

# Severe spontaneous hemoperitoneum in pregnancy may be linked to in vitro fertilization in patients with endometriosis: a systematic review

Ivo A. Brosens, M.D., Ph.D.,<sup>a</sup> Marit C. Lier, M.D.,<sup>b</sup> Velja Mijatovic, M.D., Ph.D.,<sup>b</sup> Marwan Habiba, Ph.D.,<sup>c</sup> and Giuseppe Benagiano, M.D., Ph.D.<sup>d</sup>

<sup>a</sup> Leuven Institute for Fertility and Embryology, Leuven, Belgium; <sup>b</sup> Endometriosis Center VUmc, Department of Reproductive Medicine, VU University Medical Center, Amsterdam, the Netherlands; <sup>c</sup> Department of Obstetrics and Gynecology, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, United Kingdom; and <sup>d</sup> Department of Gynecology, Obstetrics, and Urology, Sapienza, University of Rome, Rome, Italy

**Objective:** To evaluate existing evidence of a possible association in women with endometriosis between controlled ovarian hyperstimulation plus embryo transfer (COH-ET) and the occurrence of spontaneous hemoperitoneum in pregnancy (SHiP).

**Design:** Comprehensive review.

**Setting:** Not applicable.

**Patient(s):** None.

**Intervention(s):** An electronic literature search up to February 2016 was conducted using Scopus and PubMed.

**Main Outcome Measure(s):** The role of COH-ET in SHiP.

**Result(s):** Controlled ovarian hyperstimulation plus embryo transfer may increase the severity or incidence of the rare condition known as SHiP. An analysis of published cases shows that bleeding often occurs from multiple or diffuse sites, mainly situated in the posterior pelvic cavity, making it difficult to control without interfering with the pregnancy itself. Spontaneous hemoperitoneum in pregnancy is linked to adverse perinatal outcomes, including stillbirth, neonatal mortality, and very low or low birth weight. In 14 cases a biopsy of the bleeding site was obtained, and in all cases, even in the absence of visible endometriosis, deciduation was documented. At present, the relatively small number of cases published prevents firm conclusions, although they are highly suggestive of a link between COH-ET in women with endometriosis and the occurrence and seriousness of SHiP.

**Conclusion(s):** Spontaneous hemoperitoneum in pregnancy is a rare but potentially fatal complication for the pregnant woman and her unborn child. In vitro fertilization in women with severe endometriosis may be a risk factor for SHiP. (Fertil Steril® 2016;106: 692–703. ©2016 The Authors. Published by Elsevier Inc. on behalf of the American Society for Reproductive Medicine. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

**Key Words:** Ectopic deciduosis, endometriosis, IVF, progesterone, spontaneous hemoperitoneum in pregnancy

**Discuss:** You can discuss this article with its authors and with other ASRM members at <https://www.fertsterdialog.com/users/16110-fertility-and-sterility/posts/10924-severe-spontaneous-hemoperitoneum-in-pregnancy-may-be-linked-to-in-vitro-fertilization-in-patients-with-endometriosis-a-systematic-review>

Received March 7, 2016; revised and accepted May 17, 2016; published online June 20, 2016.

G.B. reports a consultancy with Druggability technology holding; royalties from Springer Verlag; and travel/accommodations/meeting expenses from the Society of Endometriosis and Uterine Disorders Congress in Barcelona and the European Board and College of Obstetrics and Gynecology Congress in Turin; I.A.B. has nothing to disclose. M.C.L. has nothing to disclose. V.M. has nothing to disclose. M.H. has nothing to disclose.

Reprint requests: Ivo A. Brosens, M.D., Ph.D., Leuven Institute for Fertility and Embryology, Tienenestraat 168, B-3000 Leuven, Belgium (E-mail: [ivo.brosens@med.kuleuven.be](mailto:ivo.brosens@med.kuleuven.be)).

Fertility and Sterility® Vol. 106, No. 3, September 1, 2016 0015-0282

Copyright ©2016 The Authors. Published by Elsevier Inc. on behalf of the American Society for Reproductive Medicine. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

<http://dx.doi.org/10.1016/j.fertnstert.2016.05.025>

**I**t is well recognized that pregnancy can relieve endometriosis-related symptoms and may be curative. Pregnancy is therefore considered within the therapeutic options for endometriosis. Medical literature dating from the middle of the last century also included reference to pregnancy for the prevention of endometriosis (1). Joseph Vincent Meigs (2) stated his belief that “avoidance of endometriosis through early

marriage and frequent childbearing is the most important method of prophylaxis." In line with this, the term "pseudo-pregnancy" was introduced during the 1960s in relation to the therapeutic use of progestin (3).

Endometriosis is a recognized cause of infertility but has only seldom been linked to pregnancy complications. Recent reports highlighted the rare yet life-threatening occurrence of spontaneous hemoperitoneum in pregnancy (SHiP). This dramatic complication has been associated with perinatal mortality and morbidity (4, 5). Doyle and Phillips (6) were the first to describe the autopsy of a woman who died from SHiP and linked the bleeding to a small decidual peritoneal lesion on the lateral pelvic wall. O'Leary (7) reviewed pathology reports of cases of SHiP described between 1929 and 2006 and found two maternal deaths, three fetal deaths, and two neonatal deaths in the 10 cases he identified. He described decidualization with no evidence of endometriosis in seven cases and decidualization in an endometriotic lesion in three cases. O'Leary (7) concluded that, although ectopic decidualization is usually no more than a pathologic curiosity, in rare cases it may be linked to feto-maternal mortality and morbidity.

A series of recent reports drew attention to a possible link between IVF carried out in women with endometriosis and SHiP. In one retrospective report, Katorza et al. (8) reviewed the clinical notes of 800 women attending an endometriosis center and identified three women who had intra-abdominal bleeding between 26 and 29 weeks' gestation. All three women had IVF. Other case series of SHiP after IVF, mostly in women with endometriosis, have since been published (8–12). In a series of 11 cases of SHiP in women with endometriosis, Lier et al. (9) documented six cases following IVF treatment. Two maternal deaths have recently been reported due to a delay in the diagnosis of SHiP (13, 14). Ueda et al. (15) reported abscess formation and rupture in 2 of 25 cases with endometriomas who underwent IVF. On the other hand, assisted reproductive technology was not linked to adverse pregnancy outcomes. This reflects the fact that SHiP is very rare. It has also been reported in singleton and twin pregnancies (16, 17), although it may be more common in women with endometriosis who conceive after IVF. To test for a possible association, we undertook a literature review of reported cases of SHiP in women with and without endometriosis related to the use of IVF.

## MATERIALS AND METHODS

### Search Strategy

A Scopus search, undertaken using the term "spontaneous hemoperitoneum in pregnancy," produced a total of 474 publications, starting with the publication by Reid in 1945 (18). The search was extended by mining the references for case reports, case series, and reviews. After reading the abstracts and, if relevant, the full articles, a total of 57 case reports were identified. All cases with an established known cause explaining the hemoperitoneum were then excluded. This search was limited to articles published in English, French, or Spanish. For completion, a PubMed search was also carried out using the terms "hemoperitoneum" and "pregnancy," yielding

859 articles. When the search was limited to the period 2007–2016, it yielded 318 articles. A manual search of these articles was undertaken to exclude those dealing with ectopic pregnancy, pregnancy in a bicornuate horn, placenta accreta or percreta, uterine rupture, hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome, pre-eclampsia, ovarian hyperstimulation, and hepatic or splenic rupture. This left 80 references; 55 of them contained the word "spontaneous" and 25 did not. Finally, all articles concerning endometriosis and/or IVF were selected. Because the purpose of this review is to examine occurrence of hemoperitoneum during pregnancy, reports of SHiP during labor or the postpartum period were excluded.

