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BACKGROUND: Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples.
While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been asso-
ciated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oli-
gozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently
there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising
novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances
in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system,
are likely to enable genomic rectification of human SSCs in the near future.
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OBJECTIVE AND RATIONALE: The objective of this review is to provide insights into the prospects of the potential clinical applica-
tion of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases.

SEARCH METHODS: We performed a narrative review using the literature available on PubMed not restricted to any publishing year
on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal
screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We
included papers written in English only.

OUTCOMES: Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This
technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer
treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be
employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient
numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by gen-
omic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and
germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels.

WIDER IMPLICATIONS: SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat
couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have
their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT
with or without genomic editing is pressing.

Key words: spermatogonial stem cell autotransplantation / male infertility / male reproductive disorders / germline editing /

CRISPR-Cas9

Introduction

Subfertility, defined as a failure to achieve a clinical pregnancy after at
least 12 months of regular unprotected coitus (Zegers-Hochschild et al.,
2009), affects ~15% of all couples. In ~17% of these couples, a severe
male factor, defined as a total motile sperm count below 3 X IOE’, is
present (van der Steeg et al., 2007). A severe male factor may present
as azoospermia (complete absence of spermatozoa in the ejaculate) or
oligozoospermia (low number of spermatozoa in the ejaculate). In case
of a severe male factor, a patient’s own biological children can be gen-
erated by ICSI with either ejaculated spermatozoa (in case of oligo-
zoospermia) or surgically retrieved testicular spermatozoa by means of
testicular sperm extraction (TESE) (in case of azoospermia). Currently,
no direct clinical treatment exists for a severe male factor.

A severe male factor is typically caused by a disturbance during
spermatogenesis. Spermatogenesis occurs in the seminiferous tubules
inside the testis. Essential to this process are spermatogonial stem
cells (SSCs) that maintain a perfect balance between self-renewal and
differentiation into mature sperm, thereby sustaining fertility through-
out a man’s life. Both oligozoospermia and azoospermia can be due
to a reduction in SSC numbers throughout the testis as seen in tes-
ticular biopsies taken from these men (Takagi et al., 2001; Yakirevich
et al., 2003; Hentrich et al., 201 1). In some of these men, the testicu-
lar biopsies display focal spermatogenesis, where sperm is only pro-
duced in a subset of seminiferous tubules. Although the production
of spermatozoa is limited due to the low number of SSCs, the exist-
ing SSCs are still functional and capable of continuous self-renewal
and differentiation (Silber, 2000).

While the etiology of a severe male factor remains largely unknown,
a few genetic defects (Visser and Repping, 2010; Tuttelmann et dl.,
201 I; Krausz and Chianese, 2014), including structural and numerical
chromosomal abnormalities (de Kretser, 1997; Oates, 2008) and
Y-chromosome deletions (Kuroda-Kawaguchi et al., 2001; Noordam

and Repping, 2006), have been identified to associate with a severe
male factor-induced subfertility. In addition, male subfertility can be
attributed to previous gonadotoxic treatment (Meistrich, 2013). Both
chemotherapy and radiotherapy are known to destroy the SSC pool,
resulting in oligozoospermia or azoospermia in a large proportion of
cancer survivors (Howell and Shalet, 2005).

A possible future application that could directly treat a severe male
factor might be autotransplantation of SSCs. Transplantation of SSCs
that are stored prior to cancer treatment is proposed as a means to
restore fertility in childhood cancer survivors. This application
involves transplantation of SSCs into the seminiferous tubules via the
efferent duct or rete testis (Brinster, 2007; Dores et al., 2012). Upon
SSC transplantation (SSCT), SSCs migrate to the basement mem-
brane of recipient seminiferous tubules, colonize the epithelium and
undergo self-renewal and differentiation so that permanent sperm-
atogenesis is established. Therefore, SSCT should allow natural con-
ception without further fertility treatment, making SSCT a direct
treatment for a severe male factor.

In case the severe male factor is due to a genomic mutation, SSCT
can only be successful if it is combined with correction of the muta-
tion. Recent advances in genomic editing, especially those with the
clustered regulatory interspaced short palindromic repeats-associated
protein 9 (CRIPSR-Cas9) system, can allow for rapid, easy and highly
efficient genetic alterations of a wide array of cell types and organisms
including human cells (Sander and Joung, 2014). Thus, if genomic edit-
ing is combined with SSCT, it would in principle allow those suffering
from spermatogenic failure to have their own biological children.
Furthermore, SSCT with genomic editing may be used to prevent
paternal transmission of genomic diseases.

In this review, the clinical prospects of SSCT with or without gen-
omic editing for male adult cancer survivors, for men with oligozoos-
permia and azoospermia and for carriers of genomic diseases are
discussed (Fig. I).
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Figure | A schematic depiction of the proposed SSCT therapy. (a) A testicular biopsy is taken from the patient and cryopreserved. From the
biopsy, SSCs are propagated in vitro, during which endogenous genomic defects may be repaired. Propagated SSCs are subsequently autotrans-
planted to the testis and then colonize the testis and restore spermatogenesis, enabling the patient to father a child without additional therapy.
(b) The testicular histology of men with a severe male factor in different patient groups. The histology may show various phenotypes throughout the
testis. For male (childhood) cancer survivors, a biopsy is cryopreserved prior to cancer therapy. Hence, thawing of the cryopreserved biopsy is indis-
pensable to the treatment. In vitro propagation is needed for all patient groups, while genomic modification is only needed for those with a matur-
ation arrest or carriers of diseases. In male carriers of diseases with full spermatogenesis, all germ cells including spermatids express the mutated
genes, and local irradiation of the testis is required prior to transplantation to remove the mutated endogenous spermatids. After (genomically modi-
fied) SSCT, testis histology should, in theory, restore to full spermatogenesis.
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Methods

