetics laboratories are now routinely
including embryonic mosaicism on their diagnostic reports.
However, like segmental aneuploidies, both biologic and
technologic limitations exist and must be understood to
adequately guide patients during clinical care.

The first limitation is that of sampling. When assessing
the biologic reality of embryonic mosaicism with a trophecto-
derm biopsy that samples only a few of several hundred cells,
the question of threshold of detection becomes immediately
apparent. This can only be accurately determined by using
mixture models of aneuploid cell lines. It is important to
note that this analysis paradigm will depend on the molecular
platform used and the bioinformatics paradigm used to
analyze the data. It is not transferrable between these plat-
forms and paradigms.

Another technologic issue related to sampling of the em-
bryo involves mitotic errors that result in mosaicism. These
result in reciprocal whole-chromosome errors. Thus, if a
particular trophectoderm biopsy contains a mixture of mono-
somy and trisomy of the same whole chromosome at a ratio
that causes an “averaging” of the signal that is below the level
of detection of mosaicism for that platform, a false diagnosis
of disomy will occur.

However, the largest component when it comes to under-
standing the technical considerations of embryonic mosai-

cism is that of bioinformatics. For diagnosing embryonic
mosaicism, it is important to point out that no additional mo-
lecular genetics techniques are applied—the laboratory pro-
cess is unchanged; rather, it is the bioinformatics paradigm
applied to the data afterward that yields the diagnosis. Before
the diagnosis of mosaicism, the results yielded are simply
monosomy, disomy, or trisomy. These diagnoses are based
upon threshold values set to discriminate between statistically
smoothed data points based upon standard deviations or mul-
tiples of the medium from calibration standards composed of
known disomic samples. The diagnosis of embryonic mosai-
cism is a bioinformatics reassessment of these data points
with a new category between disomy and trisomy or disomy
and monosomy.

When setting these thresholds, aneuploid cell mixing
studies are performed that allow for established cutoffs (7).
When analyzing how these thresholds are set, it is important
to note how these studies translate to clinical practice. For
example, establishing the mosaicism cutoffs for aCGH mixing
studies with 100 cells yielded tight confidence intervals and
good discrimination between repeat samples. However, this
is not a biologically realistic cell number when considering
a trophectoderm biopsy. When these studies were performed
with eight cells—a more realistic number to consider for a tro-
phectoderm biopsy—the confidence intervals were much
wider, and the sample-to-sample discrimination was nonex-
istent (33, 34).

The understanding of this technical limitation explains
some of the findings published recently by Greco et al. (7),
where the transfer of 18 embryos designated as mosaic re-
sulted in six apparently normal live births. Given the previous
discussion, it can be surmised that, although a subset of the
embryos whose analysis results in a mosaic diagnosis truly
possess a mixture of normal and abnormal cells, some of
the embryos that fall into this category will truly be disomic
and some will truly be trisomic. Thus, it may not be surprising
that, although the reproductive competence of embryos in this
category will clearly be diminished (35), there will be circum-
stances in which normal live births may result.

FUTURE DIRECTIONS

Segmental aneuploidy and embryonic mosaicism represent
important new areas of research when it comes to deter-
mining the cause of failed implantation and delivery when
an embryo that has been diagnosed as euploid is transferred.
However, both of these diagnoses come with technical limita-
tions, which must be understood when counseling patients
and applying results in clinical situations. The combination
of mitotic origins, WGA, and S-phase artifacts makes the clin-
ical validation of the predictive value of CCS-based prediction
of segmental aneuploidy extremely important. A better un-
derstanding of the sampling limitations and a refining of
the bioinformatics algorithms when diagnosing embryonic
mosaicism are clearly needed. The use of “nonselection”
data, where embryos are biopsied and the samples are
analyzed afterward and correlated with the clinical outcome,
may help to better define the criteria used to make a clinical
diagnosis.
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