## RESULTS

The aggregated search identified 45 articles, encompassing 64 case reports. These were divided into three groups on the basis of whether patients received assisted conception and the presence or absence of endometriosis. Group 1 included 24 cases of SHiP in women who underwent IVF. This group includes 22 cases in women who were diagnosed with endometriosis. Group 2 included 20 cases in women who conceived spontaneously and who had endometriosis. This group included all cases published since the first reported case of endometriosis and SHiP in 1992. Group 3 included 20 cases in women who had natural conception and who did not have endometriosis. In this group, in the absence of biopsies, the presence of ectopic decidualization cannot be excluded. Because the first case of SHiP after IVF was published in 2007, we used the same year for including publications in group 3.

### Clinical Features

Group 1 (Table 1) included 24 pregnancies following controlled ovarian hyperstimulation and embryo transfer (COH+ET). Women's age ranged between 25 and 43 years. Nineteen women (79%) were nulliparous. Twenty-two women (92%) had severe, stage III or IV endometriosis. Group 2 (Table 2) included 16 cases with surgical diagnosis of endometriosis and 4 cases with no prior diagnosis of endometriosis, where the biopsy showed the presence of decidual tissue, allowing a diagnosis of ectopic decidualization, as described by Kondoh et al. (36). The age range of the group was between 25 and 37 years. Thirteen women (65%) were nulliparous. The stage of endometriosis varied from minimal to severe. Four women had ectopic decidualization. Group 3 (Table 3) included 20 cases of SHiP with an age range of 21–40 years; eleven women (55%) were nulliparous. Women in this group did not have endometriosis at the time of laparotomy, although no biopsies were taken from the site of bleeding. It should be noted that in one case, deep endometriosis was diagnosed 4 years later by magnetic resonance imaging.

### Localization and Number of Bleeding Sites

In group 1 SHiP occurred in 21 women (88%) during the second half of pregnancy and at 6, 17, and 19 weeks in the other 3 cases. In group 2, bleeding occurred between 21 and 37 weeks in all cases. In group 3, the bleeding occurred after

TABLE 1

Details of subjects with a diagnosis of endometriosis who conceived through COH-ET.

| Group 1, author, year (reference)              | Age (y) | Para | Endometriosis stage                  | Site of bleeding                                                                  | Maternal outcome      |                 |                                                                           | Perinatal outcome  |                  |                            |
|------------------------------------------------|---------|------|--------------------------------------|-----------------------------------------------------------------------------------|-----------------------|-----------------|---------------------------------------------------------------------------|--------------------|------------------|----------------------------|
|                                                |         |      |                                      |                                                                                   | No. of bleeding sites | Blood loss (mL) | Surgical intervention                                                     | Gestation age (wk) | Birth weight (g) | Outcome                    |
| Singleton pregnancies<br>Lier et al., 2016 (9) | 38      | 0    | Stage IV                             | Posterior uterine varicosities                                                    | M                     | 3,000           | Laparotomy 19 wk<br>Cesarean section 39 wk                                | 19                 | 2,984            | Live birth                 |
|                                                | 35      | 0    | Stage IV                             | Left ovary, bowel                                                                 | M                     | 1,100           | Cesarean section                                                          | 28                 | 1,245            | Live birth                 |
|                                                | 33      | 0    | Stage IV                             | Right broad ligament varicosities                                                 | M                     | 3,500           | Cesarean section                                                          | 32                 | 2,265            | Live birth                 |
|                                                | 36      | 1    | Stage IV                             | Right broad ligament<br>Right uterine artery                                      | 1                     | 2,000           | Laparoscopy, laparotomy, surgical evacuation                              | 6                  | —                | Miscarriage                |
|                                                | 28      | 0    | Stage IV                             | Back of uterus, left and right broad ligament, bilateral hematoma                 | M                     | 100             | Cesarean section                                                          | 37                 | 3,145            | Live birth                 |
|                                                | 37      | 0    | Stage IV                             | Right broad ligament, right round ligament<br>Left uterosacral ligament, bladder  | M                     | 1,750           | Cesarean section                                                          | 30                 | 1,620            | Live birth                 |
| Brouckaert et al., 2010 (19)                   | 33      | 0    | Stage IV endometrioma                | Right ovary (1 <sup>st</sup> episode)<br>Broad ligament (2 <sup>nd</sup> episode) | D                     | 14,600          | 1 <sup>st</sup> Ovariectomy<br>2 <sup>nd</sup> Hysterectomy fetus in situ | 17                 | —                | Fetal loss                 |
| Kim et al., 2010 (10)                          | 29      | 0    | Severe endometriosis                 | Pouch of Douglas adhesions                                                        | M                     | Large clots     | Cesarean section                                                          | 40                 | 3,200            | Live birth                 |
| Zhang et al., 2009 (11)                        | 35      | 0    | Stage II                             | Right broad ligament varicosities                                                 | 1                     | 1,700           | Cesarean section                                                          | 35                 | 2,580            | Live birth                 |
|                                                | 38      | 1    | Surgically confirmed                 | Posterior wall of uterus varicosities                                             | M                     | 1,500           | Cesarean section                                                          | 30                 | 1,070            | Live birth                 |
| Passos et al., 2008 (12)                       | 32      | 0    | Stage III                            | Right and left broad ligament varicosities                                        | 2                     | Large clots     | Cesarean section                                                          | 31                 | 1,570            | Live birth                 |
| Katorza et al., 2007 (8)                       | 31      | 1    | Severe endometriosis<br>Endometrioma | Right broad ligament and adnexa                                                   | M                     | 3,000           | Termination of pregnancy<br>Adnexectomy                                   | 26                 | Not available    | Fetal Loss                 |
|                                                | 32      | 0    | Severe endometriosis<br>Endometrioma | Anterior and posterior wall of uterus                                             | M                     | Small amount    | Cesarean section                                                          | 29                 | 1,425            | Live birth                 |
| Twin pregnancies<br>Loh et al., 2015 (16)      | 31      | 0    | Stage IV endometrioma                | Posterior wall of uterus, left fallopian tube                                     | M                     | 3,500           | Hysterotomy<br>Left adnexectomy                                           | 21                 | —                | Stillbirth, neonatal death |

Brosens. Spontaneous hemoperitoneum in pregnancy. *Fertil Steril* 2016.

TABLE 1

Continued.