We performed a narrative review using the literature available on PubMed
not restricted to any publishing year on topics of subfertility, fertility treat-
ments, (molecular regulation of) spermatogenesis and SSCT, inherited
(genetic) disorders, prenatal screening methods, genomic editing and
germline editing. For germline editing, we focussed on the novel clustered
regulatory interspaced short palindromic repeats-associated protein 9
(CRISPR-Cas9) system. We included papers written in English only.

Clinical prospects of SSCT to
restore spermatogenesis

The first successful SSCT was reported in 1994 and resulted in fertil-
ity restoration in sterile recipient mice upon transplantation of donor-
derived SSCs (Brinster and Zimmermann, 1994). Subsequent studies
substantiated the findings by showing restoration of spermatogenesis
after SSCT in mice (Kanatsu-Shinohara et al., 2003; Goossens et dl.,
2009; Kubota et al., 2009; Yuan et al., 2009; Wu et al., 2012) and
other animal models (Honaramooz et al., 2002; |zadyar et al., 2003;
Ryu et al., 2007; Nobrega et al., 2010; Kawasaki et al., 2012), includ-
ing non-human primates (Schlatt et al., 1999; Hermann et al., 2012).
In mice, SSCs can be transplanted into the recipient seminiferous
tubules by injecting the efferent ducts, the rete testis or directly
injecting seminiferous tubules (Ogawa et al., 1997). Injection via the
efferent ducts is mostly employed in rodents (Gonzalez and
Dobrinski, 2015). Yet, due to the anatomic and size difference in tes-
tes, ultrasound-guided transplantation via the intra-rete testis has
been proved to be the least invasive and most efficient and successful
protocol for non-rodent species such as pigs (Honaramooz et dl.,
2002), bulls (Izadyar et al., 2003), primates (Schlatt et al., 1999;
Schlatt, 2002; Hermann et al, 2012) and ex vivo human testes
(Schlatt et al., 1999; Ning et al., 2012). Crucial to this procedure is
the injection of cells via the rete testis, and optimization is needed in
this respect to augment success rates (Jahnukainen et al., 201 1). In
addition, the quality and quantity of SSC niches in the recipient testis
makes a difference to the success of autologous transplantation
(Jahnukainen et al., 2006). To date, multiple papers describe the gen-
eration of SSCT-induced healthy offspring in rodents (Goossens
et al., 2009; Yuan et al., 2009; Lee et al., 2009; Kubota et al., 2009;
Goossens et al., 2010; Wu et al., 2012) and non-rodent large animal
models such as goats and sheep (Honaramooz et al., 2003; Herrid
et al, 2009; Zheng et al., 2014). A breakthrough was recently
achieved by Hermann et al. (2012), who successfully performed
autologous and allogeneic transplantation of SSCs from rhesus mon-
key, leading to the generation of donor-derived sperm in both cases.
Subsequently, ICSI was conducted to fertilize oocytes, and embryos
with donor paternal origin were finally produced. This demonstration
in primates provides prospects for future clinical translation of SSCT.
For humans, SSCT has been proposed as a future clinical applica-
tion for those men with the risk of complete germ cell depletion that
have no option to cryopreserve sperm, in particular, prepubertal can-
cer patients (Brinster, 2007; Goossens et al, 2013; Struijk et al.,
2013; Sadri-Ardekani and Atala, 2014) and, theoretically, even in case
of focal spermatogenesis (Nickkholgh et al., 2015). Prepubertal can-
cer patients especially rely on SSCT because spermatogenesis is not
initiated yet, which means that semen cryopreservation prior to

treatment is not an option. By opting for storage of a testicular biopsy
before cancer therapy, SSCT can be applied later in life when the
patient is cured and expresses the wish to have children (Struijk
et al., 2013; Picton et al,, 2015). In this case, cryopreservation of
biopsied testicular tissues constitutes an important part of fertility
preservation (Schlatt et al., 2009). Currently the most popular avenue
to preserve pieces of testicular tissues is through controlled slow
freezing (Keros et al., 2005, 2007; Wyns et al., 2007, 201 1; Gassei
and Orwig, 2016; Ginsberg et al., 2010), with the addition of cryo-
protective agents such as dimethyl sulphoxide or ethylene glycol with
or without sucrose (Keros et al., 2005, 2007; Kvist et al., 2006; Wyns
et al., 2007, 2008; Poels et al., 2014; Picton et al., 2015). Vitrification
instead of controlled slow freezing has also been tested with positive
outcomes (Curaba et al., 201 |; Baert et al., 2013; Poels et al., 2013).
Nevertheless, protocols for tissue preservation require further opti-
mization to maximize the viability of post-thawed human testicular
tissues (Picton et al., 2015).

Following successful cryopreservation, conventional SSCT can be
performed at a later stage, which involves the transplantation of the
patient’s SSCs into one’s own testis (i.e. autotransplantation). After
autotransplantation, SSCs migrate to the basement membrane of the
recipient seminiferous epithelium, from where they reinitiate sperm-
atogenesis (Fig. ). In this way, the patient can (re)gain his fertility and
generate their own biological children by natural conception, as
shown in animal experiments (Honaramooz et al., 2003; Goossens
et al., 2009).

The efficiency of SSCT is highly dependent on the number of trans-
planted SSCs (Dobrinski et al., 1999; Nagano, 2003). Previous reports
suggest that SSCT is unlikely to become clinically applicable with-
out an approach to successfully expanding human SSCs in vitro
(Jahnukainen et al, 2006, 2011). In vitro expansion of SSCs has
been successfully demonstrated in studies using rodent SSCs
(Kanatsu-Shinohara et al., 2003, 2005, 2008; Kubota et al., 2004;
Ryu et al., 2005). Even after 2 years of culture, the SSCs retained
the capacity to colonize the basal membrane of seminiferous
tubules and could further develop into healthy and functional
sperm (Kanatsu-Shinohara et al., 2005). In human trials, SSCs can
first be isolated from biopsies and then subjected to primary
culture to increase their number for the sake of SSCT. Several
culture systems have been established for human adult SSCs
(Sadri-Ardekani et al., 2009; Lim et al, 2010; Kossack et al,
2013; Akhondi et al., 2013; Guo et al, 2015), as well as for
human prepubertal SSCs (Sadri-Ardekani et al., 2011). Presently
(xeno)transplantation is the well-acknowledged and only available
assay for functionality of human SSCs. It is shown that in vitro
propagated human SSCs are capable of migrating to the niche at
the basal membrane of the seminiferous tubules upon xenotrans-
plantation into the testis of immunodeficient mice (Sadri-Ardekani
et al, 2009, 2011), indicating that these cultured testicular cells
still have SSC capabilities. Nevertheless, human spermatogenesis is
not initiated in the mouse model. This is not unexpected given
the large phylogenetic distance between mice and humans, and
because of this, the murine niche cannot support full develop-
ment of human SSCs into sperm (Nagano et al., 2002). Despite
that, by comparing the numbers of migrated SSCs in the recipient
testis after xenotransplantation of early and late passages from
primary human testicular cultures, it has been established that
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adult as well as prepubertal SSCs can indeed proliferate in culture
(Sadri-Ardekani et al., 2009, 201 1). Thus, the successful expansion
of human SSCs in culture paves the way for clinical applications
of SSCT.

Once SSCT is clinically implemented for childhood cancer survi-
vors, other patient groups that have the risk of becoming subfertile
or that suffer from subfertility might also benefit from this treat-
ment. In a recent study in azoospermic men, it was shown that
these men hold a positive attitude toward SSCT, which was persist-
ent even after acknowledging that a new experimental technique
might have some risks for themselves or their offspring (Hendriks
et al.,, 2014).

SSCT to restore fertility in adult cancer
survivors

Due to the high sensitivity of spermatogonia to DNA damage (van
der Meer et al, 1992; Meistrich, 2013), spermatogonial apoptosis
and subsequent subfertility is a major side-effect of most cancer treat-
ments. The chance of becoming azoospermic temporarily or perman-
ently after cancer therapy is highly dependent on the type and dosage
of the treatment (Howell and Shalet, 2005). A recent study has
shown that 25% of patients who underwent chemotherapy were
azoospermic after 7-218 months (median: 40 months), with the high-
est chance of azoospermia in Hodgkin disease survivors (63%)
(Tomlinson et al., 2015).

Cryopreservation of semen prior to treatment is historically an
effective and inexpensive way to preserve fertility in adult male can-
cer patients. The cryopreserved semen can be used to achieve a
pregnancy by cervical or intrauterine insemination (IUl) or, in case
the quality of the semen is too low, by IVF or ICSI treatment.
However, cancer patients often show decreased fertility at the time
of cancer diagnosis. In fact, Ragni et al. (2003) report that 12% of
patients who wish to store their semen are azoospermic at the
time of cancer diagnosis. Moreover, semen cryopreservation
severely reduces sperm motility (Keel and Webster, 1989; Boitrelle
et al, 2012), sperm count (Keel and Webster, 1989) and DNA
integrity (Valcarce et al., 2013). Hampered sperm motility signifi-
cantly decreases the chance of live birth after |Ul (Hendin et dl.,
2000), and therefore the majority of patients who make use of
cryopreserved spermatozoa have to resort to IVF/ICSI. However,
IVF/ICSI is costly and burdensome, and requires ovarian hypersti-
mulation of the healthy female to retrieve oocytes, which is not
risk-free and leads to onset of the ovarian hyperstimulation syn-
drome in 1-8% of stimulated women (Mathur et al., 2000; Gelbaya,
2010). In addition, it is well known that IVF/ICSI is associated with
adverse short-term outcomes including preterm birth, lower birth-
weight and a higher prevalence of birth defects (Helmerhorst et al.,
2004; Hansen et al., 2013).

Although SSCT does require a testis biopsy and treatment of the
affected male, it would avoid IVF/ICSI treatment of the healthy
female partner since natural conception might be feasible after SSCT.
In the future, SSCT may therefore become an appealing alternative
for fertility preservation in adult cancer patients in a similar way as
described for prepubertal cancer patients by cryopreserving a testis
biopsy before onset of cancer treatment.