| Group 1, author, year (reference) | Age (y) | Para | Endometriosis stage                  | Site of bleeding                                       | Maternal outcome      |                 |                                       | Perinatal outcome  |                  |                            |
|-----------------------------------|---------|------|--------------------------------------|--------------------------------------------------------|-----------------------|-----------------|---------------------------------------|--------------------|------------------|----------------------------|
|                                   |         |      |                                      |                                                        | No. of bleeding sites | Blood loss (mL) | Surgical intervention                 | Gestation age (wk) | Birth weight (g) | Outcome                    |
| Aggarwal et al., 2014 (17)        | 31      | 0    | Severe endometriosis                 | Left fallopian tube                                    | M                     | 2,200           | Cesarean section                      | 22                 | —                | Stillbirth, neonatal death |
| Doger et al., 2013 (20)           | 26      | 0    | No endometriosis                     | Posterior wall of uterus, Utero-ovarian vein           | 1                     | 400             | Cesarean section                      | 32                 | 1,760<br>1,730   | Live birth                 |
| Reif et al., 2011 (21)            | 25      | 0    | Stage III endometrioma               | Left ovary                                             | D                     | 1,500           | Cystectomy                            | 27                 | 1,190<br>890     | Live birth                 |
| Andrés-Orós et al., 2010 (22)     | 32      | 0    | No endometriosis                     | Posterior wall of uterus varicosities                  | 1                     | 1,000           | Cesarean section                      | 37                 | 2,715<br>2,340   | Live birth                 |
| Kim et al., 2010 (10)             | 33      | 0    | Stage IV                             | Posterior wall of uterus varicosities                  | M                     | 2,000           | Cesarean section                      | 33                 | 2,190<br>2,300   | Live birth                 |
| Zhang et al., 2009 (11)           | 38      | 0    | Stage III                            | Posterior wall of uterus varicosities                  | 1                     | 3,100           | Cesarean section                      | 29                 | —                | Stillbirth                 |
| Passos et al., 2008 (12)          | 30      | 0    | Stage III endometrioma               | Posterior wall of uterus, left broad ligament hematoma | D                     | Large clots     | Vaginal delivery and cesarean section | 32                 | 1,830<br>1,740   | Live birth                 |
| Roche et al., 2008 (23)           | 43      | 1    | Stage IV                             | Posterior wall of uterus, right uterine artery         | M                     | 3,000           | Cesarean section                      | 33                 | —                | Stillbirth                 |
| Katorza et al., 2007 (8)          | 29      | 0    | Severe endometriosis                 | Posterior wall of uterus varicosities, ovarian fossa   | M                     | 2,000           | Cesarean section                      | 28                 | 1,075<br>1,210   | Live birth                 |
| Wu et al., 2007 (24)              | 31      | 1    | Severe endometriosis<br>Endometrioma | Posterior wall of uterus                               | 1                     | 4,000           | Cesarean section                      | 33                 | Not available    | Live birth                 |

Note: D = diffuse; M = multiple.

Brosens. *Spontaneous hemoperitoneum in pregnancy*. *Fertil Steril* 2016.

TABLE 2

Details of subjects with a diagnosis of endometriosis (or deciduosis during pregnancy) who conceived naturally.

| Group 1, author, year (reference) | Age (y) | Para | Endometriosis stage      | Site of bleeding                                      | Maternal outcome      |                 |                                                    | Perinatal outcome  |                  |                |
|-----------------------------------|---------|------|--------------------------|-------------------------------------------------------|-----------------------|-----------------|----------------------------------------------------|--------------------|------------------|----------------|
|                                   |         |      |                          |                                                       | No. of bleeding sites | Blood loss (mL) | Surgical intervention                              | Gestation age (wk) | Birth weight (g) | Outcome        |
| <b>Endometriosis</b>              |         |      |                          |                                                       |                       |                 |                                                    |                    |                  |                |
| Lier et al., 2016 (9)             | 34      | 2    | Stage IV                 | Left uterosacral ligament                             | 1                     | 1,100           | Laparotomy at 23 wk<br>Cesarean section at 35 wk   | 35                 | 2,965            | Live birth     |
|                                   | 33      | 0    | Yes                      | Uterovesical fold, left uterosacral ligament          | 2                     | 600             | Cesarean section<br>Laparotomy 2 wk postpartum     | 34                 | 2,290            | Live birth     |
|                                   | 37      | 2    | Yes                      | Posterior uterine wall adhesions                      | 1                     | 2,000           | Laparotomy at 21 wk<br>Cesarean section at 37 wk   | 37                 | 2,940            | Live birth     |
| Stochino et al., 2016 (25)        | 26      | 0    | Deep infiltrating nodule | Left broad ligament<br>Left uterine artery            | 1                     | 3,000           | Laparotomy<br>Termination of pregnancy             | 16                 | —                | Stillbirth     |
| Cozzolino et al., 2015 (26)       | 33      | 1    | Stage II                 | Right ovary, Posterior uterine surface                | 2                     | 1,500           | Cesarean section                                   | 29                 | 1,390            | Live birth     |
| De Vincenzo et al., 2013 (27)     | 33      | 0    | Surgical confirmed       | Posterior uterine surface, bowel, left uterine artery | 1                     | 2,500           | Adnexectomy<br>Cesarean section<br>Bowel resection | 24                 | —                | Stillbirth     |
| Girard et al., 2012 (28)          | 31      | 0    | Severe                   | Left broad ligament<br>Uterine artery                 | 1                     | Massive         | Forceps delivery<br>Laparoscopy, laparotomy        | 41                 | 3,700            | Neonatal death |
| Williamson et al., 2011 (29)      | 37      | 0    | Endometrioma             | Left broad ligament hematoma                          | 1                     | Hematoma        | Vaginal delivery                                   | 37                 | 2,700            | Stillbirth     |
| Tourette et al., 2011 (30)        | 28      | 1    | Sigmoid endometriosis    | Posterior uterine wall, left uterine artery           | 1                     | Massive         | Cesarean section<br>Tumor excision                 | 28                 | 1,200            | Live birth     |
| Grunewald et al., 2010 (31)       | 33      | 2    | Stage I                  | Right uterosacral ligament at 27 wk                   | 1                     | 900             | Laparotomy                                         | 42                 | 4,665            | Live birth     |
| Kim et al., 2010 (10)             | 28      | 0    | Surgical confirmed       | Posterior uterine wall varicosities                   | M                     | 1,000           | Cesarean section                                   | 25                 | 720              | Live birth     |
|                                   | 37      | 1    | Stage II                 | Subserosal vessel<br>Pouch of Douglas adhesions       | 2                     | Clots           | Vaginal delivery<br>Hysterectomy                   | 40                 | Not available    | Live birth     |
| Wada et al., 2009 (32)            | 31      | 2    | Stage IV                 | Posterior uterine wall varicosities                   | 1                     | 2,490           | Laparotomy                                         | 37                 | 2,354            | Live birth     |
| Chiodo et al., 2008 (33)          | 25      | 0    | Stage IV                 | Right broad ligament<br>Right uterine artery          | 1                     | 2,000           | Ureter implantation                                | 31                 | —                | Stillbirth     |
| Aziz et al., 2004 (34)            | 30      | 0    | Surgical confirmed       | Left broad ligament<br>Anterior uterine wall          | 1                     | 4,000           | Adnexectomy                                        | 20                 | —                | Stillbirth     |
| Inoue et al., 1992 (35)           | 37      | 0    | Severe                   | Anterior uterine all<br>Varicose veins                | 1                     | 3,000           | Cesarean section                                   | 29                 | 1,416            | Live birth     |
| <b>Deciduosis</b>                 |         |      |                          |                                                       |                       |                 |                                                    |                    |                  |                |
| Lier et al., 2016 (9)             | 31      | 0    | No                       | Right broad ligament<br>Uterine vein                  | 1                     | 3,000           | Cesarean section                                   | 33                 | 2,400            | Live birth     |

Brosens. Spontaneous hemoperitoneum in pregnancy. *Fertil Steril* 2016.

TABLE 2

Continued.

| Group 1, author, year (reference)                                            | Age (y) | Para | Endometriosis stage | Site of bleeding                         | Maternal outcome      |                 |                       | Perinatal outcome  |                  |                |
|------------------------------------------------------------------------------|---------|------|---------------------|------------------------------------------|-----------------------|-----------------|-----------------------|--------------------|------------------|----------------|
|                                                                              |         |      |                     |                                          | No. of bleeding sites | Blood loss (mL) | Surgical intervention | Gestation age (wk) | Birth weight (g) | Outcome        |
| Kondoh et al., 2012 (36)                                                     | 31      | 0    | No                  | Posterior wall of uterus, omentum        | M                     | Large amount    | Cesarean section      | 29                 | 1,318            | Live birth     |
| Boitet et al., 2009 (37)                                                     | 33      | 0    | No                  | Left broad ligament rent, uterine artery | 1                     | 700             | Cesarean section      | 24                 | —                | Stillbirth     |
| Muzimoto et al., 1996 (38)                                                   | 28      | 0    | No                  | Posterior wall of uterus veins           | M                     | 4,000           | Cesarean section      | 28                 | 1,250            | Neonatal death |
| Brosens. Spontaneous hemoperitoneum in pregnancy. <i>Fertil Steril</i> 2016. |         |      |                     |                                          |                       |                 |                       |                    |                  |                |

27 weeks in all cases. The mean duration of gestation at the time of bleeding was 28.6 weeks for group 1, 30.9 weeks for group 2, and 32.3 weeks for group 3. The difference between group 1 and 3 was statistically significant ( $P=.004$ ). There were no statistically significant differences in the duration of gestation between group 2 and either group 1 ( $P=.29$ ) or group 3 ( $P=.079$ ) (unpaired  $t$  test). In the majority of cases bleeding was from the serosa of the posterior wall of the uterus, the broad ligaments, or the utero-sacral ligaments, and bleeding was recorded as venous at the site of varicosities. In some cases bleeding occurred at the site of a peritoneal tear, suggesting a two-step process whereby a hematoma forms in the loose areolar tissue of the parametrium before rupturing into the peritoneum. The bleeding site could not be identified in two cases in group 3.

Multiple (more than two) or diffuse bleeding points were observed in 16 cases (67%) in group 1, in 3 cases (15%) in group 2, and 3 cases in group 3. The difference between group 1 and the two other groups was statistically significant ( $P=.0005$ ). Among cases in which total blood loss was reported, the average amount of blood loss was higher in group 1 (2,720 mL) compared with group 2 (2,152 mL) and group 3 (1,805 mL), but the difference between the groups was not statistically significant. When the report included histopathology of bleeding sites ( $n=14$ ), decidualization was confirmed in all cases.

## Perinatal and Maternal Outcomes

Adverse perinatal outcome included stillbirth, neonatal death, cerebral palsy, miscarriage, and prematurity. Delayed transportation was considered a contributory factor in the one maternal death that occurred in group 3 (14). In most cases delivery was by cesarean section. This was linked to extended laparotomy to allow access to the posterior aspect of the uterus and to the adnexa. Adverse maternal morbidities included the need for hysterectomy and adnexitomy. In most cases there was considerable blood loss requiring extensive transfusion of blood and blood products. The surgical challenge posed by this presentation is considerable, as demonstrated by detailed literature accounts (20, 23).

## DISCUSSION

### Pathophysiology of SHIP

There are a number of well-known causes of intraperitoneal bleeding during pregnancy. The most common during early pregnancy is a ruptured ectopic pregnancy or a ruptured hemorrhagic ovarian cyst.

Intraperitoneal bleeding is less common in late pregnancy, but obstetricians are well familiar with possible causes, namely uterine rupture, an abnormally invasive placenta, and *abruptio placenta* leading to utero-placental apoplexy (also known as *Couvelaire uterus*), a situation in which the retro placental blood infiltrates the uterine wall ending in the peritoneal cavity. HELP syndrome complicating pregnancy has also been linked to bleeding from liver rupture. The literature also contains case reports of less frequently encountered causes of nontraumatic spontaneous

TABLE 3

Details of subjects with no prior diagnosis of endometriosis who conceived naturally.

| Group 3, author, year (reference) | Age (y) | Para | Endometriosis stage | Site of bleeding                                           | Maternal outcome      |                 |                                            | Perinatal outcome  |                  |                  |
|-----------------------------------|---------|------|---------------------|------------------------------------------------------------|-----------------------|-----------------|--------------------------------------------|--------------------|------------------|------------------|
|                                   |         |      |                     |                                                            | No. of bleeding sites | Blood loss (mL) | Surgical intervention                      | Gestation age (wk) | Birth weight (g) | Outcome          |
| Lier et al., 2016 (9)             | 27      | 20   | Yes (no biopsy)     | Adhesion posterior wall uterus                             | 1                     | 2,500           | Cesarean section                           | 37                 | 3,045            | Live birth       |
| Fatnassi et al., 2015 (39)        | 35      | 2    | No                  | Left broad ligament varicosities                           |                       | 1,300           | Cesarean section                           | 32                 | 3,100            | Live birth       |
| Diaz-Murillo et al., 2014 (40)    | 35      | 0    | No                  | Posterior wall of uterus, left broad ligament varicosities | M                     | Moderate        | Embolization Cesarean section              | 37                 | Not available    | Live birth       |
| Lim et al., 2014 (41)             | 24      | 1    | No                  | Posterior uterine varicosities                             | M                     | 1,500           | Cesarean section                           | 37                 | 1,730            | Live birth       |
| Shi et al., 2014 (42)             | 33      | 1    | No                  | No bleeding lesion                                         | 0                     | 1,500           | Laparotomy                                 | 32                 | 2,390            | Live birth       |
| Munir et al., 2012 (43)           | 32      | 2    | No                  | Left utero-ovarian ligament                                | 1                     | 3,000           | Cesarean section                           | 38                 | 3,300            | Live birth       |
| Al Quahtani et al., 2012 (44)     | 37      | 4    | No                  | Posterior uterine varicosities                             | 1                     | 2,500           | Cesarean section                           | 38                 | Not available    | Live birth       |
| Detriché et al., 2012 (45)        | 27      | 0    | No                  | Posterior uterine varicosities                             | 1                     | 400             | Cesarean section                           | 32                 | 1,700            | Live birth       |
| Girard et al., 2012 (28)          | 36      | 1    | No                  | Right broad ligament tear                                  | 1                     | 1,500           | Cesarean section                           | 29                 | 1,410            | Live birth       |
| Nguessan et al., 2013 (46)        | 33      | 0    | No                  | Right broad ligament varicosities                          | M                     | 1,100           | Cesarean section                           | 35                 | Not available    | Twin live birth  |
| Kapila et al., 2011 (14)          | 21      | 0    | No                  | Left broad ligament tear                                   | 1                     | Large amount    | Maternal death                             | 29                 | 1,700            | Still birth      |
| Nakaya et al., 2011 (47)          | 25      | 0    | No                  | Right broad ligament: superficial vein                     | 1                     | 850             | Cesarean section                           | 28                 | 1,150            | Live birth       |
| Andrés-Orós et al., 2010 (22)     | 36      | 0    | No                  | Posterior uterine varicosities                             |                       | 2,000           | Cesarean section                           | 33                 | —                | Twin still birth |
| Bloom et al., 2010 (48)           | 28      | 0    | No                  | Right and left broad ligament                              | 1                     | 1,500           | Vaginal delivery Postpartum laparotomy     | 34                 | 2,570            | Live birth       |
| Giulini et al., 2010 (49)         | 31      | 1    | No                  | Uterine artery                                             |                       |                 | Cesarean section                           | 33                 | 2,110            | Live birth       |
| Pezzuto et al., 2009 (50)         | 40      | 0    | No                  | Left broad ligament varicosities                           | 1                     | 2,500–3,000     |                                            |                    |                  |                  |
| Moreira et al., 2009 (51)         | 39      | 2    | No                  | Left broad ligament tear                                   | 1                     | 3,600           | 15 wk: Laparoscopy 38 wk: Cesarean section | 38                 | 3,600            | Live birth       |
| Rosales et al., 2008 (52)         | 23      | 2    | No                  | Uterine artery                                             |                       |                 | Vaginal birth, exploratory laparotomy      | 40                 | 3,680            | Live birth       |
|                                   |         |      |                     | Left broad ligament, bladder varicosities                  | 1                     | 3,000           |                                            |                    |                  |                  |
|                                   |         |      |                     | Right broad ligament, Uterine artery                       | 1                     | 2,500           | Hemostatic suture at 22 wk                 | 38                 | 3,000            | Live birth       |

Brosens. Spontaneous hemoperitoneum in pregnancy. *Fertil Steril* 2016.