SSCT to enhance fertility in oligozoospermic
and azoospermic men

Oligozoospermic and azoospermic men are capable of fertilization if
they produce morphologically normal sperm in the testis. In couples
where the male is oligozoospermic or azoospermic, ICS| is used to
achieve fertilization with ejaculated or surgically retrieved spermato-
zoa, respectively. However, since oligozoospermia and azoospermia
may be caused by a reduction in functional SSCs (Takagi et al., 2001;
Yakirevich et al., 2003; Hentrich et al, 2011), a simple increase in
SSCs may restore spermatogenesis and fertility in these men. This is
especially relevant to the patients who display focal spermatogenesis
at the histological level, in which some tubules show normal sperm-
atogenesis, while others display Sertoli cell-only syndrome. The
tubules with normal spermatogenesis harbor functional SSCs, and the
hypothesis is that if these spermatogonia are propagated in vitro and
transplanted back into the testis, they will repopulate the empty
tubules and initiate spermatogenesis in these tubules. A recent article
describes the characteristics of cultured SSCs deriving from patients
who suffer from focal spermatogenesis due to a deletion of the azoo-
spermia factor ¢ (AZFc) region on the Y chromosome (Nickkholgh
et al., 2015). In vitro propagated SSCs from these men with focal
spermatogenesis behaved similarly during culture and showed com-
parable gene expression of key spermatogonial markers when com-
pared to SSCs originating from healthy counterparts with normal
spermatogenesis. These results suggest that patients with oligozoos-
permia or azoospermia as a result of focal spermatogenesis might
also benefit from propagation and transplantation of their own SSCs.
Yet, this hypothesis needs to be demonstrated in clinical trials.
However, one drawback that should be accounted for is that if a
mutation is present on the Y chromosome, as in the case of men
with AZFc deletions, male offspring of these men will harbor the
same mutation and are likely to be oligozoospermic or azoospermic
too (Page et al, 1999). It makes sense that this also holds true for
mutations on other chromosomes. However, this problem also arises
with other contemporary fertility treatment, such as IVF/ICSI with or
without TESE. In order to prevent transmission of these genetic aber-
rations, additional measures have to be taken.

Clinical prospects of SSCT and
germline genomic editing

While the use of SSCT for adult cancer patients or oligozoospermic
and azoospermic patients that display focal spermatogenesis seems
rather straightforward, azoospermic patients suffering from a matur-
ation arrest in spermatogenesis cannot directly benefit from SSCT
because transplantation of the patient’s SSCs would result in the
same arrested phenotype and not cure their spermatogenic failure
(Fig. 1). However, in some cases, the maturation arrest may be
attributed to genetic mutations or arises from epigenetic distur-
bances. Repair of these disorders in SSCs before SSCT would theor-
etically restore spermatogenesis and subsequent fertility in these
patients and in addition prevent the transmission of the mutation to
the offspring. The fact that human SSCs can propagate in culture for
extended periods of time enables (epi)genetic editing prior to
transplantation.
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With recent advances in the field of genomic editing, in particular
the use of novel techniques such as the CRISPR-Cas9 system, SSCT
with genetically modified SSCs has become feasible (Fanslow et dl.,
2014; Wu et al., 2015; Chapman et al., 2015; Sato et al., 2015). In
addition, recent work has shown that epigenetic editing is also pos-
sible with CRIPSR-Cas9 (Hilton et al., 2015).

CRISPR-Cas9 to genomically modify SSCs

Traditional genome editing mainly relies on homologous recombination
in embryonic stem cells (ESCs). Over the last decade, novel genome
editing platforms such as zinc-finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENs) and most recently the
CRISPR-Cas9 system have been developed. These techniques are
based on engineered nucleases that can cause a double-strand break
of DNA, and are much less laborious and time-consuming compared
to traditional strategies. With the emergence of these novel techniques
(Table 1), the majority of cell types, including SSCs, can now be
targeted.

Prior to clinical application of genomically modified SSCs, the safety
of the patient needs to be guaranteed. In a clinical setting, off-target
effects are not acceptable, and technical simplicity would be desir-
able. ZFNs and TALENs were utilized to successfully manipulate
mouse SSCs (Fanslow et al., 2014). However, the required design
and engineering of nucleases necessary for both ZFNs and TALENSs is
strenuous and of high technical difficulty. A better alternative to gen-
etically modify SSCs seems to be the unprecedentedly simple
CRISPR-Cas9 system (Fig. 2), and articles describing successful
manipulation of rodent SSCs by way of CRISPR are now available
(Wu et al., 2015; Chapman et al, 2015; Sato et al., 2015). The
CRISPR-Cas9 system not only bypasses the engineering of nucleases
but also generates far less off-target effects compared with ZFNs
(Ul Ain et al., 2015). According to a recent report, with genome-
wide screens, no obvious off-target genetic or epigenetic changes
could be detected in a large SSCT experiment involving CRISPR-
Cas9-mediated gene targeting and transplantation of modified mouse
SSCs (Wu et al., 2015).

Table I An overview of different genome editing techniques.