TABLE 3

Continued.

| Group 3, author, year (reference) | Age (y) | Para | Endometriosis stage | Maternal outcome      |                 |                       | Perinatal outcome  |                  |            |
|-----------------------------------|---------|------|---------------------|-----------------------|-----------------|-----------------------|--------------------|------------------|------------|
|                                   |         |      |                     | No. of bleeding sites | Blood loss (mL) | Surgical intervention | Gestation age (wk) | Birth weight (g) | Outcome    |
| Kofman et al., 2007 (53)          | 24      | 0    | No                  | 0                     | 700             | Cesarean section      | 37                 | 2,650            | Live birth |
| Fiori et al., 2007 (54)           | 28      | 0    | No                  | 0                     | 800             | Cesarean section      | 27                 | 1,000            | Live birth |

Note: M = multiple.

Brosens. Spontaneous hemoperitoneum in pregnancy. *Fertil Steril* 2016.

intraperitoneal bleeding in pregnancy. Some of these relate to bleeding from nonreproductive organs, such as the splenic vein (55, 56), splenic artery (57), visceral branches of abdominal aorta (58), or the suprarenal glands (57). Bleeding has been also reported from hepatic rupture (59, 60), liver hemangioma (61), or a ruptured gall bladder (62). Of particular interest are reported cases in which there are features of decidualization in the bleeding lesions.

Rare cases have also been reported of bleeding during the postpartum from the ovarian (63) or uterine arteries (13) and uterine veins (57, 64, 65).

Typically, women presenting with SHiP are mostly in the second half of pregnancy. More rarely, they may present during the first half of pregnancy or early in the postpartum period. They present with severe sudden onset of abdominal pain, systemic evidence of hypovolemia, and collapse with no vaginal bleeding. The diagnosis is rarely made before exploratory laparotomy. Identifying and addressing the source of the severe bleeding is very challenging and often requires input from other surgical specialties. Bleeding from the reproductive tract vasculature often originated from the posterior aspect of the uterus or the broad ligament, which are difficult if not impossible to access without prior cesarean delivery. Bleeding can also be retroperitoneal. For the offspring the condition has been associated with a high rate of stillbirth and prematurity, and for the mother with the need for hysterectomy, adnexectomy, and repeat laparotomy and has rarely proved fatal owing to the difficulty in ensuring timely response to bleeding and in view of the significant surgical challenge.

## Main Findings

In this article we adopted the term COH+ET as proposed by Järvelä et al. (66) to refer to traditional ovarian stimulation IVF. To the best of our knowledge this is the first review that specifically examined the possible link between COH+ET and the occurrence of SHiP in women with endometriosis. Although this conclusion seems warranted by the evidence collected, caution is required because the rarity of the condition forced us to rely on case reports with different degrees of accuracy. An important observation is the larger number of bleeding points observed in women with endometriosis undergoing COH+ET using traditional ovarian stimulation cycles. This is a point that warrants consideration.

Approximately one-third of all cases identified in the present search refer to women who underwent IVF. Only two (8%) of the cases with SHiP in the IVF group did not have endometriosis, with the majority having moderate or severe disease. The profile of reported cases suggests that COH+ET in women with endometriosis may increase the incidence or severity of SHiP. Several observed features seem to support the existence of an association: first, the presence of multiple or diffuse bleeding sites; second, the occurrence of decidualization in all cases that had a biopsy of the bleeding site; and third, the site of decidualization, which largely involved the parametrium and ovarian endometriomas. The common site of bleeding was in the posterior pelvic cavity, which is

difficult to reach in the presence of advanced pregnancy without interfering with the pregnancy itself.

On the basis of pelvic inspection and biopsy, three clinical subgroups of SHiP can be distinguished: [1] *ectopic deciduosis* in women without endometriosis; [2] *decidualized foci of endometriosis*; and [3] *diffuse decidualization* in patients with SHiP linked to COH+ET. The severity of the presentation is reflected by adverse perinatal outcome, including stillbirth, neonatal mortality, very low birth weight, or low birth weight.

Although the paucity of reported cases in the group of women with IVF who did not have a diagnosis of endometriosis suggests that COH+ET is a risk factor for SHiP in the subgroup of women with moderate or severe endometriosis, their very limited absolute numbers necessitate a word of caution.

Thirty-eight of the cases identified in this review (59%) had endometriosis, which again suggests that endometriosis may be linked to an increased incidence of SHiP. The group who underwent COH+ET and subsequently developed SHiP had a high incidence of advanced endometriosis, including a high incidence of endometrioma-related surgery. However, although endometriosis is well recognized as a cause of pelvic adhesions, which can cause severe limitation of uterine mobility as detected clinically or at the time of surgery, little is understood about how these adapt to pregnancy to allow uterine enlargement. The process can be envisaged to be associated with considerable stretch or breakdown, perhaps facilitated by softening in response to higher than usual circulating levels of P during early pregnancy in women who underwent COH+ET (66). It is also possible that a breakdown of adhesions and associated vasculature can occur within this process. The surgical difficulty in controlling the bleeding is further evidence of increased tissue susceptibility and the need for a judicious surgical approach. This must also be understood with reference to the hyperdynamic circulatory state and the extensive pelvic varicosities of pregnancy. One important argument against the role of stretch in the pathogenesis of SHiP is that there does not seem to be a higher number of reported cases in twin pregnancy.

The cases presented here illustrate the surgical challenge when attempting to control bleeding from multiple decidualized lesions. Decidualization has long been a recognized feature of the peritoneum during pregnancy and does not in itself indicate underlying endometriosis (67, 68). Yet the tissue can be friable to handle, and attempts to control bleeding with suture material or diathermy may be futile, culminating in the need for excisional surgery and removal of the uterus or adnexa. The impact on affected women is considerable. Surgical access can also be difficult because bleeding is often from the posterior uterine wall or the posterior aspect of the broad ligament, which are difficult to access in a pregnant woman. It seems that most attempts to control bleeding while maintaining the pregnancy have been unsuccessful, and cases have been reported with recurrent bleeding necessitating hysterotomy and supracervical hysterectomy (16, 19). Therefore, in the presence of SHiP during the third trimester, consideration should be given to delivery by cesarean section at an early stage. One further difficulty is that the diagnosis

of SHiP has been rarely made preoperatively, because imaging for intraperitoneal bleeding is very difficult in advanced pregnancy owing to the position of the uterus. It is unclear whether heightened attention to the existence of SHiP may enable a provisional diagnosis before surgery or the identification of less severe cases that do not undergo surgery.

### Risk of Ovarian Endometrioma in SHiP

Group 1 included 17 cases (89%) with stage III or IV endometriosis. Ovarian endometrioma was reported in seven cases, but extrapolation from literature reports suggests that it is likely that these were under-reported (69). Pateman et al. (70) reported that the majority of endometriomas were observed to regress during pregnancy when followed up by serial ultrasound and that 12% of cases showed evidence suggestive of decidualization, such as a thick and irregular inner wall, papillary projections, and high vascularity on Doppler examination. These features can pose diagnostic challenges because they may mimic ovarian malignancy. Pregnancy-dependent changes in an ovarian endometrioma include rapid development of abundantly vascularized intracystic excrescences that regress at the end of pregnancy (71). Although a recent literature review lends support to conservative management of endometrioma during pregnancy (72), COH-ET may constitute an additional risk factor for SHiP that should be taken into consideration.

A retrospective study of the outcome of ovarian endometriosis during pregnancy included two cases with pregnancy after IVF. Among 24 ovarian endometriomas observed during pregnancy, the size of the cyst increased significantly during the second trimester in the two IVF cases. One of these subsequently ruptured, and one developed an abscess (15). Nevertheless, there remains a lack of consensus about the optimal management of endometrioma in women undergoing IVF (73).

Although  $17\beta$ -E<sub>2</sub> and P concentration in peritoneal fluid and serum are comparable during the normal menstrual cycle (74), local P concentrations are significantly higher in the peritoneum close to the corpus luteum compared with other peritoneal samples and systemic blood (75). This suggests that endometriotic implants near the ovaries are more likely to undergo decidual changes in the first trimester of pregnancy as observed in typical peritoneal implants (76).

### The Pathology of SHiP in Women with Deciduosis or Endometriosis

Pathologic evaluation of bleeding sites reveals decidualized stromal cells, including in patients without visible endometriosis. Glandular cells were seen in few cases and were reported as atrophic. The histopathology of groups 1 and 2 was characterized by the presence of decidual cells. There are no case reports with histopathology from group 3; but the high prevalence of decidualization during pregnancy suggests that similar findings may be possible.

A second significant finding is the occurrence of bleeding from submesothelial ectopic decidua. This is a phenomenon noted during pregnancy where multiple, irregularly

distributed submesothelial deposits of decidual cells can be noted in the serosa of abdominal and pelvic organs (77, 78, 79).

In the case described by Doyle and Phillips (6) the autopsy found the presence of a small peritoneal lesion on the lateral side of the pelvis as cause of the fatal hemoperitoneum. At microscopy the lesion showed hemorrhagic decidual tissue without chorionic villi. The very vascular decidual reaction was apparently the source of the fatal bleeding.

In a series of 10 cases, Zaytsev and Taxy (67) observed two cases of submesothelial ectopic decidua that had small amounts of free blood in the peritoneal cavity. A third finding is that reported by O'Leary et al. (7) of a case with vascular intrusion by decidual cells, suggesting a mechanism of damage and bleeding in the thin-walled vessels of the decidual nodule.

It can be speculated that the high, nonphysiologic P levels observed early in pregnancies achieved after COH+ET (66) can accelerate or exacerbate the decidualization process. As shown in the endometriosis control group, the presence of any stage of endometriosis can be a risk factor, although the link with severe endometriosis may be indirect through the indication for COH+ET.

### Implications for Clinical Practice and Research

Our study raises important issues for clinical practice and research. First, awareness of the condition may enable earlier diagnosis. Second, the recognition that COH+ET in women with severe endometriosis may represent a significant risk factor for SHiP can affect the choice of treatment. It is possible but uncertain that embryo freezing with replacement in unstimulated cycles will be advantageous. In some women endometriosis may not have been diagnosed before pregnancy, which lends support to the recognition of risk factors such as the presence of neonatal uterine bleeding (80).

Research is needed to enhance the role of imaging in the early diagnosis and monitoring of women at high risk of SHiP. It remains possible that subclinical hemoperitoneum may play a role in major obstetric presentations, such as preterm labor or unexplained abdominal pain (81). Further research is urgently indicated to examine the role of decidualization and the vascular changes at the site of bleeding in biopsies or resection specimen, such as adnexectomy or hysterectomy specimens.

### Strengths and Limitations

The study highlights an important clinical problem and suggests a possible preventative measure, but it is important to emphasize that because of the rarity of SHiP it was necessary to design this study as a retrospective literature review. Thus, conclusions are dependent on available publications and their details and quality. A possible bias inherent in this approach may lie in a greater likelihood of cases of SHiP identified after IVF to be submitted for publication. However, SHiP rather than IVF was the main focus in most reported cases, whereas the role of IVF attracted little or no attention.

Although it is recognized that decidualization is a very common feature of the subserosal tissue during pregnancy, the exact incidence and natural history of this finding remain little understood. Decidualization is associated with atrophy of the glandular component, which can render confident diagnosis of endometriosis difficult.

In conclusion, SHiP is a rare but potentially fatal complication for both the pregnant woman and her unborn child. In vitro fertilization in women with severe endometriosis may be a significant risk factor for SHiP.

### REFERENCES

1. Benagiano G, Lippi D, Brosens I. The history of endometriosis. *Gynecol Obstet Invest* 2014;78:1–9.
2. Meigs JV. Endometriosis. Etiologic role of marriage age and parity: conservative treatment. *Obstet Gynecol* 1953;2:46–53.
3. Kistner RW. The use of newer progestins in the treatment of endometriosis. *Am J Obstet Gynecol* 1958;75:264–78.
4. Maggiore ULR, Ferrero S, Mangili G, Bergamini A, Inversetti A, Giorgione V, et al. A systematic review on endometriosis during pregnancy: diagnosis, misdiagnosis, complications and outcomes. *Hum Reprod Update* 2016;22:70–103.
5. Brosens IA, Fusi L, Brosens JJ. Endometriosis is a risk factor for spontaneous hemoperitoneum during pregnancy. *Fertil Steril* 2009;92:1243–5.
6. Doyle GG, Phillips DL. Fatal intraperitoneal haemorrhage during pregnancy. *Br J Obstet Gynaecol* 1957;64:270–1.
7. O'Leary SM. Ectopic decidualization causing massive postpartum intraperitoneal hemorrhage. *Obstet Gynecol* 2006;108:776–9.
8. Katorza E, Soriano D, Stockheim D, Mashiach R, Zolti M, Seidman DS, et al. Severe intra-abdominal bleeding caused by endometriotic lesions during the third trimester of pregnancy. *Am J Obstet Gynecol* 2007;197:e1–4.
9. Lier MC, van Waesberghe JH, Maas JW, van Rumpt - van de Geest DA, Coppus SF, Berger JP, et al. Relation between spontaneous hemoperitoneum in pregnancy (SHiP) and endometriosis—data from a nationwide Dutch consorted action. Poster presented at the Annual Meeting of the European Society of Human Reproduction and Embryology, July 3–6, 2016. Helsinki, Finland.
10. Kim TH, Lee HH. Hemoperitoneum during pregnancy with endometriosis; report of four cases. *Iranian J Reprod Med* 2010;8:90–3.
11. Zhang Y, Zhao Y, Wei Y, Li R, Qiao J. Spontaneous rupture of subserous uterine veins during late pregnancy after in vitro fertilization. *Fertil Steril* 2009;92:395.e13–6.
12. Passos F, Calhaz-Jorge C, Graça LM. Endometriosis is a possible risk factor for spontaneous hemoperitoneum in the third trimester of pregnancy. *Fertil Steril* 2008;89:251–2.
13. Chung Fat B, Terzibachian JJ, Lovera JC, Grisey A, Leung F, Riethmuller D. Décès maternel après rupture spontanée d'une artère utérine dans le post-partum immédiat: à propos d'un cas [Maternal death after spontaneous rupture of a uterine artery immediately following delivery: a case report]. *Gynécol Obstet Fertil* 2008;36:1008–11.
14. Kapila P. Fatal non-traumatic spontaneous hemoperitoneum in second trimester of pregnancy—autopsy findings. *J Forensic Leg Med* 2011;18:139–40.
15. Ueda Y, Enomoto T, Miyatake T, Fujita M, Yamamoto R, Kanagawa T, et al. A retrospective analysis of ovarian endometriosis during pregnancy. *Fertil Steril* 2010;94:78–84.
16. Loh MJ, Wee JY, Teo SB. Endometriosis in a twin pregnancy leading to massive hemoperitoneum and intrauterine death: a case report. *J Endometriosis* 2015;7:86–8.
17. Aggarwal I, Tan P, Mathur M. Decidualised fallopian tube endometriotic implant causing spontaneous haemoperitoneum in a twin pregnancy. *BMJ Case Rep* 2014;2014.
18. Reid SM. Spontaneous intraperitoneal haemorrhage. *J Obstet Gynaecol Br Commonw* 1965;72:634–5.