Curing spermatogenic failure by
transplantation of genetically modified SSCs

A proportion of infertile men have non-obstructive azoospermia as a
result of spermatogenic arrest. However, in 41% of these patients a
few germ cells escape the arrest and form elongated spermatids,
which can be extracted from testicular tissue by means of TESE and
used for fertilization in an ICSI procedure (Vloeberghs et al., 2015).
When no sperm is found during this procedure, no treatment options
are currently available. Fortunately, Lim et al. (2010) have shown that
spermatogonia from patients suffering from non-obstructive azoo-
spermia due to a maturation arrest are able to proliferate in their
long-term culture system in a similar manner as men with obstructive
azoospermia. Therefore, SSCs might be used in future SSCT as a
valid option to treat these men.

Very recently, Yuan et al. (2015) employed TALENs to success-
fully rectify a point mutation in the mouse ckit gene that blocks
spermatogonial differentiation, and after correction spermatogenesis
could be rescued, for the first time demonstrating that sperma-
togenic failure-related genetic defects can be corrected by genome
editing platforms. Thus, it makes sense that after CRISPR-Cas9-
mediated correction of the genetic defects responsible for sperma-
togenic failure, SSCs from azoospermic men can subsequently be
used for SSCT, offering men with spermatogenic failure a patient-
tailored treatment option. Besides, in small cohorts of azoospermic
men, various single nucleotide polymorphisms (SNPs) associated
with arrests during spermatogenesis have been identified (Aston
et al., 2010; Teng et al., 2012; Parada-Bustamante et al., 2012; He
et al, 2012; Hu et al, 2012), forming additional candidate targets
for genetic modification of SSCs. A recent article reports the use of
CRISPR-Cas9 to interrogate male infertility-related SNPs in mice
(Singh and Schimenti, 2015). In addition, the recently developed
genome-scale CRISPR knockout (GeCKO) enables the targeting of
a variety of genes in parallel (Shalem et al, 2014; Sanjana et dl.,
2014). Because infertility is often not believed to be a monogenic
disorder but is rather thought to be caused by a spectrum of genes
(Jan et al.,, 2012), the GeCKO system could serve as a prospective

Genome editing Homologous

systems recombination
without engineered
nucleases
Target cells Mostly ESCs

Non-viral transfection/viral
transduction/microinjection

Approaches to delivering
targeting vectors

Technical difficulty High High
Targeting efficiency Low Variable
Off-target effects Low Variable
Possible to target a large scale No No

of genes in parallel?
Suitable for the clinic? No, due to low efficiency and

the typical requirement of ESCs

Conventional engineered

Most cell types

Non-viral transfection/viral
transduction/microinjection

Not optimal

Novel engineered Novel engineered

nucleases (ZFNs/TALENs) nucleases (CRISPR-Cas9) nucleases (GeCKO?®)

Most cell types Most cell types

Non-viral transfection/viral Lentiviral transduction

transduction/microinjection

Low Intermediate
Generally high High

Generally low Variable

No Yes

Yes Currently not due to

lentiviral transduction

2GeCKO, genome-scale CRISPR knockout; ESC, embryonic stem cell; ZFN, zinc-finger nuclease; TALEN, transcription activator-like effector nuclease; CRISPR-Cas9, clustered

regulatory interspaced short palindromic repeats-associated protein 9.
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Figure 2 The CRISPR-Cas9 system. The Type Il Streptococcus pyo-
genes clustered regulatory interspaced short palindromic repeats-
associated protein 9 (CRISPR-Cas9) (SpCas9) system, which is the
simplest and most extensively used CRISPR-Cas9 technology, is
based on a guide-RNA (gRNA) containing a specific 20 bp sequence
to guide the DNA endonuclease Cas9 to a complementary target
DNA sequence in the genome where it induces a DNA double-
strand break (DSB). The 20-bp target genomic DNA must be
upstream of a specific sequence (5'-NGG, where N represents a
random nucleotide). The Cas9-induced DSB occurs ~3-bp upstream
of the 5-NGG, and can in theory be induced in any 20-bp genomic
DNA sequence flanking 5'-NGG. The Cas9-induced DSB will then
be repaired by either homology-directed repair (HDR), which can
occur with the presence of DNA repair templates, or by non-
homologous end joining (NHEJ). The error-prone NHE| creates
insertions/deletions (indels) around the DSB point. Indels, especially
when occurring in early coding exons, can cause loss of gene func-
tion (gene knockout) by causing a frame shift that can lead to forma-
tion of a pre-mature stop codon. In contrast, HDR uses a template
sequence for very precise repair of the DSB. Exogenous DNA repair
templates (with the required sequences placed between homology
arms) can be provided to the cells together with other components
of the CRISPR-Cas9 system to create specific indels or modifications
at target genomic loci. Thus, the CRISPR-Cas9 system can be used
to insert sequences or correct disease-causing mutations in a very
accurate way.

platform for gene therapy of such patients. Hence, when the
infertility-causing genetic mutations are known, SSCs could first be
isolated from testicular biopsies and propagated in vitro to increase
their number. Subsequently, the propagated SSCs could be co-
transfected with CRISPR-related vectors (to cut DNA) and exogen-
ous DNA repair templates specific for the mutations (to induce
homology-directed repair, Fig. 2) in a patient-specific manner.
Finally, after selection and whole genome (epi)genetic off-target ana-
lysis, the modified SSCs can be autotransplanted into the testis to
initiate spermatogenesis and produce corrected sperm.