19. Brouckaert OM, Oostenveld E, Quartero H. Spontaneous hemoperitoneum and fetal demise in a nulliparous woman requiring hysterectomy with fetus in situ. *Int J Gynecol Obst* 2010;110:273.

20. Doger E, Cakiroglu Y, Yildirim Kopuk S, Akar B, Caliskan E, Yucesoy G. Spontaneous rupture of uterine vein in twin pregnancy. *Case Rep Obstet Gynecol* 2013;2013:596707.

21. Reif P, Schöll W, Klaritsch P, Lang U. Rupture of endometriotic ovarian cyst causes acute hemoperitoneum in twin pregnancy. *Fertil Steril* 2011;95: 2125.e1-3.

22. Andrés-Orós MP, Server-De Castro L, Roy-Ramos V, Vela-Lete A. Rotura espontánea de variz uterina durante la gestación. Descripción de dos casos y revisión bibliográfica [Spontaneous uterine venous rupture during pregnancy. Description of two cases and bibliographical review]. *Ginecol Obstet Mex* 2010;78:128-31.

23. Roche M, Ibarrola M, Lamberto N, Larrañaga C, García MA. Spontaneous hemoperitoneum in a twin pregnancy complicated by endometriosis. *J Matern Fetal Neonatal Med* 2008;21:924-6.

24. Wu CY, Hwang JL, Lin YH, Hsieh BC, Seow KM, Huang LW. Spontaneous hemoperitoneum in pregnancy from a ruptured superficial uterine vessel. *Taiwan J Obstet Gynecol* 2007;46:77-80.

25. Stochino E, Darwish B, Abo C, Millischer-Bellaiche A, Angioni S, Roma H. Recurrent hemoperitoneum during pregnancy in large deep endometriosis infiltrating the parametrium. *J Min Invas Gynecol* 2016;23:643-6.

26. Cozzolino M, Corioni S, Maggio L, Sorbi F, Guaschino S, Fambrini M. Endometriosis-related hemoperitoneum in pregnancy: a diagnosis to keep in mind. *Ochsner J* 2015;15:262-4.

27. De Vincenzo R, Zannoni GF, Ricci C, Conte C, Masciullo V. Bowel endometriosis with hemoperitoneum complicating pregnancy. *J Endometriosis* 2011;5:166-9.

28. Girard C, Chatrian A, Veran C, Hoffmann P, Pons JC, Sergent F. Rupture spontanée des vaisseaux utérins pendant la grossesse: à propos de trois cas [Spontaneous rupture of uterine vessels during pregnancy, about three cases]. *J Gynécol Obstet Biol Réprod* 2012;41:374-7.

29. Williamson H, Indusekhar R, Clark A, Hassan IM. Spontaneous severe haemoperitoneum in the third trimester leading to intrauterine death: case report. *Case Rep Obstet Gynecol* 2011;2011:173097.

30. Tourette C, Carcopino X, Taranger-Charpin C, Boubli L. Une cause inattendue d'hémoperitoine en cours de grossesse [An unexpected aetiology of massive haemoperitoneum during pregnancy]. *J Gynécol Obstet Biol Réprod* 2011;40:81-4.

31. Grunewald C, Jördens A. Intra-abdominal hemorrhage due to previously unknown endometriosis in the third trimester of pregnancy with uneventful neonatal outcome: a case report. *Eur J Obstet Gynecol Reprod Biol* 2010; 148:204-5.

32. Wada S, Yoshiyuki F, Fujino T, Sato C. Uterine vein rupture at delivery as a delayed consequence of laparoscopic surgery for endometriosis: a case report. *J Minim Invasive Gynecol* 2009;16:510-2.

33. Chiodo I, Somigliana E, Dousset B, Chapron C. Uro-hemoperitoneum during pregnancy with consequent fetal death in a patient with deep endometriosis. *J Minim Invasive Gynecol* 2008;15:202-4.

34. Aziz U, Kulkarni A, Lazic D, Cullimore JE. Spontaneous rupture of the uterine vessels in pregnancy. *Obstet Gynecol* 2004;103:1089-91.

35. Inoue T, Moriawaki T, Nikii I. Endometriosis and spontaneous rupture of utero-ovarian vessels during pregnancy. *Lancet* 1992;340:240-1.

36. Kondoh E, Shimizu M, Kakui K, Mikami Y, Tatsumi K, Konishi I. Deciduosis can cause remarkable leukocytosis and obscure abdominal pain. *J Obstet Gynaecol Res* 2012;38:1376-8.

37. Bouet PE, Sentilhes L, Lefebvre-Lacoeuille C, Catala L, Gillard P, Descamps P. Endometriosis and spontaneous rupture of uterine vessels with hemothorax during pregnancy. *Eur J Obstet Gynecol Reprod Biol* 2009;144:95-6.

38. Mizumoto Y, Furuya K, Kikuchi Y, Aida S, Hyakutake K, Tamai S, et al. Spontaneous rupture of the uterine vessels in a pregnancy complicated by endometriosis. *Acta Obstet Gynecol Scand* 1996;75:860-2.

39. Fatnassi R, Mikhilini I, Torki E, Ragmoun H, Kaabia O, Hammami S, et al. Hemoperitoneum caused by spontaneous uterine varicose vein rupture during third trimester of pregnancy—a case report. *Sunnyvale: Gynecol Obstet*; 2015.

40. Díaz-Murillo R, Tobías-González P, López-Magallón S, Magdaleno-Dans F, Bartha JL. Spontaneous hemoperitoneum due to rupture of uterine varicose veins during labor successfully treated by percutaneous embolization. *Case Rep Obstet Gynecol* 2014;2014:580384.

41. Lim PS, Ng SP, Shafiee MN, Kampan N, Jamil MA. Spontaneous rupture of uterine varicose veins: a rare cause for obstetric shock. *J Obstet Gynaecol Res* 2014;40:1791-4.

42. Shi Q, Zhou HG, Liu XR, Li JP. Spontaneous hemoperitoneum with intrahepatic cholestasis during the third trimester of pregnancy. *Int J Gynecol Obstet* 2014;127:297-8.

43. Munir S, Lo T, Seaton J. Spontaneous rupture of utero-ovarian vessels in pregnancy. *BMJ Case Rep* 2012;2012.

44. Al Qahtani NH. Spontaneous intraperitoneal haemorrhage during pregnancy. *BMJ Case Reports* 2012;2012.

45. Detriché O, Vaesen S, Carlier C, Dutranoy JC, Givron O, Bosschaert P. Rupture spontanée de varices utérines pendant le troisième trimestre de grossesse: approche diagnostique par IRM [Spontaneous rupture of varicose veins in the third trimester of pregnancy: diagnosis achieved by MRI]. *J Gynécol Obst Biol Réprod (Paris)* 2012;41:370-3.