Preventing diseases in offspring by
transplantation of genetically modified SSCs

Carriers of inherited genetic diseases, albeit often fertile, have to
make important decisions when it comes to reproduction. Couples
can opt to remain childless to prevent diseases in their children, opt
for adoption or resort to a germ cell donor. Alternatively, these cou-
ples can attempt to have their own biological children and detect
whether their prospective children are carriers of the disease via pre-
natal testing during pregnancy. In case the fetus is a carrier of the dis-
ease, the parents have to make the emotionally laden decision
whether to terminate their pregnancy. Couples can also opt for PGD
as a preventive measure for the birth of a child with a genetic defect.
PGD is well established for monogenic diseases such as cystic fibrosis
(Handyside et al., 1992), beta thalassemia (Kuliev et al., 1999) and
Huntington’s disease (Sermon et al., 1998). In PGD, couples undergo
IVF treatment in which a single cell is aspirated from each embryo at
the 6-8 cell stage to perform subsequent genetic testing for high-risk
disease alleles. Only unaffected embryos are transferred to prevent
the birth of children with these severe genetic diseases.

Even though PGD provides a solution for couples at risk for trans-
mitting a genetic disease, IVF treatment of the women, including
ovarian hyperstimulation, is indispensable in the process of PGD.
Moreover, many embryos are created, while only a few will be used
to induce pregnancy.

Currently there is no way to prevent genetic diseases in the off-
spring without creating affected embryos. Nevertheless, if the pro-
spective father is the carrier of a disease allele, the disease-causing
mutation can theoretically be corrected in isolated SSCs during
in vitro culture. Subsequently, transplantation of the modified SSCs
would result in genetically normal sperm and therefore prevent
transfer of the disease allele to the next generations. Additionally, it
would enable male carriers at risk for transmitting genetic diseases
to naturally conceive a healthy child without IVF or prenatal genetic
testing.

Inspiringly, CRISPR-Cas9 has been shown to successfully repair
mutations in disease-causing genes in different species and cell types. In
mice, mutations in the Crygc gene (which causes cataracts) (Wu et al.,
2013), dystrophin gene (which causes Duchenne muscular dystrophy,
DMD) (Long et al., 2014) and a Fah mutation in hepatocytes (Yin et al.,
2014) have been repaired by the CRISPR-Cas9 system. In human trials,
the CRISPR-Cas9 system has been used to precisely correct the hemo-
globin beta and dystrophin gene, in p-thalassemia (Xie et al., 2014) and
DMD patient-induced pluripotent stem cells (Li et al., 2015), respect-
ively. Another report describes successful repair of the cystic fibrosis
transmembrane conductor receptor locus in cultured intestinal stem
cells from patients with cystic fibrosis (Schwank et al., 2013). These
reports raise the possibility that CRISPR-Cas9 could be used to repair
inheritable mutations through the germline.

Interestingly, a recent article reports successful genome editing of
mouse SSCs with the CRISPR-Cas9 system (Wu et al, 2015).
Transplantation of the genetically modified SSCs led to fertile off-
spring, in which a Crygc mutation causing cataracts was corrected.
To our knowledge, this is the first report that describes CRISPR-
Cas9-mediated genome editing in SSCs in combination with SSCT,
thereby preventing diseases in the offspring. Furthermore, as the
transplanted SSCs were the cell lines derived from isolated and
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corrected single cells, this method can generate healthy descendants
at 100% efficiency, thereby averting the problem of mosaicism. In
addition to this pioneering work, two other recent articles also pro-
vide the proof of concept by showing CRISPR-Cas9 and SSCT-
induced germline transmission in rodents (Chapman et al., 2015;
Sato et al., 2015). Hence, SSCT and the CRISPR-Cas9 system can be
well combined in the future to prevent the transmission of inherit-
able diseases to the offspring.

Epigenetic editing of SSCs

Mechanisms that underlie cellular functioning are orchestrated by dif-
ferent layers of transcriptional regulation. Apart from genetic factors,
epigenetic regulation is key for the proper functioning of a cell.
Epigenetic traits are defined (Berger et al., 2009) as ‘heritable pheno-
types resulting from changes in a chromosome without alterations in
the DNA sequence’, mediated by several factors such as DNA
methylation, histone modifications and higher order chromatin struc-
turing. Disruption of epigenetic regulation has been shown in an array
of complex diseases, including cancer, diabetes and cardiovascular
diseases (reviewed in MacFarlane et al, 2009; Ordovas and Smith,
2010; Dawson and Kouzarides, 2012). Thus, in theory, epigenetic
editing may be a valid alternative for genetic repair to modify aberrant
gene expression in SSCs from those at risk of transmitting diseases to
their own biological children.

The core of currently described epigenetic editing approaches is
the fusion of an epigenetic modulatory enzyme to a protein with a
DNA binding domain in order to affect gene expression and modulate
local parameters, such as cytosine methylation and demethylation or
histone modification once the enzymatic construct is in place. This
powerful approach has been used to silence and/or activate specific
DNA sequences by altering epigenetic parameters of target genes
(reviewed in de Groote et al., 2012; Falahi et al., 2015). For example,
a recent study describes the guidance of the Ten-Eleven Translocation
2 DNA demethylation enzyme to the promoter region of the intercel-
lular adhesion molecule | gene, causing local demethylation and
reactivation of the gene where it was normally silenced (Chen et dl.,
2014). Another group has reported the development of a program-
mable molecular construct consisting of a nuclease-deactivated Cas9
(dCas9) protein fused to the catalytic core of the acetyltransferase
p300, which can be used to modulate histone acetylation of any Cas9-
targetable genomic location (Hilton et al., 2015). One might imagine
that epigenetic editing techniques might allow correction of the tran-
scriptional regulation of pivotal genes in various biological processes,
including germ cell development. Epigenetics have been shown to play
a key role in normal germ cell development (Gan et al., 2013; An
et al., 2014; Hammoud et al., 2014), and allele-specific DNA methyla-
tion was altered in semen from men that suffer from spermatogenic
failure (Poplinski et al., 2010; Klaver et al., 2013; Ferfouri et al., 2013;
Richardson et al., 2014; Urdinguio et al., 2015). Local correction of
abnormal DNA methylation or histone modification of target genes in
infertile men might improve the spermatogenic potential.

In theory, SSCT of epigenetically modified SSCs may also be applic-
able for inherited epigenetic diseases. Epidemiological data point to
human transgenerational epigenetic inheritance, including the Dutch
Famine Birth Cohort Study (Lumey, 1992; Heijmans et al., 2008;
Painter et al, 2008; Veenendaal et al., 2013) and the Swedish

Overkalix population (Pembrey et al., 2006). Additionally, a few
(case) studies describe inheritance of a disease-associated epimuta-
tion of a specific locus, such as the SNURF-SNRPN locus in Prader—
Willi and Angelman syndrome (Buiting et al., 2003) and the cancer
predisposing gene MLHI (Suter et al, 2004). However, one must
realize that the epigenome is reset in an extensive way during early
embryonic development (Daxinger and Whitelaw, 2012; Wei et dl.,
2015). Even though some inherited epigenetic marks seem to escape
epigenetic reprogramming, it remains unclear whether epigenetic
germline editing combined with SSCT may benefit patients in the
future. Therefore, more research is needed before SSCT can be
applied to cure heritable epigenetic diseases.

Clinical and technical hurdles
and drawbacks

The field of SSCT is uprising, and a variety of patient groups may
benefit from this therapy in the future. However, some hurdles still
need to be overcome prior to its clinical implementation. For one
thing, safety of the patient and his offspring is of major concern
(Struijk et al., 2013). Human SSCs may change (epi)genetically when
exposed to an in vitro environment. Yet, there is evidence of genetic
stability of cultured human SSCs (Nickkholgh et al., 2014). DNA
methylation of maternal and paternal imprinted genes in uncultured
murine SSCs did not alter after transplantation (Goossens et dl.,
2009; Wu et al., 2012), whereas cultured human SSCs showed
changes in DNA methylation in some selected regions of maternal
and paternal imprinted genes (Nickkholgh et al., 2014). Conclusively,
although the published data suggest that SSCT may be safe for the
clinic, more (pre)clinical studies are needed in this field to ensure
safety for patients, as well as for their offspring.

Another challenge in cancer patients is that primary testicular cul-
tures may be contaminated with lingering cancer cells from leukemic
or metastasized patients. While some researchers were unable to suc-
cessfully sort out cancer cells (Geens et al., 2007), others succeeded in
removing leukemic cells from testicular cultures (Sadri-Ardekani et al.,
2014) or from cell suspensions (Hermann et al., 201 I).

In comparison, the clinical implementation of genomically modified
SSCT is even more challenging. Aside from the potential risks accom-
panying conventional SSCT, we currently do not know whether gen-
omic manipulation of SSCs harbors any extra risks for the patient or
his offspring. In addition, a major clinical drawback of germline ther-
apy in fertile carriers of diseases remains that the patients have to
undergo local irradiation to deplete the testis of endogenous mutated
spermatogonia before SSCT. Otherwise, the testis of the recipient
father would produce two populations of sperm cells: those that arise
from endogenous SSCs carrying the disease-causing mutation as well
as those from the corrected SSCs introduced by transplantation. As a
consequence, the semen of the father would contain a mixed popula-
tion of spermatozoa and children conceived by natural conception
could be derived from either a corrected or endogenous sperm cell.
Although local irradiation has been demonstrated to be an effective
measure to deplete the testis of germ cells in animal studies (Zhang
et al., 2006; Herrid et al., 2009), it can have a deleterious influence
on outgrowth of seminiferous tubules, especially in prepubertal testes
(Jahnukainen et al, 2011). Besides, it may cause damages to
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surrounding organs and cells. Moreover, some endogenous sperm-
atogonia might survive the irradiation and are still capable of develop-
ing into spermatids, thereby risking the transfer of the genomic
aberrations. In this sense, the development of alternatives to exclude
endogenous SSCs is needed to better strike the balance between the
benefits of SSCT and the potential risks of the required total deple-
tion of endogenous spermatogenesis.

In terms of genomic manipulation, some technical problems remain
to be addressed. First, the CRISPR-Cas9 components need to be
delivered into cells. The way in which the Cas9 nuclease is intro-
duced (viral or non-viral) has significant clinical implications (Table I).
In case of viral transduction, CRISPR-sequences, and possibly even
residual viral sequences, integrate into the genome of the patient.
This raises serious safety concerns and is not suitable for clinical
application. However, non-viral delivery methods often fall short, as
they can be inefficient in gene delivery (e.g. liposome-mediated trans-
fection), are laborious (e.g. microinjection) or lead to significant cell
mortality (e.g. electroporation). While SSCs have been demonstrated
to be refractory to most non-viral transfection approaches (Kanatsu-
Shinohara et al., 2005), novel electroporation devices that are cur-
rently being used in some laboratories may be the option to transfect
SSCs with adequate efficiency (Zeng et al, 2012; Fanslow et dl.,
2014; Wu et al., 2015; Chapman et al., 2015; Sato et al, 2015).
Alternatively, transfection of the mRNA instead of the corresponding
DNA vectors has been shown to be more efficient for genome edit-
ing (Fanslow et al., 2014). Also the recently developed novel method
regarding direct intracellular delivery of proteins might serve as
another option for gene targeting (D’Astolfo et al., 2015).