46. Ngueassan KL, Mian DB, Aissi GA, Oussou C, Boni S. Spontaneous rupture of uterine varices in third trimester pregnancy: an unexpected cause of hemoperitoneum. A case report and literature reviews. *Clin Exp Obstet Gynecol* 2013;40:175-7.

47. Nakaya Y, Itoh H, Muramatsu K, Otome M, Kobayashi Y, Hirai K, et al. A case of spontaneous rupture of a uterine superficial varicose vein in midgestation. *J Obstet Gynaecol Res* 2011;37:1149-53.

48. Bloom SL, Uppot R, Roberts DJ. Case 32-2010: a pregnant woman with abdominal pain and fluid in the peritoneal cavity. *N Engl J Med* 2010;363: 1657-65.

49. Giulini S, Zanin R, Volpe A. Hemoperitoneum in pregnancy from a ruptured varix of broad ligament. *Arch Gynecol Obstet* 2010;282:459-61.

50. Pezzuto A, Pomiini P, Steinkasserer M, Nardelli GB, Minelli L. Successful laparoscopic management of spontaneous hemoperitoneum at 15 weeks of pregnancy: case report and review of literature. *J Min Invasive Gynecol* 2009;16:792-4.

51. Moreira A, Reynolds A, Baptista P, Costa AR, Bernardes J. Case report: intra-partum utero-ovarian vessels rupture. *Arch Gynecol Obstet* 2009; 279:583-5.

52. Rosales RG, Saldana MAC, Leal IA, Lopez JAC. Rotura espontánea de los vasos uterinos durante el embarazo: comunicación de un caso y revisión bibliográfica. [Spontaneous rupture of uterine vessels during pregnancy: report of one case and literature review]. *Ginecología y Obstetricia de Mexico* 2008;76:221-3.

53. Koifman A, Weintraub AY, Segal D. Idiopathic spontaneous hemoperitoneum during pregnancy. *Arch Gynecol Obstet* 2007;276:269-70.

54. Fiori O, Prugnolle H, Darai E, Uzan S, Berkane N. Spontaneous uterine artery rupture during pregnancy in a woman with sickle cell disease: a case report. *J Reprod Med Obstet Gynecol* 2007;52:657-8.

55. Safioleas MC, Moulakakis KG. A rare cause of intra-abdominal haemorrhage: spontaneous rupture of the splenic vein. *Acta Chir Belg* 2006;106: 237-9.

56. Eckerling B, Goldman JA, Yado S. Spontaneous rupture of the splenic vein in pregnancy with massive retro- and intraperitoneal hemorrhage. *Am J Surg* 1962;103:836-9.

57. Hanna WA, Myles TJ. Spontaneous intraperitoneal haemorrhage during pregnancy: report of three cases. *Br Med J* 1964;1:1024-6.

58. Pollak EW, Michas CA. Massive spontaneous hemoperitoneum due to rupture of visceral branches of the abdominal aorta. *Am Surg* 1979;45: 621-30.

59. Sutton BC, Dunn ST, Landrum J, Mielke G. Fatal postpartum spontaneous liver rupture: case report and literature review. *J Forensic Sci* 2008;53: 472-5.

60. Klein K, Shapiro AM. Spontaneous hepatic rupture with intraperitoneal hemorrhage without underlying etiology: a report of two cases. *ISRN Surg* 2011;2011:610747.

61. Krasuski P, Poniecka A, Gal E, Wali A. Intrapartum spontaneous rupture of liver hemangioma. *J Matern Fetal Med* 2001;10:290-2.

62. Chaimoff C, Dintsman M, Goldman J. Rupture of the gallbladder in pregnancy with massive intraperitoneal hemorrhage. *Int Surg* 1973;58:741.

63. Banaś T, Boryczko M, Durzyńska-Urbaniec J. Intraperitoneal hemorrhage due to the rupture of right ovarian artery in the second day of puerperium [Article in Polish]. *Ginekol Pol* 2004;75:729–32.

64. LaRose P, Sehdeva PK. Spontaneous rupture of a uterine vein during labor. *South Med J* 1978;71:1446–7.

65. Roger N, Chitrit Y, Souhaid A, Rezig K, Saint-Leger S. Intraperitoneal hemorrhage from rupture of uterine varicose vein during pregnancy: case report and review of the literature [Article in French]. *J Gynecol Obstet Biol Reprod (Paris)* 2005;34:497–500.

66. Järvelä IY, Pelkonen S, Uimari O, Mäkkilä K, Puukka K, Ruokonen A, et al. Controlled ovarian hyperstimulation leads to high progesterone and estradiol levels during early pregnancy. *Hum Reprod* 2014;29:2393–401.

67. Zaytsev P, Taxy JB. Pregnancy-associated ectopic decidua. *Am J Surg Pathol* 1987;11:526–30.

68. Suster S, Moran CA. Deciduosis of the appendix. *Am J Gastroenterol* 1990;85:841–5.

69. Vercellini P, Aimi G, De Giorgi O, Maddalena S, Carinelli S, Crosignani PG. Is cystic ovarian endometriosis an asymmetric disease? *Br J Obstet Gynaecol* 1998;105:1018–21.

70. Pateman K, Moro F, Mavrellos D, Foo X, Hoo WL, Jurkovic D. Natural history of ovarian endometrioma in pregnancy. *BMC Womens Health* 2014;14:128.

71. Barbieri M, Somigliana E, Oneda S, Ossola MW, Acaia B, Fedele L. Decidualized ovarian endometriosis in pregnancy: a challenging diagnostic entity. *Hum Reprod* 2009;24:1818–24.

72. Taylor LH, Madhuri TK, Walker W, Morton K, Tailor A, Butler-Manuel S. Decidualisation of ovarian endometriomas in pregnancy: a management dilemma. A case report and review of the literature. *Arch Gynecol Obstet* 2015;291:961–8.

73. Gelbaya TA, Nardo LG. Evidence-based management of endometrioma. *Reprod Biomed Online* 2011;23:15–24.

74. Donnez J, Langerock S, Thomas K. Peritoneal fluid volume and 17 $\beta$ -estradiol and progesterone concentrations in ovulatory, anovulatory, and postmenopausal women. *Obstet Gynecol* 1982;59:687–92.

75. Cincinelli E, Einer-Jensen N, Hunter RHF, Cignarelli M, Cignarelli A, Colafoglio G, et al. Peritoneal fluid concentrations of progesterone in women are higher close to the corpus luteum compared with elsewhere in the abdominal cavity. *Fertil Steril* 2009;92:306–10.

76. Maya ET, Sofrenyoh EK, Buntugu KA, Lamptey M. Idiopathic spontaneous haemoperitoneum in the third trimester of pregnancy. *Ghana Med J* 2012;46:258–60.

77. Büttner A, Bässler R, Theele C. Pregnancy-associated ectopic decidua (deciduosis) of the greater omentum. An analysis of 60 biopsies with cases of fibrosing deciduosis and leiomyomatosis peritonealis disseminata. *Pathol Res Pract* 1993;189:352–9.

78. Malpica A, Deavers MT, Shahabi I. Gross deciduosis peritonei obstructing labor: a case report and review of the literature. *Int J Gynecol Pathol* 2002;21:273–5.

79. Bolat F, Canpolat T, Tarim E. Pregnancy-related peritoneal ectopic decidua (deciduosis): morphological and clinical evaluation. *Turk Patoloji Derg* 2012;28:56–60.

80. Brosens I, Benagiano G. Is neonatal uterine bleeding involved in the pathogenesis of endometriosis as a source of stem cells? *Fertil Steril* 2013;100:622–3.

81. Kim CJ, Romero R, Chaemsathong P, Kim JS. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. *Am J Obstet Gynecol* 2015;213:S53–69.