In spite of the developments, one needs to realize that SSCT in
combination with genomic editing to cure or prevent diseases is only
feasible when the genetic mutation is known. Unfortunately, the gen-
etic etiology remains elusive in many cases. More research on the
identification of genomic mutations that cause subfertility is necessary
in this respect (Visser and Repping, 2010; Tuttelmann et al., 201 1;
Krausz and Chianese, 2014). A recent article describes that CRISPR-
Cas9 was exploited to successfully eradicate porcine endogenous
retroviruses with the copy number as high as 62 in a porcine cell line
(Yang et al., 2015), showing the robustness and versatility of CRISPR.
However, various genetic diseases, including subfertility, are believed
to be caused by an array of genes (Jan et al., 2012), which renders
genetic correction substantially more difficult as it would require sim-
ultaneous targeting of various loci. A previous report shows that a
maximum of five genes could be simultaneously disrupted by micro-
injection of CRISPR components into mouse ESCs (Wang et dl.,
2013). At present, the novel GeCKO system seems to be the only
possible approach to targeting a wide array of genes in parallel.
Nevertheless, GeCKO, which requires lentiviral transduction and
subsequent integration of CRISPR components into the genome, is
considered unsafe for clinical application at the moment. We still
need to await further development in this regard before we can tar-
get a variety of genes in parallel safely for clinical purposes.

Another important issue is the potential off-target alterations
induced by the CRISPR-Cas9 system. Recent studies have revealed
that the 20-bp gRNA-DNA hybrid (Fig. 2) has the potential to toler-
ate |-3 or even more sequence mismatches (Fu et al, 2013; Mali
et al., 2013; Sander and Joung, 2014). As a consequence, normal
genes containing high homology to the target sequence might also be

targeted. Reassuringly, whole genome sequencing of the CRISPR-
Cas9-modified SSCs showed no apparent off-target mutations
(Wu et al, 2015). Moreover, novel versions of CRISPR with
enhanced specificity but without the sacrifice of on-target activity
have been developed recently (Slaymaker et al., 2015; Kleinstiver
et al., 2016), which will further facilitate its broad applications in the
clinic.

Also, the targeting spectrum of the CRISPR-Cas9 system needs to
be expanded. The requirement of a specific sequence (e.g. 5'-NGG
for type Il SpCas9, Fig. 2) following the target is a principal constraint.
While 5-NGG occurs quite frequently in the human genome, further
extensions of the targeting range by development of other types of
CRISPR that recognize distinct sequences downstream of the target-
ing site (Zetsche et al, 2015; Nishimasu et al., 2015) would give
broader options for genome editing.

Ethical issues

As genomic modification of SSCs leads to germline transmission of
the modified trait to the next generation, elaborate ethical reflection
and an intensive societal debate on the acceptability of a clinical appli-
cation of germline gene editing should precede the actual clinical
application of modified SSCs. Recently two groups employed the
CRISPR-Cas9 system to achieve genome editing in human tripronuc-
lear zygotes (Liang et al, 2015; Kang et al., 2016). Although the
zygotes used were unable to develop into viable embryos, these
reports still initiated major debates. Some people propose a com-
plete ban on germline genomic editing (Lanphier et al., 2015), while
others request a moratorium on the clinical application of germline
editing but suggest permission for research in this field (Baltimore
et al, 2015). To date, multiple articles have been published to
broaden the discussion (Ishii, 2015; Miller, 2015; Pollack, 2015;
Porteus and Dann, 2015; Vassena et al., 2016). We strongly support
the establishment of a societal platform including molecular and
(stem) cell biologists, medical professionals, ethicists, politicians, citi-
zens and most importantly patients, to discuss under which circum-
stances and to what extent germline modification should be allowed.

Concluding remarks

In this review, we explore different patient groups that may benefit
from SSCT with or without genomic editing. We conclude that the
clinical implementation of SSCT can potentially reach far beyond fer-
tility preservation in childhood cancer patients. Conventional SSCT
could help adult cancer patients preserve their fertility, while fertility
may also be enhanced in oligozoospermic or azoospermic patients
using this technology. Successful genomic modification of SSCs by the
novel CRISPR-Cas9 system in culture could repair detrimental muta-
tions, thereby treating patients with non-obstructive azoospermia
and carriers of diseases in the future.

The safety of the patient and the following generations is of para-
mount importance. From our perspective, by no means should these
techniques be employed in the clinic until safety and efficiency has
been demonstrated empirically. Therefore, more fundamental research
remains to be conducted. In addition, a societal and ethical debate
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should precede the use of modified SSCs in a future clinical application
of SSCT.

Nonetheless, SSCT, with or without genome editing, is a potential
powerful platform that potentially can be employed to cure infertility
or even inheritable mutations in various patient groups. Research in
this field is thriving, and a revolution might be visible at the horizon.
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